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Mass conservation law with flux a function of density
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1D flow with density-dependent flux function
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Scalar conservation law with density-dependent flux function
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Upscaling in micro heterogeneous media
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Upscaling in numerical methods
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Numerical schema for characteristic finite-
difference solution of 1D transport equation:
how to transform from dense grid to coarse

grid?




Schematic for upscaling x
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1. Riemann’ problems for

conservation law @Jr o (S) —
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Cauchy’ problem IC:
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Initial-boundary value problem BC:
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Self-similar solution:
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S(x,t)zS(v), v=Xx/t,
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S(v)=const over x=Vt, v is the velocity, so value S is transported with speed v



Two types of continuous solutions:

The Riemann solution consists
of permanent state s(v)=s,,
rarefaction wave

and permanent state s(v)=sg

This solution is continuous

S(v) = const,

v=£(s)

mv



Exact solution for Riemann problem

for convex f-f-function f=f(s) - |
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In continuous solution s=s(v), speed
v must increase from zero to infinity.
If S, (S°) is less than Si (S*), v
decreases, so there is no continuous
solution.

We expand the space of admissible
functions to discontinuous functions,
which suffer shocks S-->S* along
fronts x(t)




A discontinuous solution of hyperbolic equation os of (S )

is admissible (stable)

if it is a limit of continuous solution of + =&—

the equation with vanishing viscosity Ot Ox Ox

The admissibility conditions: dx (1) ) . o
(i) Mass balance on the shock D= g f(S )_f(s ):D(S —3 )

(i) Shock stability with respect to linear
erturbations (Lax _
P ( ) fg/(S+)<D<fS/(S ) e

Shock stability with respect to any
perturbations (Oleinik)
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Exact solution for Riemann
problem for concave f-f-function
f=f(s) — lll — is shock wave with
volume balance of the front
(Hugoniot condition)
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Riemann’ self-similar solution L—R for hyperbolic equation




Determining f(s) from lab f(s(1,t)), i.e. from f-data at x=1
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s, +_Ef[s(1,y)]dy ~fs(L)]e—s(L1)

Given f(s(1,t)), we calculate s(1,t) for all t>0

The inverse solution does not involve direct solution s(x,t) rather using

its self-similarity alone
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2. Analysis of microscale equation with f=f(s,x)
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Multiplying by f/, f —+ f
Characteristic’s form:

A, df

L0, f=f(sx), s=f"(fx)

dt 7% dt

Implicit expression for f-characteristics =7 (x, f )
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3. Continuous solution for convex FFF

FFF curve Il at x=0,
and curve | — at x=1




Fractional flow (f)
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Shock wave solution for concave FFF
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Transition from shock to continuous wave with
FFF decreasing in x from concave to convex

s 1
f )

FFF V that is concave at 0<x<x,, straight line at x=x_,
and convex | at x,<x<7

(a)




Transition from continuous wave to
shock with FFF increasing in x from

convex to concave
(a)

(b)
FFF | that is convex at 0<x<x_, straight
line at x=x,, and concave V at x.<x<7
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Riemann’s solution for S-shaped FFF
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4. Exact continuous solution for any initial-boundary value problem
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5. Upscaling of Riemann problem

Lab determining of fractional flow function f(s) from breakthrough water-cut

history is a common method. It is valid for the case of micro-heterogeneous
media f=f(s,x)?

In lab, upscaling must give the same values at the end of core x=1.
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Applying Green’s theorem:

”{ of SX)}dde=§9fdt—sdx=0
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Integrals over the sides of curvilinear triangle:
(1,1

I: P fdt—sdx=-S,
I

I : pfdr—sdxzjf[s(z,t),zjdt

1l : jpfdt—sdxzﬁ—(S(f,x)>=ﬁ—<f—f(f,x)>

Comparing with self-similar case I : )bF(S)dt—de = F(ij t—S(ij
I

we obtain the upscaling formula S(f) _ j‘f—z ( ,x)dx
0
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6. Upscaling of f(s,x) for any IC BC

Consider the case where > 7(0,f,(0)) and domain £ bounded by curvilinear rectangular
['=0Q: (0,0) —=(1,0) —(1,t) —(0,t)) —(0,0) where f=const along the side (0,¢,) —(1,?)
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Microscale

S(LO)=F(£,(0)=[ 7 (£ (6).x)dx=[ £, (»)dy=[(£,(£) = £,(»))dy+ [ s, (x.

Q'—;N

Macroscale

fo(zo)z_jf‘f(fo(to),y)dyth—F_](F), F=f0(t0) o, t,)

Upscaling formula: F'(f)= jf‘] (f,y)dy
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Schematic for upscaling
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/. Upscaling of piecewise-constant periodical system (composite core)
three periods

Upscaled Fractional Flow Curve
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Flow in periodical two-piece (composite) porous media
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Microscale solutions are
different for two cores.
They coincide at macro scale
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Numerical schema for characteristic finite-difference

solution of 1D two-phase transport equation 0 I 1 X
f=E,l(S), S=f_]n (f) xe[xn,xn+]], n=0,1..N, x,=0, x,, =1

(s(5,0).5) = (s(5,.)



Some extensions

Proposed Upscaling = exact solution at micro scale for
f(s,x) + exact inverse solution at upper scale

Linear PDEs: exact solution by Green’s function and
iInverse problem for its integral equation



Scalar conservation laws

0S + 8f(S’t) -0 Time-dependent flux
ot OX
of (s,x) 0s 0
ot T or Space-dependent adsorption
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“Multicomponent” flows

S is the density, f is the advective flux, c-concentration of an additive,
cf is the advective flux of the additive, a — adsorption concentration

o of (s.c) o, 8(CS+a(C))+a(cf) 0
ot Ox ot Ox
do = fdt —sdf, ¢:jfdt—sdf, S(x,t)=S(x,g0),c(x,t):C(x,g0)
Ga(c)_l_@c _ 0
op  0Ox

The solution c(x,$) contains shocks only if

t=0:¢c=0, x=0: c=1, a//(c)<0



Conclusions

For any initial-boundary value problem of f(s,x), the flux is Riemann invariant; the
characteristics allow for 15t integral yielding implicit formulae for the
characteristics. First integrals for front trajectories are obtained by integration of
differential mass balance form f(s,x)dt-sdx over the closed contours in plane (x,f)
that comprise two arriving characteristics f and f and the intervals of axes x and
t where the initial-boundary values are given.

Saturation S that corresponds to upscaled value F=F(S) is an average in x of the
“microscale” inverse function s=f-7(F x).

The numerical solution obtained by an explicit finite difference method with
advance over Ax for micro scale model, coincides with the solution for the large-
scale system obtained by history-based upscaling, in the points on numerical cell
boundaries x,, X4, ..., X,,.



There are two challenges:

1 - Lab determining of fractional flow function f(s) from breakthrough water-cut history is a
common method. It is valid for the case of micro-heterogeneous media f=f(s,x)?

In lab, upscaling must give the same values at the end of core x=1. Upscaling of Riemann
problem

2 - Resolution of measurements are significantly higher than the minimum grid size of the
numerical model, i.e. f=f(s,x). How to calculate f(s) that will present the same results at
the course grid?

In numerical model, the same numerical finite-difference solution. Upscaling of initial-
boundary value problem




Upscaling in micro heterogeneous formations
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Numerical schema for characteristic finite-difference solution of 1D transport equation
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Discontinuous solutions — shocks, jumps:

S(D-0)=S",S8(D+0)=S", v=D

Shock occurs near to v=D .\
ST, v>D
S(v)=1
S, v<D
Mass balance on the shock f S — S
p_(8)(5)
Stability of solution with respect to small A
perturbations in linearised equation f'(S_) <D< f’(S+)
Stability of solution with respect to small (S(V)) ( )
perturbations in original equation —
S(v) S



2. Mass balance for 1D flow in
micro heterogeneous flow
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x=0: f=0(s=S)



