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Mass conservation law with flux a function of density

1D flow with density-dependent flux function
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Scalar conservation law with density-dependent flux function
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Upscaling in micro heterogeneous media

Composite core
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Upscaling in numerical methods

Numerical schema for characteristic finite-
difference solution of 1D transport equation: 
how to transform from dense grid to coarse 
grid?
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Schematic for upscaling
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With application of the upscaling for 
each numerical cell [xn,xn+1], the 
solution for microscale and upscaled 
systems, F(S) and f(s,x), coincide in all 
nodes xn
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1. Riemann’ problems for 
conservation law  
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Initial-boundary value problem BC:
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Self-similar solution:

S(v)=const over x=vt, v is the velocity, so value S is transported with speed v
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The Riemann solution consists 
of permanent state s(v)=sL, 
rarefaction wave

and permanent state s(v)=sR

This solution is continuous
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Exact solution for Riemann problem 
for convex f-f-function f=f(s) - I
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In continuous solution s=s(v), speed 
v must increase from zero to infinity. 
If SL (S-) is less than SR (S+), v 
decreases, so there is no continuous 
solution.

We expand the space of admissible 
functions to discontinuous functions, 
which suffer shocks S- ->S+ along 
fronts xf(t) 
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A discontinuous solution of hyperbolic equation

is admissible (stable)

if it is a limit of continuous solution of                            
the equation with vanishing viscosity
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The admissibility conditions:
(i) Mass balance on the shock

(ii) Shock stability with respect to linear 
perturbations (Lax)

Shock stability with respect to any 
perturbations (Oleinik)
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Exact solution for Riemann 
problem for concave f-f-function 
f=f(s) – III – is shock wave with 
volume balance of the front 
(Hugoniot condition)
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Riemann’ self-similar solution L→R for hyperbolic equation
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Determining f(s) from lab f(s(1,t)), i.e. from f-data at x=1
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Given f(s(1,t)), we calculate s(1,t) for all t>0

The inverse solution does not involve direct solution s(x,t) rather using 
its self-similarity alone
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Multiplying by f/s

Implicit expression for f-characteristics

Characteristic’s form:
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2. Analysis of microscale equation with f=f(s,x)
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3. Continuous solution for convex FFF

FFF curve II at x=0, 
and curve I – at x=1
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Shock wave solution for concave FFF
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Transition from shock to continuous wave with 
FFF decreasing in x from concave to convex 

FFF V that is concave at 0<x<xc, straight line at x=xc, 
and convex I at xc<x<1
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Transition from continuous wave to 
shock with FFF increasing in x from 
convex to concave

FFF I that is convex at 0<x<xc, straight 
line at x=xc, and concave V at xc<x<1
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Riemann’s solution for S-shaped FFF



4. Exact continuous solution for any initial-boundary value problem
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5. Upscaling of Riemann problem

Lab determining of fractional flow function f(s) from breakthrough water-cut 
history is a common method. It is valid for the case of micro-heterogeneous 
media f=f(s,x)? 

In lab, upscaling must give the same values at the end of core x=1.                       
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Applying Green’s theorem:
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Integrals over the sides of curvilinear triangle:

Comparing with self-similar case

we obtain the upscaling formula
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6. Upscaling of f(s,x) for any IC BC

𝒕

𝒙𝑰

𝑰𝑰𝑰𝑰𝑰

𝟎 𝟏

(0, t0)

(1, t1)

Consider the case where t>(0,f0(0)) and domain Ω bounded by curvilinear rectangular 
Γ=∂Ω: (0,0) →(1,0) →(1,t) →(0,t0) →(0,0) where f=const along the side (0,t0) →(1,t) 

 
          

0t1 t 1
1

0 1 1 1 0

0 0 0 0

s x,0 dx, f y dy, f t t f f t ,x dx, f y dy      

       0 0 1 0 0t f t ,1 , f t f t 

 
                

0t1 t 1
1 1

1 1 0 1 1 0

0 0 0 0

S 1,t F f t f f t ,x dx f y dy f t f y dy s x,0 dx         
25



 
                

0t1 t 1
1 1

1 1 0 1 1 0

0 0 0 0

S 1,t F f t f f t ,x dx f y dy f t f y dy s x,0 dx         

 
   

1
1 1

0

F f f f , y dy  Upscaling formula:

Microscale

Macroscale

 
        

1
1 1

0 0 0 0 0 0

0

f t t f f t , y dy Ft F F , F f t    

𝒕

𝒙𝑰

𝑰𝑰𝑰𝑰𝑰

𝟎 𝟏

(0, t0)

(1, t1)

26



27

Schematic for upscaling
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7. Upscaling of piecewise-constant periodical system (composite core) 
three periods 
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Flow in periodical two-piece (composite) porous media 
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Microscale solutions are 
different for two cores. 
They coincide at macro scale
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Numerical schema for characteristic finite-difference 
solution of 1D two-phase transport equation
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8. Numerical
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Some extensions

Proposed Upscaling = exact solution at micro scale for 
f(s,x) + exact inverse solution at upper scale 

Linear PDEs: exact solution by Green’s function and 
inverse problem for its integral equation
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Scalar conservation laws
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“Multicomponent” flows

S is the density, f is the advective flux, c-concentration of an additive, 
cf is the advective flux of the additive, a – adsorption concentration 
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The solution c(x,ϕ) contains shocks only if
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Conclusions

For any initial-boundary value problem of f(s,x), the flux is Riemann invariant; the 
characteristics allow for 1st integral yielding implicit formulae for the 
characteristics. First integrals for front trajectories are obtained by integration of 
differential mass balance form f(s,x)dt-sdx over the closed contours in plane (x,t) 
that comprise two arriving characteristics f- and f+ and the intervals of axes x and 
t where the initial-boundary values are given. 

Saturation S that corresponds to upscaled value F=F(S) is an average in x of the 
“microscale” inverse function s=f -1(F,x).

The numerical solution obtained by an explicit finite difference method with 
advance over Δx for micro scale model, coincides with the solution for the large-
scale system obtained by history-based upscaling, in the points on numerical cell 
boundaries x0, x1, …, xn.  
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There are two challenges: 

1 - Lab determining of fractional flow function f(s) from breakthrough water-cut history is a 
common method. It is valid for the case of micro-heterogeneous media f=f(s,x)? 

In lab, upscaling must give the same values at the end of core x=1. Upscaling of Riemann 
problem

2 - Resolution of measurements are significantly higher than the minimum grid size of the 
numerical model, i.e. f=f(s,x). How to calculate f(s) that will present the same results at 
the course grid? 

In numerical model, the same numerical finite-difference solution. Upscaling of initial-
boundary value problem 
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Schematic for displacement of water by gas

Numerical schema for characteristic finite-difference solution of 1D transport equation
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Discontinuous solutions – shocks, jumps:

   

 

   

   
    
 

0 , 0 ,

,

,

S D S S D S v D

S v D
S v

S v D

f S f S
D

S S

f S D f S

f s v f S
D

s v S

 





 

 

 





    

 
 







  






Shock occurs near to v=D

Mass balance on the shock

Stability of solution with respect to small 
perturbations in linearised equation

Stability of solution with respect to small 
perturbations in original equation
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2. Mass balance for 1D flow in 
micro heterogeneous flow 

IBCs:
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