
New Solution for the DKP

Maxim V. Pavlov

Lebedev Physical Institute

13.03.2019

Pavlov (FIAN) DKP 13.03.2019 1 / 22



The DKP

The Dispersionless limit of the Kadomtsev—Petviashvili equation

uyy = (ut − uux )x

can be written as a quasilinear system of first order

uy = vx , ut = uux + vy

determined by the Lax pair written in the vector field form

λy = pλx − λpux , λt = (p2 + u)λx − λp(pux + vx ).

Here λ(x , t, y , p), while the functions u(x , t, y) and v(x , t, y).
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The Manakov—Santini Particular Solution

The DKP equation
uyy = (ut − uux )x

has a particular solution

x − y
2

4t
+ 2tu = F (t1/2u),

where F (W ) is an arbitrary function.

The Problem:
How to select this particular solution?
How to generalise this particular solution?
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The Standard Approach

The Method of Hydrodynamic reductions means that we are looking for
pairs of commuting flows (N is an arbitrary natural number)

r it = ηi (r)r ix , r
i
y = µi (r)r ix , i = 1, 2, ...,N,

which have the pair of common conservation laws (the DKP equation)

uy = vx , ut = uux + vy .

This means that u(x , t, y)→ u(r) and λ(x , t, y , p)→ λ(p, r).

Then ηi (r) = (µi (r))2 + u(r), where the functions µi (r) and u(r) can be
found from the Gibbons—Tsarev system

∂iµ
k =

∂iu
µi − µk

, ∂iku = 2
∂iu · ∂ku
(µi − µk )2

, i 6= k.
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The Standard Approach

The Gibbons—Tsarev system

∂iµ
k =

∂iu
µi − µk

, ∂iku = 2
∂iu · ∂ku
(µi − µk )2

, i 6= k

is determined by the Löwner system

∂iλ =
∂iu
p − µi

∂pλ.

Its simplest solutions are polynomial:

λ =
pN+1

N + 1
+ upN−1 + vpN−2 + a1pN−3...+ aN−3p + aN−4,

where the functions ak (x , t, y) are ak (r) in this approach.
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Applications

Corresponding equation of the Riemann surface λ(p; r) plays an important
role in:
hydrodynamics (the Dirichlet problem for Laplace’s equation),
plasma physics (the distribution function in the Vlasov kinetic equation
associated with the Benney system),
nonlinear optics (dispersionless limit of the Kadomtsev—Petviashvili
equation),
nonlinear acoustic (Khokhlov—Zabolotzkaya equation),
aerodynamics (Lin—Reissner—Tsien equation),
the theory of Laplacian Growth (the Hele-Shaw equations),
the Topological Field Theory (the so called superpotential in WDVV
associativity equations, Frobenius manifolds),
Classical Mechanics (the first integral for Hamiltonian systems with
one-and-a-half degree of freedom).
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V.M. Teshukov

The Vlasov (collisionless) kinetic equation associated with the Benney
system was investigated by V.M. Teshukov

λy = pλx − λphx , h =

u+∫
u−

λdp,

where horisontal velocities u± satisfy the two auxiliary equations

ut + uux + hx = 0.

Special solutions selected by polynomials of second and third order
(N = 1, 2)

λ =
pN+1

N + 1
+ upN−1 + vpN−2 + a1pN−3...+ aN−3p + aN−4

were considered by V.M. Teshukov and A.A. Chesnokov.
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The Ansatz

The DKP equation
uyy = (ut − uux )x

is determined by the Lax pair

λy = pλx − λpux , λt = (p2 + u)λx − λp(pux + vx ).

The Manakov—Santini particular solution (here F (W ) is an arbitrary
function)

x − y
2

4t
+ 2tu = F (t1/2u)

is selected by the substitution

λ = kp2 + lp +m,

where k(x , t, y), l(x , t, y),m(x , t, y) are some functions.
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The Ansatz

Theorem: The DKP equation

uyy = (ut − uux )x

has a particular solution

u(x , t, y)=
1

k(t)Q(t)
W -

(
Q ′(t)
Q(t)

+
k ′(t)
2k(t)

)
z-
k ′′(t)
4k(t)

y2-
L′(t)
2k(t)

y+D(t)-
M(t)
2k(t)

,

where k(t), L(t),C (t),M(t),F (W ) are arbitrary functions;

Here the unknown function W is a solution of the algebraic equation

z
Q(t)(k(t))1/2 −

W
Q(t)

= F (W ) +N(t),

while

z(x , t, y) = x − k ′(t)
4k(t)

y2 − L(t)
2k(t)

y + C (t).
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The Ansatz

Three functions D(t),Q(t) and N(t) are determined by

Q ′(t) = (k(t))−3/2,

N ′(t) =
(
C ′(t)− L2(t)

4k2(t)
+
M(t)
2k(t)

−D(t)
)

1
Q(t)(k(t))1/2 ,

D(t) =
L2(t)
8k2(t)

+

(
k ′(t)
2k(t)

+
(k(t))−3/2

Q(t)

)
C (t)

+
1

2k(t)Q(t)

∫ ( M(t)
(k(t))3/2 −

3L2(t)
4(k(t))5/2

)
dt,

while the functions l and m are determined by

l = k ′(t)y + L(t),

m = k ′(t)x +
1
2
k ′′(t)y2 + L′(t)y +M(t) + 2k(t)u.
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The Simple Particular Case

If k(t) = y β, L(t) = 0,C (t) = 0,M(t) = 0, then (β is an arbitrary
constant)

Q ′(t) = t−3β/2, Q(t) =
2

2− 3β
t1−3β/2.

Thus, the DKP equation

uyy = (ut − uux )x

has a particular solution

u(x , t, y) =
2− 3β

2
Wtβ/2−1 + (β− 1)x

t
− β(β− 1)

2t2
y2,

where F (W ) is an arbitrary function, and the unknown function W is a
solution of the algebraic equation(

x − β

4y
y2
)
t−β/2 = W +

2
2− 3β

t1−3β/2F (W ).
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The Simple Particular Case

This solution of the DKP equation

uyy = (ut − uux )x

also can be re-written in the equivalent form

u(x , t, y) = −Ut−β − β

2t
x +

β(2− β)

8t2
y2,

where U(x , t, y) is a solution of the algebraic equation (here U = F (W )
and W = G (U))

2
2− 3β

t1−3β/2U + G (U) =
(
x − β

4y
y2
)
t−β/2.
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The Exceptional Case

If β = 2/3, then the corresponding particular solution becomes (here
Q(t) = ln t)

u(x , t, y) =
t−2/3

ln t
W −

(
1
ln t

+
1
3

)
x
t
+

(
1
ln t

+
2
3

)
y2

6t2
,

where the unknown function W is a solution of the algebraic equation(
x − y

2

6t

)
t−1/3 = F (W ) ln t +W .

This solution also can be re-written in the equivalent form

u(x , t, y) = −Ut−2/3 − x
3t
+
y2

9t2
,

where U(x , t, y) is a solution of the algebraic equation (here U = F (W )
and W = G (U))

U ln t + G (U) =
(
x − y

2

6t

)
t−1/3.
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The Manakov—Santini Particular Solution

If β = 1, then k(t) = t, and

Q ′(t) = t−3/2, Q(t) = −2t−1/2.

Thus, the DKP equation

uyy = (ut − uux )x

has a particular solution (here again L(t) = 0,C (t) = 0,M(t) = 0)

u =
y2

8t2
− x
2t
+
1
t
F (t1/2u), ↔ u = t−1/2G

(
tu +

x
2
− y

2

8t

)
.

Here F (W ) = U and G (U) = W are arbitrary functions.

In this particular case the reduction is

λ = p2t + py + x + 2tu.
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The Non-Isospectral DKP equation

The non-isospectral DKP equation

uxt = yuuxx + yu2x + 2uy + yuyy +
2
3
xuxy

is determined by the Lax pair

λy = pλx − λpux ,

λt −
(
p2y +

2
3
px + yu

)
λx +

(
1
3
p2 + pyux + u + yuy +

2
3
xux

)
λp = 0.

Here λ(x , t, y , p), while the functions u(x , t, y).

We again select a new solution determined by the substitution

λ = kp2 + lp +m,

where k(x , t, y), l(x , t, y),m(x , t, y) are some functions.
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The Non-Isospectral DKP equation

Theorem: The non-isospectral DKP possesses the particular solution

u =
y−2/3

g(t)
W +

1
9y2

x2 − 1
2y
g ′(t)
g(t)

x +
9g ′

2
(t)

8g2(t)
− 9g

′′(t)
4g(t)

+ C (y , t),

where W is a solution of the algebraic equation

F (W )−W
∫ dt
[g(t)]3/2 +

∫ ( k(t)
2[g(t)]3/2 −

3h2(t)
8[g(t)]5/2

)
dt

= xy−1/3(g(t))−1/2 − 9
4

g ′(t)
(g(t))3/2 y

2/3 − 3
2

h(t)
(g(t))3/2 y

1/3,

and

C (y , t) =
(
3g ′(t)h(t)
4g2(t)

− 3h
′(t)

2g(t)

)
y−1/3 +

(
h2(t)
8g2(t)

− k(t)
2g(t)

)
y−2/3.

This particular solution depends on four arbitrary functions of a single
variable: g(t), h(t), k(t) and F (W ).
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The Manakov—Santini Particular Solution

In this particular case the reduction is

λ = kp2 + lp +m,

where

k = g(t)y2/3, l = 3g ′(t)y2/3 +
2x
3
g(t)y−1/3 + h(t)y1/3,

m = 2xg ′(t)y−1/3 − 1
9
x2g(t)y−4/3 +

1
3
xh(t)y−2/3

+2g(t)y2/3u + 3h′(t)y1/3 +
9
2
g ′′(t)y2/3 + k(t).
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The Non-Hydrodynamic Chains

Instead of the expansion

λ = p +
A0

p
+
A1

p2
+
A2

p3
+ ...

one can substitute the extended expansion

λ = a−2p + a−1 +
a0
p
+
a1
p2
+
a2
p3
+ ...

into the Lax pair for the DKP equation

λt = pλx − λpux ,

λy = (p2 + u)λx − λp(pux + vx ).
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The Non-Hydrodynamic chain

Then we obtain

ak ,t = ak+1,x + (k − 1)ak−1[
1

a−1(y)
a1,x −

a′−1(y)
a−1(y)

], k = 1, 2, ...,

ak ,y = ak+2,x+[
1

a−1(y)
a1− x

a′−1(y)
a−1(y)

− 1
2
t2
a′′−1(y)
a−1(y)

− t b
′
0(y)

a−1(y)
− g1(y)
a−1(y)

]ak ,x

+kak [
1

a−1(y)
a1,x −

a′−1(y)
a−1(y)

]

+(k − 1)ak−1[
1

a−1(y)
a2,x −

b′0(y)
a−1(y)

− t a
′′
−1(y)
a−1(y)

], k = 1, 2, ...
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The Non-Hydrodynamic Reductions

Under the substitution

ak =
1
k

M

∑
m=1

εm(cm)k ,
M

∑
m=1

εm = 0,

one can obtain non-hydrodynamic type system (k = 1, 2, ...,N)

ckt =

(
(ck )2

2
+

1
a−1(y)

M

∑
m=1

εmcm − x
a′−1(y)
a−1(y)

)
x

.
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References

A new class of exact solutions selected by the substitution

λ = kp2 + lp +m

is presented.

This ansatz can be generalised to an arbitrary polynomials (N > 0)

λ = k1pN+2 + k2pN+1 + k3pN + ...+ kNp
3 + kN+1p

2 + kN+2p + kN+3.

S.V. Manakov, P.M. Santini,
On the solutions of the dKP equation: the nonlinear Riemann Hilbert
problem, longtime behaviour, implicit solutions and wave breaking, J.
Phys. A: Math. Theor. 41 (2008) 055204,
https://doi.org/10.1088/1751-8113/41/5/055204
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