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A sub-Riemannian structure on a manifold M

Let ∆ ⊂ TM be a distribution of r -dimensional subspaces equipped

with a scalar product B(·, ·).

De�nition

A curve γ : [0,T ]→ M is called an admissible curve if

γ̇(t) ∈ ∆γ(t) a.e.

De�nition

The sub-Riemannian length of an admissible curve γ is∫ T

0

√
B(γ̇(t), γ̇(t)) dt.

Remark. For r = dimM we get a Riemannian structure.

The goal is to describe the shortest arcs.
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An optimal control problem

Let X1, . . . ,Xr be a orthonormal frame for distribution ∆ with

respect to B( · , · ).
The problem is to �nd controls u1, . . . , ur ∈ L∞([0,T ],R) and a

curve γ : [0,T ]→ M such that

γ̇(t) = u1(t)X1(γ(t)) + · · ·+ ur (t)Xr (γ(t)) a.e.,∫ T

0

√
u2
1
(t) + · · ·+ u2r (t) dt → min .
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The energy functional

∫ T

0

√
u2
1
(t) + · · ·+ u2r (t) dt → min ⇔

⇔ J =
1

2

∫ T

0

(u21(t) + · · ·+ u2r (t)) dt → min .
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Existence of solutions

Theorem (Rashevskiy, Chow)

If M is connected and span {∆1
m,∆

2
m, . . . } = TmM for any

m ∈ M, where

∆1 = ∆, ∆k = ∆k−1 + [∆,∆k−1],

then there exists an admissible curve connecting any two given

points.

Theorem (Filippov)

The reachable set is compact under some broad conditions.
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Example. Sub-Riemannian structure on the group of

isometries of a plane.

The bundle of unit tangent vectors on a plane. A model of a car.Modelling of Illusory Contour

Idea: The illusory contour appears as a geodesic

in a metric induced by visual stimulus.


ẋ = u1 cos θ,
ẏ = u1 sin θ,

θ̇ = u2,

∫ T

0

u21(t) + u22(t) dt → min .

7/27



Sub-Riemannian geodesics

Consider functions that are linear on the �bers of the cotangent bundle

hi : T ∗M → R, hi (λ) = 〈Xi (π(λ)), λ〉, λ ∈ T ∗M,

where π : T ∗M → M.
Introduce a family of functions on T ∗M

Hν
u = u1(t)h1 + . . . ur (t)hr −

ν

2
(u2

1
(t) + · · ·+ u2r (t)).

Theorem (Pontryagin maximum principle)

If ũ : [0,T ]→ U ⊂ Rk is an optimal control and γ̃ : [0,T ]→ M is a

shortest arc, then there exists a Lipschitz curve λ : [0,T ]→ T ∗M and

ν > 0 such that

(1) π(λ(t)) = γ̃(t), t ∈ [0,T ];

(2) λ̇(t) = ~Hν
ũ(t)(λ(t));

(3) Hν
ũ(t)(λ(t)) = maxu∈U Hν

u (λ(t)) for a.e. t ∈ [0,T ];

(4) (λ(t), ν) 6= 0.
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Sub-Riemannian geodesics

We will consider the normal case ν 6= 0.

The maximized Hamiltonian is quadratic H = 1

2
(h2

1
+ · · ·+ h2r ).

The trajectories of the Hamiltonian vector �eld ~H project to

geodesics (their small arcs are optimal).

Any normal geodesic is de�ned by its initial momentum.
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Invariant case

Assume that a Lie group G acts on M transitively and a

sub-Riemannian structure is G -invariant. Let K be a stabilizer of a

point o ∈ M.

Consider a lift of our problem to the group G

γ(0) ∈ K , γ(T ) ∈ gK .

The transversality condition of the Pontryagin maximum principle:

λ ∈ (TggK )◦, where g = π(λ).

A trivialisation via group action: T ∗G = g∗ × G ⊃ k◦ × G , where

k◦ = (g/k)∗ = m∗.
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Normal case for an invariant sub-Riemannian structure

Normal case (ν = 1). Maximized Hamiltonian

H = 1

2
(h2

1
+ . . . h2r ) ∈ C∞(m∗).

The Hamiltonian system is{
ġ = g ◦ dpH,
ṗ = (ad∗ dpH)p,

where g ∈ G , p ∈ m∗.

The vertical part of the Hamiltonian system is independent.
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Homogeneous geodesics

Let (M,∆,B) be a sub-Riemannian manifold.

Let G ⊂ IsomM be a closed subgroup of isometries. Assume that

G acts on M transitively and e�ectively.

Let K ⊂ G be an isotropy subgroup for a point o ∈ M. So,

M = G/K .

Notice that K is compact and there is an AdK -invariant

decomposition g = k⊕m, where m = ToM.

De�nition

A geodesic γ : [0,T ]→ M passing through the point o is called a

homogeneous geodesic if γ(t) = exp(tX )o for same X ∈ g.
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Some properties of homogeneous geodesics

1 A simple parametrization.

2 The cut time (the time of loss of optimality) is independent on

a starting point on a geodesic.

Question. How many homogeneous geodesics could be there?
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A criterion for homogeneous geodesic

in the Riemannian case

Theorem (Geodesic Lemma (Kowalski, Vanhecke))

A curve exp(tX )o is a homogeneous geodesic i�

B(Xm, [X , g]m) = 0,

where Xm is a m-component of X .

Example

If M is a compact Lie group and a metric B is de�ned by the Killing

form, then any geodesic is homogeneous. The form B is bi-invariant

in this case. We have M = G × G/G as a homogeneous space.
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A criterion for homogeneous geodesic

in the sub-Riemannian case

A geodesic is de�ned by its initial covector (instead of initial vector

in the Riemannian case).

Theorem

The following conditions are equivalent:

(1) A geodesic with an initial momentum p is homogeneous.

(2) There exists X ∈ g such that

p([X , g]) = 0 and Xm = dpH.

(3) The trajectory of the vertical part of the Hamiltonian vector

�eld passing through the point p lies in (Ad∗ K )-orbit.
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Examples

Example

Consider a Riemannian metric on SO3 with eigenvalues I1, I2, I3 > 0.

The vertical part of the Hamiltonian vector �eld on the level surface H = 1

2
.

I1 = I2 = I3

Any geodesic is homogeneous,
M = SO3 × SO3/SO3.

I1 = I2 6= I3

Any geodesic is homogeneous,
M = SO3 × SO2/SO2.

I1 6= I2 6= I3 6= I1

Six homogeneous geodesics.
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Example

Example

Let g = k⊕ p be a Cartan decomposition. The distribution ∆ is

generated by p and B is a restriction of the Killing form to p. The
any geodesic is homogeneous (Agrachev, Brockett, Kupka,

Jurdjevic).

γ(t) = exp (t(X + Y )) exp (−tY ),

where X ∈ p and Y ∈ k.
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Existence of homogeneous geodesics

Theorem

Let K be the Killing form of the Lie algebra g. If KerK = m or

K|∆ 6= 0, then there exists a homogeneous geodesic passing

through the point o ∈ M.

Kowalski, Szenthe: Existence of homogeneous geodesics for

Riemannian manifolds.
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Geodesic orbit sub-Riemannian manifolds

De�nition

A sub-Riemannian manifold is geodesic orbit if any geodesic is

homogeneous.

Proposition

A sub-Riemannian manifold is geodesic orbit i�

{H,R[m∗]K} = 0,

where { · , · } is the Poisson bracket, H is the normal Hamiltonian

of the Pontryagin maximum principle, and R[m∗]K is an algebra of

left-invariant polynomial functions on T ∗M (i.e., the algebra of

Ad∗ K -invariant functions on m∗).
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Geodesic orbit sub-Riemannian manifolds

Corollary

If the algebra of left-invariant polynomial functions is commutative

with respect to the Poisson bracket, then a sub-Riemannian

structure is geodesic orbit. In particular, sub-Riemannian weakly

symmetric spaces are geodesic orbit.

De�nition

A homogeneous space is called weakly symmetric if for any two

points there exists an isometry that replace these points one with

another.

Example

Selberg's original example M = PSL2(R)× SO2/SO2. The

sub-Riemannian structure models a car on a hyperbolic plane.
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Integrability in non-commutative sense

De�nition

A Poisson algebra F on T ∗M is called complete if

dim span {dx f | f ∈ F}+ dimKer { · , · }|F = dimT ∗M.

De�nition

A Hamiltonian system λ̇ = ~H(λ) is called integrable in

non-commutative sense if {H,F} = 0 for some complete algebra

F .

21/27



Integrability in non-commutative sense

A generalization of Jovanovic's result to the sub-Riemannian case.

Theorem

If a sub-Riemannian structure is geodesic orbit, then the

corresponding geodesic �ow is integrable in non-commutative sense.

Indeed, take F = R[m∗]K + µ∗(R[g∗]), where µ : T ∗M → g∗ is the
momentum map. This is a complete algebra. The normal

sub-Riemannian Hamiltonian H ∈ R[m∗]K . Since any geodesic is

homogeneous, we have {H,R[m∗]K} = 0. Notice that

{R[m∗]K , µ∗(R[g∗])} = 0. It follows that {H,F} = 0.
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Free Carnot groups

Consider a free nilpotent Lie algebra of step s and rank r :

g =
s⊕

m=1

gm, [gi , gj ] ⊂ gi+j , gk = 0 for k > s.

Lie algebra g is generated by g1 and dim g1 = r .
The corresponding connected and simply connected Lie group is

called a free Carnot group. Consider a sub-Riemannian structure

with distribution generated by g1.

There is a nilpotent approximation of sub-Riemannian problems

(Agrachev, Sarychev).
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Any Carnot group of step 2 is geodesic orbit

Example

Consider a two step free Carnot group G = V × Λ2V of rank

r = dimV . Multiplication rule:

(x1, ω1) · (x2, ω2) = (x1 + x2, ω1 + ω2 + x1 ∧ x2),

where x1, x2 ∈ V , ω1, ω2 ∈ Λ2V .

The tangent algebra g = V ⊕ Λ2V , the distribution ∆ = V ⊕ 0.

The vertical part of Hamiltonian vector �eld (Rizzi-Serres):

ṗ = %p, %̇ = 0, where (p, %) ∈ V ∗ ⊕ Λ2V ∗ = V ∗ ⊕ so(V ).

IsomG = G h SO(V ) (Kivioja, Le Donne).
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Carnot groups of step more than 2

Theorem

Carnot groups of step more than 2 could not be geodesic orbit.

The generalization of C. Gordon's result obtained for Riemannian

nilpotent manifolds.
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Integrability of the geodesic �ow on Carnot groups

Step 1. Euclidian geometry.

Step 2. Geodesic �ow is integrable in elementary functions.

Step 3, rank 2. Geodesic �ow is integrable in elliptic functions

(Sachkov).

Step 3, rank > 3. Geodesic �ow is not Liouville integrable

(numerically shown by Bizyaev, Borisov, Kilin, Mamaev).

Step > 4. Geodesic �ow is not Liouville integrable (proved by

Lokutsievskii, Sachkov).
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Thank you!

27/27


