Exact solutions and upscaling for 1D hyperbolic flows in micro heterogeneous media

Kofi Prempeh Parker William George Pavel Bedrikovetsky

University of Adelaide, Australia

September 18, 2024

$$
\frac{\partial s}{\partial t} + \frac{\partial f(s)}{\partial x} = 0
$$

Mass conservation law with flux a function of density

 0, ^v v f t x

1D flow with density-dependent flux function

$$
\rho v = f\left(\rho, x\right)
$$

Scalar conservation law with density-dependent flux function

$$
\frac{\partial s}{\partial t} + \frac{\partial f(s, x)}{\partial x} = 0
$$

2

Upscaling in micro heterogeneous media

Composite core

Upscaling in numerical methods

Numerical schema for characteristic finitedifference solution of 1D transport equation: how to transform from dense grid to coarse grid?

Schematic for upscaling

$$
F = F(S), S = F^{-1}(f)
$$

$$
F^{-1}(f) = \int\limits_{0}^{x_N} f^{-1}(f, y) dy
$$

With application of the upscaling for each numerical cell [x_n,_{xn+1}], the solution for microscale and upscaled systems, F(S) and f(s,x), coincide in all nodes x_n

Contents

Introduction:

- 1. Reminder of Riemann solution for f=f(s)
- 2. For f=f(s,x), flux is a Riemann invariant
- 3. Exact solutions of Riemann problem: rarefaction, shock, transitional solutions
- 4. Exact solution for any problem with ICs and BCs
- 5. Upscaling

Extensions of the approach

Conclusions ⁶

1. Riemann' problems for conservation law

Cauchy' problem IC:

$$
t = 0 : s(x, 0) = \begin{cases} s_L, & x < 0 \\ s_R, & x > 0 \end{cases}
$$

Initial-boundary value problem BC:

$$
t = 0
$$
: $s(x, 0) = s_L$, $x = 0$, $s(0, t) = s_R$

$$
\frac{\partial s}{\partial t} + \frac{\partial f(s)}{\partial x} = 0
$$

R

 \mathbf{r}

$$
\frac{\partial s}{\partial t} + \frac{\partial f(s)}{\partial x} = 0
$$

Self-similar solution:

$$
\frac{\partial s}{\partial t} + \frac{\partial f(s)}{\partial x} = 0
$$

\nSelf-similar solution:
\n
$$
x = 0 : s = s_L, \qquad t = 0 : s = s_R \qquad \int_{s}^{R} f(s) ds
$$
\n
$$
s(x, t) = S(v), \quad v = x/t, \qquad \int_{s}^{R} f(s) ds
$$
\n
$$
(v = 0) : s = s_L, \qquad (v \to \infty) : s = s_L \qquad \int_{s}^{R} f(s) ds
$$

S(v)=const over x=vt, v is the velocity, so value S is transported with speed v

Two types of continuous solutions:

$$
S(v) = const, v = f'_{s}(s)
$$

The Riemann solution consists of permanent state $s(v)=s_L$, f $,$ rarefaction wave

$$
\frac{x}{t} = v = f'_{s}(s)
$$

and permanent state $s(v)=s_R$

xerial divided in the solutions:
 $S(v) =$
 $S(v) = S_L,$ S

This solution is continuous

Exact solution for Riemann problem Exact solution for Riemann problem
for convex f-f-function f=f(s) - I
 $\frac{\partial s}{\partial s} + \frac{\partial f(s)}{\partial s} = 0$

$$
\frac{\partial s}{\partial t} + \frac{\partial f(s)}{\partial x} = 0
$$

m
\n
$$
\frac{\partial s}{\partial t} + \frac{\partial f(s)}{\partial x} = 0
$$
\n
$$
s(x,t) = \begin{cases}\nS_J, & 0 < \frac{x}{t} < f'(S_J) \\
\frac{x}{t} = \langle f \rangle'(s), & f'(S_J) < \frac{x}{t} < f'(S_J) \\
S_J, & f'(S_J) < \frac{x}{t} < \infty\n\end{cases}
$$

In continuous solution s=s(v), speed v must increase from zero to infinity. If $S_L(S)$ is less than $S_R(S^+)$, v decreases, so there is no continuous solution.

A discontinuous solution of hyperbolic equation

is admissible (stable)

if it is a limit of continuous solution of the equation with vanishing viscosity

The admissibility conditions: (i) Mass balance on the shock

$$
\frac{\partial s}{\partial t} + \frac{\partial f(s)}{\partial x} = 0
$$

$$
\frac{\partial s}{\partial t} + \frac{\partial f(s)}{\partial x} = \varepsilon \frac{\partial^2 s}{\partial x^2}
$$

n
$$
\frac{\partial s}{\partial t} + \frac{\partial f(s)}{\partial x} = 0
$$

$$
\frac{\partial s}{\partial t} + \frac{\partial f(s)}{\partial x} = \varepsilon \frac{\partial^2 s}{\partial x^2}
$$

$$
D = \frac{dx_f(t)}{dt}, \quad f(s^-) - f(s^+) = D(s^- - s^+)
$$

(ii) Shock stability with respect to linear perturbations (Lax)

$$
f'_{s}(s^{+}) < D < f'_{s}(s^{-}) \qquad \qquad \text{if}
$$

Shock stability with respect to any perturbations (Oleinik)

 (s) $= 0$ ∂t ∂x ∂S \pm

Exact solution for Riemann problem for concave f-f-function Figure $\left\{\begin{array}{c}\n\begin{array}{c}\n\frac{1}{s_1}\n\end{array}\n\end{array}\right\}$

Exact solution for Riemann

problem for concave f-f-function

f=f(s) – III – is shock wave with

volume balance of the front

(Hugoniot condition) volume balance of the front Exact solution for Riemann

problem for concave f-f-function

f=f(s) – III – is shock wave with

volume balance of the front

(Hugoniot condition)

$$
\frac{\partial s}{\partial t} + \frac{\partial f(s)}{\partial x} = 0
$$

$$
s(x,t) = \begin{cases} s = S_J, & 0 < \frac{x}{t} < D = \frac{1}{S_I - S_J} \\ s = S_I, & D < \frac{x}{t} < \infty \end{cases}
$$

Riemann' self-similar solution L→R for hyperbolic equation

 (S) $= 0$ $f(s)$ t ∂x ∂s $+$ ∂t ∂x

Determining $f(s)$ from lab $f(s(1,t))$, i.e. from f-data at $x=1$

$$
\frac{\partial s}{\partial t} + \frac{\partial f(s)}{\partial x} = 0
$$

$$
0 = \iint_{\Omega} \left[\frac{\partial s}{\partial t} + \frac{\partial f(s)}{\partial x} \right] dx dt = \oint_{\Gamma} f dt - s dx
$$

$$
-S_I + \int_{0}^{t} f \left[s(1, y) \right] dy = f \left[s(1, t) \right] t - s(1, t)
$$

Given $f(s(1,t))$, we calculate $s(1,t)$ for all $t>0$

The inverse solution does not involve direct solution s(x,t) rather using its self-similarity alone

2. Analysis of microscale equation with $f=f(s,x)$

Multiplying by
$$
f'_s
$$
 $f'_s \frac{\partial s}{\partial t} + f'_s \frac{\partial f(s, x)}{\partial x} = 0$ $\frac{\partial f(s, x)}{\partial t} + f'_s \frac{\partial f(s, x)}{\partial x} = 0$

Characteristic's form:

Characteristic's form:
\n
$$
\frac{dx}{dt} = f'_s, \frac{df}{dt} = 0, \qquad f = f(s, x), \ s = f^{-1}(f, x)
$$
\nllicit expression for f-characteristics $t = \tau(x, f)$
\n
$$
\int_{0}^{x} = f'_s \left(f^{-1}(f, x), x \right) \qquad t = \int_{x_0}^{x} \frac{dy}{f'_s \left(f^{-1}(f(s_0(x_0)), y), y \right)}
$$

Implicit expression for f-characteristics $t = \tau(x, f)$

$$
\frac{dx}{dt} = f'_{s}\left(f^{-1}\left(f,x\right),x\right)
$$

$$
(x, x), s = f^{-1}(f, x)
$$

\n
$$
\tau(x, f)
$$

\n
$$
t = \int_{x_0}^{x} \frac{dy}{f_s'\left(f^{-1}\left(f(s_0(x_0)), y\right), y\right)}
$$

3. Continuous solution for convex FFF

FFF curve II at $x=0$,

Shock wave solution for concave FFF

Transition from shock to continuous wave with \mathbf{t}_{1} FFF decreasing in x from concave to convex $\qquad \qquad \tiny \begin{array}{c} (a) \end{array}$

FFF V that is concave at 0<x<x_c, straight line at $x=x_c$, $\qquad \qquad \qquad \Box$ and convex I at $x_c < x < 1$

Transition from continuous wave to \mathbf{t}^1 shock with FFF increasing in x from \mathbb{R}^6 convex to concave

FFF I that is convex at $0 <$ x $<$ x $_{c}$, straight line at $x=x_c$, and concave V at x_c < x <1

Riemann's solution for S-shaped FFF

4. Exact continuous solution for any initial-boundary value problem

$$
t = 0: \ s = s_0(x) \qquad x = 0: \ f = f_0(t) \qquad \int_0^t \frac{dt}{\sqrt{t}} \, dt
$$
\n
$$
\text{Trajectory of characteristic carrying flux } t = \tau(x, f) \qquad \int_0^t \frac{dt}{\sqrt{t}} \, dt
$$
\n
$$
s(x, t) = \begin{cases} f^{-1}(f(s_0(x_0), x_0), x_0), \ t = \int_{x_0}^x \frac{dy}{f'_s(f^{-1}(f(s_0(x_0), x_0), y), y)}, \ t < \tau(x, f_0(0)) \\ f^{-1}(f_0(t_0), x), \ t = t_0 + \int_0^x \frac{dy}{f'_s(f^{-1}(f_0(t_0), y), y)}, \ t > \tau(x, f_0(0)) \end{cases}
$$

22

5. Upscaling of Riemann problem

Lab determining of fractional flow function f(s) from breakthrough water-cut history is a common method. It is valid for the case of micro-heterogeneous media $f=f(s,x)$?

In lab, upscaling must give the same values at the end of core x=1.

Applying Green's theorem:

$$
\iint_{\Omega} \left[\frac{\partial s}{\partial t} + \frac{\partial f(s, x)}{\partial x} \right] dx dt = \oint_{\Gamma} f dt - s dx = 0
$$

Integrals over the sides of curvilinear triangle:

$$
I: \oint_{\Gamma} f dt - s dx = -S_I
$$

$$
II: \oint_{\Gamma} f dt - s dx = \int_{0}^{t} f \Big[s (1, t), I \Big] dt
$$

III :
$$
\oint_{\Gamma} f dt - s dx = ft - \langle S(f, x) \rangle = ft - \langle f^{-1}(f, x) \rangle
$$

Comparing with self-similar case

 $\int_T T(\delta) dt - \delta dx - T\left(\frac{\delta}{t}\right)t - \delta\left(\frac{\delta}{t}\right)$ $\left(1\right)$ $\left(1\right)$ $\oint_{\Gamma} F(S) dt - S dx = F\left(\frac{I}{t}\right) t - S\left(\frac{I}{t}\right)$ 1 1 θ $s(f) = \int f^{-1}(f,x)dx$

we obtain the upscaling formula

$$
24\quad
$$

6. Upscaling of f(s,x) for any IC BC

Consider the case where $t > \tau(0, f_0(0))$ and domain Ω bounded by curvilinear rectangular $\Gamma = \partial \Omega$: $(0,0) \rightarrow (1,0) \rightarrow (1,t) \rightarrow (0,t_0) \rightarrow (0,0)$ where $f=const$ along the side $(0,t_0) \rightarrow (1,t)$

6. Upscaling of
$$
f(s,x)
$$
 for any IC BC
\nConsider the case where $t > \tau(0,f_0(0))$ and domain Ω bounded by curvilinear rectangular
\n $F = \partial \Omega$: $(0,0) \rightarrow (1,0) \rightarrow (1,t) \rightarrow (0,t_0) \rightarrow (0,0)$ where $f = const$ along the side $(0,t_0) \rightarrow (1,t)$
\n
$$
-\int_0^t s_0(x,0)dx, \quad \int_0^t f_1(y)dy, \quad -f_1(t)t + \int_0^t f^{-1}(f_1(t),x)dx, -\int_0^{t_0} f_0(y)dy
$$
\n
$$
t = \tau(f_0(t_0),1), \quad f_1(t) = f_0(t_0)
$$
\n
$$
(0,t_0)
$$
\n
$$
0 \qquad t = \tau(f_1(t_0)) = \int_0^t f^{-1}(f_1(t),x)dx = \int_0^{t_0} f_0(y)dy - \int_0^t (f_1(t) - f_1(y))dy + \int_0^t s_0(x,0)dx
$$

$$
S(I,t) = F^{-1}(f_I(t)) = \int_0^1 f^{-1}(f_I(t),x)dx = \int_0^{t_0} f_0(y)dy - \int_0^t (f_I(t) - f_I(y))dy + \int_0^1 s_0(x,0)dx
$$

Microscale

Microsoft:
$$
S(I,t) = F^{-1}(f_I(t)) = \int_0^t f^{-1}(f_I(t),x) dx = \int_0^{t_0} f_0(y) dy - \int_0^t (f_I(t) - f_I(y)) dy + \int_0^t s_0(x,0) dx
$$

\nwhere f is the function f and f is the function f

 $t\uparrow$

Schematic for upscaling $f=F$

$$
F^{-1}(f) = \int_{0}^{1} f^{-1}(f, y) dy
$$

27

7. Upscaling of piecewise-constant periodical system (composite core) three periods

$$
S(f) = \int_{0}^{1} f^{-1}(f, x) dx
$$

 α – fraction of the rock with ff f₀ in the overall core $1-\alpha$ – fraction of the rock with ff f_1 in the overall core $\alpha = 0.4$

Flow in periodical two-piece (composite) porous media

Water

Microscale solutions are different for two cores. They coincide at macro scale

 α 1 – α

 $Blue$ $co₂$

core

29

8. Numerical
$$
t=0
$$
: $s=s_0(x)$ $x=0$: $f=f_0(t)$

30

Numerical schema for characteristic finite-difference solution of 1D two-phase transport equation

$$
f = F_n(s), \ s = f^{-1}(f), \ x \in [x_n, x_{n+1}], \ n = 0, 1...N, \ x_0 = 0, \ x_N = 1
$$

$$
f(s(x_n, t), x) = F_n(s(x_n, t))
$$

Some extensions

Proposed Upscaling = exact solution at micro scale for $f(s,x)$ + exact inverse solution at upper scale

Linear PDEs: exact solution by Green's function and inverse problem for its integral equation

Scalar conservation laws

$$
\frac{\partial s}{\partial t} + \frac{\partial f(s,t)}{\partial x} = 0
$$
 Time-dependent

$$
\frac{\partial f(s,x)}{\partial t} + \frac{\partial s}{\partial x} = 0
$$

Space-dependent adsorption

flux

 (s,t) ∂s 0 $f(s,t)$ ∂s $t \qquad \partial x$ $\partial\!f\left(\,s,t\,\right)\quad\partial\mathbf{r}$ ∂t ∂x $+\frac{CS}{2}=0$

Time-dependent adsorption

"Multicomponent" flows

S is the density, f is the advective flux, c-concentration of an additive, "Multicomponent" flows

S is the density, f is the advective flux, c-concentration of an additive,

cf is the advective flux of the additive, a – adsorption concentration
 $\frac{\partial s}{\partial t} + \frac{\partial f(s,c)}{\partial t} = 0$, $\frac{\partial (cs + a(c))}{\partial t} + \frac$

ulticomponent" flows

\nis the density, f is the advective flux, c-concentration of an additive, s the advective flux of the additive, a – adsorption concentration

\n
$$
\frac{\partial s}{\partial t} + \frac{\partial f(s, c)}{\partial x} = 0, \qquad \frac{\partial (cs + a(c))}{\partial t} + \frac{\partial (cf)}{\partial x} = 0
$$
\n
$$
d\varphi = fdt - sdf, \quad \varphi = \int fdt - sdf, \quad s(x, t) = S(x, \varphi), c(x, t) = C(x, \varphi)
$$
\n
$$
\frac{\partial a(c)}{\partial \varphi} + \frac{\partial c}{\partial x} = 0
$$

The solution $c(x, \phi)$ contains shocks only if

$$
t=0: c=0, x=0: c=1, a^{n/2}(c) < 0
$$

33

Conclusions

For any initial-boundary value problem of f(s,x), the flux is Riemann invariant; the characteristics allow for 1st integral yielding implicit formulae for the characteristics. First integrals for front trajectories are obtained by integration of differential mass balance form $f(s,x)dt-sdx$ over the closed contours in plane (x,t) that comprise two arriving characteristics f and f^* and the intervals of axes x and t where the initial-boundary values are given.

Saturation S that corresponds to upscaled value $F=F(S)$ is an average in x of the "microscale" inverse function $s=f^{-1}(F,x)$.

The numerical solution obtained by an explicit finite difference method with advance over Δx for micro scale model, coincides with the solution for the largescale system obtained by history-based upscaling, in the points on numerical cell boundaries $x_0, x_1, ..., x_n$.

There are two challenges:

There are two challenges:
1 - Lab determining of fractional flow function f(s) from breakthrough water-cut history is a
common method. It is valid for the case of micro-heterogeneous media f=f(s,x)?
In lab, upscaling must common method. It is valid for the case of micro-heterogeneous media f=f(s,x)?

In lab, upscaling must give the same values at the end of core x=1. Upscaling of Riemann problem

There are two challenges:
1 - Lab determining of fractional flow function f(s) from breakthrough water-cut history is a
common method. It is valid for the case of micro-heterogeneous media f=f(s,x)?
In lab, upscaling must numerical model, i.e. f=f(s,x). How to calculate f(s) that will present the same results at the course grid?

In numerical model, the same numerical finite-difference solution. Upscaling of initialboundary value problem

35

Upscaling in micro heterogeneous formations

$$
\frac{\partial s}{\partial t} + \frac{\partial f(s, x)}{\partial x} = 0
$$

$$
\frac{\partial s}{\partial t} + \frac{\partial F(s)}{\partial x} = 0
$$

Schematic for displacement of water by gas

Numerical schema for characteristic finite-difference solution of 1D transport equation

Shock occurs near to v=D

Mass balance on the shock

Stability of solution with respect to small perturbations in linearised equation

Stability of solution with respect to small perturbations in original equation

Discontinuous solutions – shocks, jumps:

\n
$$
S(D-0) = S^-, S(D+0) = S^+, v = D
$$
\nock occurs near to v=D

\n
$$
S(v) = \begin{cases} S^+, & v > D \\ S^-, & v < D \end{cases}
$$
\nss balance on the shock

\nblility of solution with respect to small

\nturbations in linearised equation

\n
$$
f'(S^-) < D < f'(S^+)
$$
\nblity of solution with respect to small

\nturbations in original equation

\n
$$
D > \frac{f(s(v)) - f(S^-)}{s(v) - S^-}
$$
\n
$$
S(v) = \frac{f(s(v)) - f(S^-)}{s(v) - S^-}
$$

2. Mass balance for 1D flow in micro heterogeneous flow

