Cartan's Structure Theory of Symmetry Pseudo-Groups, Zero-Curvature Representations and Bäcklund Transformations of Differential Equations.

Oleg I. Morozov

Institute of Mathematics and Statistics, University of Tromsø, Tromsø 9037, Norway

International Conference «Geometrical Methods in Mathematical Physics», Moscow, Russia, December 12-17, 2011

Lie pseudo-groups

A pseudo-group $\mathfrak G$ on a manifold M is a set of local diffeomorphisms $\Phi\colon \mathcal U\to \hat{\mathcal U},\ \Phi\colon x\mapsto \hat x$ such that

- 1) if $\Phi \in \mathfrak{G}$, $\Psi \in \mathfrak{G}$, and their composition $\Psi \circ \Phi$ is defined, then $\Psi \circ \Phi \in \mathfrak{G}$;
- 2) $\Phi \in \mathfrak{G} \Rightarrow \Phi^{-1} \in \mathfrak{G}$;
- 3) $id_M \in \mathfrak{G}$.

A pseudo-group & is called a Lie pseudo-group, if

4) the functions $\hat{x} = \Phi(x)$ are local analytic solutions of a system of PDEs (Lie equations of the pseudo-group \mathfrak{G})

$$R\left(x,\Phi(x),\frac{\partial\Phi(x)}{\partial x},...,\frac{\partial^{\#I}\Phi(x)}{\partial x^I}\right)=0.$$

Maurer–Cartan forms of the Lie pseudo-group \mathfrak{G} : a collection of 1-forms

$$\omega^i \in \Omega^1(M \times N \times H), \qquad i \in \{1,...,\dim M + \dim N\},$$

where N is a manifold, H is a finite Lie group.

A local diffeomorphism Φ on M, $\Phi\colon \mathcal{U}\to \hat{\mathcal{U}}$ belongs to \mathfrak{G} whenever there exists a fibre-preserving diffeomorphism Ψ on $M\times N\times H$, $\Psi\colon \mathcal{W}\to \hat{\mathcal{W}}$ such that

- Φ is the projection of Ψ w.r.t. $M \times N \times H \to M$;
- $\bullet \ \Psi^* \left(\omega^i |_{\hat{\mathcal{W}}} \right) = \omega^i |_{\mathcal{W}}.$

Structure equations of a Lie pseudo-group \mathfrak{G} :

$$\begin{split} d\omega^i &= A^i_{\alpha j}(U^\sigma)\,\pi^\alpha \wedge \omega^j + B^i_{jk}(U^\sigma)\,\omega^j \wedge \omega^k, \qquad B^i_{jk} = -B^i_{kj}, \\ dU^\kappa &= C^\kappa_j(U^\sigma)\,\omega^j, \\ U^\sigma \colon M \to \mathbb{R}, \ \sigma \in \{1,...,s\}, \ s < \dim M, \ - \ \text{invariants of the} \\ \text{pseudo-group } \mathfrak{G} \end{split}$$

- π^{α} depend on differentials of coordinates on H;
- involutivity conditions are satisfied,
- compatibility conditions are satisfied.

Maurer-Cartan forms and structure equations of a Lie pseudogroup can be found from its Lie equations algorithmically.

Involutivity conditions:

$$r^{(1)} = n \dim H - \sum_{k=1}^{n-1} (n-k) \sigma_k,$$

where $n=\dim M+\dim N$, $r^{(1)}$ is the dimension of the linear space of coefficients z_j^α such that the replacement

$$\pi^{\alpha} \mapsto \pi^{\alpha} + z^{\alpha}_{j} \; \omega^{j} \; \text{preserves the structure equations;}$$

$$\sigma_{k} = \max_{u_{1},...,u_{k}} \operatorname{rank} \, \mathbb{A}_{k}(u_{1},...,u_{k}) - \sum_{j=1}^{k-1} \sigma_{j},$$

$$\mathbb{A}_{1}(u_{1}) = \left(A_{\alpha j}^{i} u_{1}^{j}\right),$$

$$\mathbb{A}_{q}(u_{1},...,u_{q}) = \left(A_{\alpha j}^{i} u_{1}^{j}\right), \quad q \in \{2,...,n-1\}.$$

Compatibility conditions:

- $d(d\omega^i) = 0 = d\left(A^i_{\alpha j} \pi^\alpha \wedge \omega^j + B^i_{jk} \omega^j \wedge \omega^k\right)$
- $d(dU^{\kappa}) = 0 = d(C_j^{\kappa} \, \omega^j)$

 \Longrightarrow

over-determined system for the coefficients $A^i_{\alpha j}$, B^i_{jk} , C^κ_j ;

THEOREM (*Third fundamental Lie's theorem in Cartan's form*): For a Lie pseudo-group there exists a collection of Maurer–Cartan forms with involutive and compatible structure equations.

THEOREM (Third inverse fundamental Lie's theorem in Cartan's form): For a given involutive and compatible system of structure equations there exists a collection of 1-forms ω^1 , ..., ω^n and functions U^1 , ..., U^s satisfying this system. The forms ω^1 , ..., ω^m are Maurer–Cartan forms of a Lie pseudo-group, and the functions U^1 , ..., U^s are invariants of this pseudo-group.

- É. Cartan. Œuvres Complètes, Paris: Gauthier Villars, Vol. 2, Part II, 1953
- Vasil'eva M.V. Structure of Infinite Lie Groups of Transformations. Moscow: MSPI, 1972 (in Russian)
- Gardner R.B. The method of equivalence and its applications.
 CBMS-NSF regional conference series in applied math., SIAM,
 Philadelphia, 1989.
- Olver P.J. Equivalence, Invariants, and Symmetry. Cambridge: Cambridge University Press, 1995
- Stormark O. Lie's Structural Approach to PDE Systems.
 Cambridge: CUP, 2000

Contact transformations

- Trivial bundle: $\pi: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$, $\pi: (x^i, u) \mapsto (x^i)$
- Jets of the second order: $J^2(\pi)$, (x^i,u,u_i,u_{ij}) , $u_{ij}=u_{ji}$
- Contact forms : $\theta_0 = du u_j dx^j$, $\theta_i = du_i u_{ij} dx^j$
- Pseudo-group of contact transformations $Cont(J^2(\pi))$:

$$\Psi : J^{2}(\pi) \to J^{2}(\pi), \ \Psi : (x^{i}, u, u_{i}, u_{ij}) \mapsto (\hat{x}^{i}, \hat{u}, \hat{u}_{i}, \hat{u}_{ij})$$

such that Ψ preserves the algebraic ideal of contact forms:

$$\Psi^*(d\hat{u} - \hat{u}_j \, d\hat{x}^j) = a \, (du - u_j \, dx^j),$$

$$\Psi^*(d\hat{u}_i - \hat{u}_{ij} \, d\hat{x}^j) = P_i^j \, (du_j - u_{jk} \, dx^k) + Q_i \, (du - u_j \, dx^j),$$

$$\Psi^* d\hat{x}^i = b_j^i dx^j + R^i (du - u_j dx^j) + S^{ij} (du_j - u_{jk} dx^k),$$

$$a \neq 0$$
, $\det(b_j^i) \neq 0$, $\det(P_i^j) \neq 0$

Contact transformations

$$\begin{aligned} &\operatorname{Maurer-Cartan \ forms} \ \ \operatorname{for} \ \operatorname{Cont}(J^2(\pi)) \colon \\ &\Theta_0 = a \left(du - u_i \, dx^i \right), \\ &\Theta_i = a \, B_i^j \left(du_j - u_{jk} \, dx^k \right) + g_i \, \Theta_0, \\ &\Theta_{ij} = a \, B_i^k \, B_j^l \left(du_{kl} - u_{klm} \, dx^m \right) + s_{ij} \, \Theta_0 + w_{ij}^k \, \Theta_k, \\ &\Xi^i = b_j^i \, dx^j + c^i \, \Theta_0 + f^{ij} \, \Theta_j, \\ &\operatorname{where} \quad a \neq 0, \ \det \left(b_j^i \right) \neq 0, \quad b_k^i \, B_j^k = \delta_j^i, \quad f^{ik} = f^{ki}, \\ &s_{ij} = s_{ji}, \quad w_{ij}^k = w_{ji}^k, \quad u_{klm} = u_{lkm} = u_{kml} \\ &\operatorname{Structure \ equations} \\ &d\Theta_0 = \Phi_0^0 \wedge \Theta_0 + \Xi^i \wedge \Theta_i, \\ &d\Theta_i = \Phi_i^0 \wedge \Theta_0 + \Phi_i^k \wedge \Theta_k + \Xi^k \wedge \Theta_{ik}, \\ &d\Theta_{ij} = \Phi_i^k \wedge \Theta_{kj} - \Phi_0^0 \wedge \Theta_{ij} + \Upsilon_{ij}^0 \wedge \Theta_0 + \Upsilon_{ij}^k \wedge \Theta_k + \Xi^k \wedge \Theta_{ijk}, \\ &d\Xi^i = \Phi_0^0 \wedge \Xi^i - \Phi_i^k \wedge \Xi^k + \Psi^{i0} \wedge \Theta_0 + \Psi^{ik} \wedge \Theta_k \end{aligned}$$

Symmetry pseudo-groups of PDEs

- ullet PDE of the second order: $\iota:\mathcal{E} o J^2(\pi)$
- Contact symmetries of \mathcal{E} contact transformations which map \mathcal{E} into itself: $\mathrm{Cont}(\mathcal{E}) \subset \mathrm{Cont}(J^2(\pi))$,
- Maurer–Cartan forms for $\mathrm{Cont}(\mathcal{E})$ can be found from the reduced forms $\theta_0 = \iota^* \, \Theta_0, \ \theta_i = \iota^* \, \Theta_i, \ \theta_{ij} = \iota^* \, \Theta_{ij}, \ \xi^i = \iota^* \, \Xi^i$, by procedures of Cartan's equivalence method
- Details:
 - Fels M., Olver P.J. Moving coframes I. A practical algorithm.
 // Acta Appl. Math., 1998, Vol. 51, pp. 161–213
 - Morozov O.I. Moving coframes and symmetries of differential equations. // J. Phys. A: Math. Gen., 2002, Vol. 35, pp. 2965 – 2977

Coverings (Lax pairs, Bäcklund transformations, prolongation structures, zero - curvature representations, integrable extensions, ...):

- Lax P.D. // Comm. Pure Appl. Math., 1969, Vol. 21, pp. 467
 490
- V.E. Zakharov, A.B. Shabat. // Funct. Analysis Appl. 1974,
 Vol. 6, No 6, pp. 43 54
- H.D. Wahlquist, F.B. Estabrook, 1975, // J. Math. Phys., 1975, Vol. 16, pp. 1 – 7
- I.S. Krasil'shchik, A.M. Vinogradov, // Acta Appl. Math., 1984, Vol. 2, pp. 79–86
- I.S. Krasil'shchik, A.M. Vinogradov // Acta Appl. Math., 1989, Vol. 15, pp. 161–209

- Infinite jet bundle $J^{\infty}(\pi)$,
- Coordinates $(x^i, u, u_i, u_{ij}, ..., u_I, ...)$, $I = (i_1, i_2, ..., i_m)$,
- Infinitely prolonged differential equation

$$\mathcal{E}^{\infty} \subset J^{\infty}(\pi),$$

Total derivatives

$$D_i = \frac{\partial}{\partial x^i} + \sum_{\#I > 0} u_{Ii} \frac{\partial}{\partial u_I}, \qquad \bar{D}_i = D_i|_{\mathcal{E}^{\infty}}.$$

• Covering over \mathcal{E}^{∞} :

$$\tau: \widetilde{\mathcal{E}}^{\infty} = \mathcal{E}^{\infty} \times \mathcal{V} \to \mathcal{E}^{\infty}, \qquad \mathcal{V} = \{(v^{\kappa}) \mid 0 \leq \kappa \leq \infty\},$$

Extended total derivatives

$$\widetilde{D}_i = \overline{D}_i + \sum_{\kappa} T_i^{\kappa}(x^j, u_I, v^{\rho}) \frac{\partial}{\partial v^{\kappa}},$$

$$[\widetilde{D}_i, \widetilde{D}_j] = 0 \iff (x^i, u_I) \in \mathcal{E}^{\infty}$$

Extended contact forms (Wahlquist-Estabrook forms)

$$\widetilde{\vartheta}^{\kappa} = dv^{\kappa} - T_i^{\kappa}(x^j, u_I, v^{\rho}) dx^i$$

The problem of recognizing whether a given differential equation has a covering is of great importance. Different techniques were proposed to solve it.

n=2.

- H.D. Wahlquist, F.B. Estabrook, 1975
- R. Dodd, A. Fordy, 1983
- C. Hoenselaers, 1986
- S.Yu. Sakovich, 1995
- M. Marvan, 1997
- S. Igonin, 2006
- ...

The problem is much more difficult in the case of n > 2:

- G.M. Kuz'mina, 1967
- H.C. Morris, 1976
- V.E. Zakharov, 1982
- G.S. Tondo, 1985
- M. Marvan, 1992
- B.K. Harrison, 2002
- ...

G.M. Kuz'mina. On a possibility to reduce a system of two partial differential equations of the first order to a single equation of the second order. // Proc. Moscow State Pedagogical Institute, 1967, Vol. 271, 67–76 (in Russian)

$$u_{yy} = u_{tx} + u u_{xx} + u_x^2$$
 (dispersionless KP)

Covering

$$\begin{cases} v_t = (v^2 - u) v_x - u_y - v u_x, \\ v_y = v v_x - u_x \end{cases}$$

Excluding u: define w such that $w_x=v$ and $w_y=\frac{1}{2}v^2-u$, then $w_{yy}=w_{tx}+\left(\frac{1}{2}\,w_x^2-w_y\right)\,w_{xx}$ (modified dKP)

The central idea: to apply Cartan's structure theory of Lie pseudo-groups

Bryant R.L., Griffiths P.A. Characteristic Cohomology of Differential Systems (II): Conservation Laws for a Class of Parabolic Equations. Duke Math. J., 1995, Vol. 78, pp. 531–676:

n = 2, finite-dimensional coverings

Definition 1. Let

$$d\omega^{i} = A^{i}_{\alpha j} \,\pi^{\alpha} \wedge \omega^{j} + B^{i}_{jk} \,\omega^{j} \wedge \omega^{k}, \tag{1}$$

$$dU^{\kappa} = C_j^{\kappa} \,\omega^j \tag{2}$$

be structure equations of a Lie pseudo-group $\mathfrak G$. Its coefficients are supposed to be functions of the invariants U^σ of $\mathfrak G$. Consider the system

$$d\tau^{q} = D_{\rho r}^{q} \eta^{\rho} \wedge \tau^{r} + E_{rs}^{q} \tau^{r} \wedge \tau^{s} + F_{r\beta}^{q} \tau^{r} \wedge \pi^{\beta}$$

+ $G_{rj}^{q} \tau^{r} \wedge \omega^{j} + H_{\beta j}^{q} \pi^{\beta} \wedge \omega^{j} + I_{jk}^{q} \omega^{j} \wedge \omega^{k},$ (3)

$$dV^{\epsilon} = J_j^{\epsilon} \,\omega^j + K_q^{\epsilon} \,\tau^q,\tag{4}$$

with unknown 1-forms τ^q , $q\in\{1,...,Q\}$, η^ρ , $\rho\in\{1,...,R\}$, and unknown functions V^ϵ , $\epsilon\in\{1,...,S\}$, $Q,R,S\in\mathbb{N}$. The coefficients of this system are supposed to be functions of U^σ and V^ϵ). System (3), (4) is called an integrable extension of system (1), (2), if equations (1) – (4) are simultane- ously compatible and involutive.

Suppose system (3), (4) is an integrable extension of system (1), (2). Then, in accordance with the third inverse fundamental theorem of Lie, system (1)–(4) defines a Lie pseudo-group \mathfrak{H} .

Definition 2. The integrable extension (3), (4) is called trivial, if there exists a change of variables on the manifold of action of the pseudo-group $\mathfrak H$ such that in the new variables equations (3), (4) do not contain the forms ω^j , π^β , and the coefficients of (3), (4) do not depend on U^q . Otherwise, the integrable extension is called non-trivial.

Let θ_K^{α} , ξ^j be Maurer–Cartan forms of the pseudo-group $\mathrm{Cont}(\mathcal{E})$ of symmetries for a PDE \mathcal{E} such that θ_K^{α} are contact forms (their restrictions on each solution of the equation \mathcal{E} are equal to 0), and ξ^j are horizontal forms ($\xi^1 \wedge ... \wedge \xi^n \neq 0$ on each solution).

Definition 3. Nontrivial integrable extension of the structure equations of the pseudo-group $\mathrm{Cont}(\mathcal{E})$

$$d\omega^q = \Pi_r^q \wedge \omega^r + \xi^j \wedge \Omega_j^q$$

is called contact integrable extension when

- $\Omega_j^q \equiv 0 \pmod{\theta_K^{\alpha}, \omega_j^q}$ for a set of additional forms ω_j^q ;
- $\bullet \ \Omega_j^q \not\equiv 0 \ (\text{mod } \omega_j^q)$
- coefficients of expansions of Ω_j^q w.r.t. $\{\theta_I^\alpha,\,\omega_i^r\}$ and Π_r^q w.r.t. $\{\theta_I^\alpha,\,\xi^j,\,\omega^r,\,\omega_i^r\}$ depend on the invariants of $\mathrm{Cont}(\mathcal{E})$ and, maybe, on a set of additional functions W^ρ , $\rho\in\{1,\ldots,\Lambda\}$, $\Lambda\geqslant 1$.
- In the latter case there exist functions $P^{I\rho}_{\alpha}$, Q^{ρ}_{q} , $R^{j\rho}_{q}$, S^{ρ}_{j} such that

$$dW^{\rho}=P_{\alpha}^{I\rho}\,\theta_{I}^{\alpha}+Q_{q}^{\rho}\,\omega^{q}+R_{q}^{j\rho}\,\omega_{j}^{q}+S_{j}^{\rho}\,\xi^{j}.$$

These equations are required to satisfy the compatibility conditions.

Plebañski's second heavenly equation

The second heavenly equation (J.F. Plebañski, J. Math. Phys., 1975, Vol. 16, pp. 2395 – 2402):

$$u_{xz} = u_{ty} + u_{yy} \, u_{zz} - u_{yz}^2$$

Covering:

$$\begin{cases} v_t = (u_{yz} + \lambda) v_z - u_{zz} v_y, \\ v_x = u_{yy} v_z - (u_{yz} - \lambda) v_y \end{cases}$$

- J.F. Plebañski, ibid
- Viquar Husain, Phys. Rev. Lett., 1994, Vol. 72, pp. 800–803
- L.V. Bogdanov, B.G. Konopelchenko, Phys. Lett. A, 2005, Vol. 345, pp. 137–143

Plebañski's second heavenly equation

THEOREM. The symmetry pseudo-group of the second heavenly eqution has two contact integrable extensions with the following Wahlquist–Estabrook forms:

$$\omega_1 = q_1 (dv + (v_{zz} v_y - (u_{yz} + \lambda) v_z) dt + ((u_{yz} - \lambda) v_y - u_{yy} v_z) dx - v_y dy - v_z dz),$$

with $\lambda = \mathrm{const}$ and

$$\omega_2 = q_2 (dv + (v_{zz} v_y - (u_{yz} + v) v_z) dt + ((u_{yz} - v) v_y - u_{yy} v_z) dx - v_y dy - v_z dz),$$

Plebañski's second heavenly equation

The first form corresponds to the known covering of the second heavenly equation, while the second form gives its new covering

$$\begin{cases} v_t = (u_{yz} + v) v_z - u_{zz} v_y, \\ v_x = u_{yy} v_z - (u_{yz} - v) v_y \end{cases}$$

Details:

 O.I. Morozov, Global and Stochastic Analysis, 2011, Vol.1, pp. 89 – 102 (arXiv: 1104.3011)

$$u_{ty} = u_y u_{xx} + 2(2 \kappa + 1) u_x u_{xy} + u_y^{8\kappa + 5} u_{yy}$$

- $\kappa = -\frac{1}{2}$:
 - E.V. Ferapontov, K.R. Khusnutdinova,
 Comm. Math. Phys., 2004, Vol. 248, pp. 187 206
 - V.S. Dryuma, 2007
 - E.V. Ferapontov, A. Moro, V.V. Sokolov,
 Comm. Math. Phys., 2009, Vol. 285, pp. 31 65
- \bullet $\kappa = 0$:
 - E.V. Ferapontov, A.V. Odesskii, N.M. Stoilov, arXiv:1007.3782
- $\kappa = -\frac{5}{8}$:
 - O.I. Morozov, J. Geom. Phys., 2009, Vol. 59, pp. 1461 1475

THEOREM. When $\kappa \not\in \{-\frac{5}{8}, -\frac{3}{4}, -\frac{1}{2}\}$, the symmetry pseudogroup of the generalized (2+1)-dDym equation has two contact integrable extensions with the Wahlquist–Estabrook forms

$$\omega_0 = \frac{u_{xy}}{u_y^{4\kappa+3}v_y} \left(dv - \lambda u_y^{4\kappa+2} v_y dx - v_y dy - 2(2\kappa + 1) u_y^{4\kappa+2} v_y (\lambda u_x - (4\kappa + 3)^{-1} u_y^{4\kappa+3}) dt \right)$$

and

$$\omega_0 = \frac{u_{xy}}{u_y^{4\kappa+3} H^{2\kappa+1}} \left(dw - u_y^{4\kappa+2} H^{2\kappa+1} dx - w_y dy - H^{2\kappa+1} u_y^{4\kappa+2} \left(\alpha u_x + \beta u_y^{4\kappa+3} H^{2\kappa} H' \right) dt \right),$$

where the function $H=H(w_y)$ is a solution of the ODE

$$H' = (2 \kappa + 1)^{-1} H^{-2 \kappa} \sqrt{H + \lambda^2},$$

while
$$\alpha=2\,(2\,\kappa+1)$$
, $\beta=2\,(2\,\kappa+1)^2(8\,\kappa+5)^{-1}$, and $\lambda^2=-(8,\kappa+5)(4\,\kappa+3)^{-1}$.

When $\kappa=-\frac{3}{4}$, the symmetry pseudo- group of the generalized (2+1)-dDym equation has a contact integrable extension with the Wahlquist–Estabrook form

$$\omega_0 = u_{xy} G' \left(dw - \frac{1}{u_y G'} (dx + (G - u_x) dt) - w_y dy \right),$$

where the function $G = G(w_y)$ is a solution of the following ODE:

$$G' = \exp\left(\frac{1}{2}G^2\right).$$

The corresponding coverings are defined by the systems

$$\left\{ \begin{array}{lll} v_t & = & 2 \, (2 \, \kappa + 1) \, u_y^{4 \, \kappa + 2} \, v_y \, (\lambda \, u_x - (4 \, \kappa + 3)^{-1} \, u_y^{4 \, \kappa + 3}), \\ v_x & = & \lambda \, u_y^{4 \, \kappa + 2} \, v_y, \\ \\ w_t & = & H^{2 \, \kappa + 1} \, u_y^{4 \, \kappa + 2} \, (\alpha \, u_x + \beta \, u_y^{4 \, \kappa + 3} \, H^{2 \, \kappa} \, H'), \\ w_x & = & u_y^{4 \, \kappa + 2} \, H^{2 \, \kappa + 1}, \\ \\ w_{total equation} & = & \frac{1}{u_y \, G'}, \\ \\ w_x & = & \frac{1}{u_y \, G'}, \end{array} \right.$$

These systems define Bäcklund transformations from the generalized (2+1)-dDym equation to the equations

$$v_{ty} = \left(\frac{v_x}{\lambda v_y}\right)^{\frac{1}{4\kappa+2}} v_{xx} + \left(\frac{v_x}{\lambda v_y}\right)^{\frac{8\kappa+5}{4\kappa+2}} v_{yy}$$

$$+ \left(\frac{v_t}{v_x} + \lambda^{-\frac{6\kappa+4}{2\kappa+1}} \frac{4\kappa - 2}{4\kappa + 3} \left(\frac{v_x}{\lambda v_y}\right)^{\frac{4\kappa+3}{4\kappa+2}}\right) v_{xy},$$

$$w_{ty} = H^{-\frac{1}{2}} w_x^{\frac{1}{4\kappa+2}} w_{xx} + w_x^{\frac{8\kappa+5}{4\kappa+2}} H^{-\frac{8\kappa+5}{2}} w_{yy}$$

$$+ \left(\frac{w_t}{w} - \frac{4\kappa + 2}{8\kappa + 5} w_x^{\frac{4\kappa+3}{4\kappa+2}} H^{-\frac{4\kappa+3}{2}} (H + \lambda^2)^{\frac{1}{2}}\right) w_{xy},$$

and

$$w_{ty} = \frac{1}{w_x \exp\left(\frac{1}{2}G^2\right)} w_{xx} + \frac{w_t + w_x^2}{w_x} w_{xy} + w_x \exp\left(\frac{1}{2}G^2\right) w_{yy}.$$

