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This poster concerns a joint project with H. Baran of classification of
integrable PDEs describing immersed surfaces in R3. The integrability cri-
terion we apply is the existence of an sl(n)-valued curvature representation
depending on a non-removable parameter.

Aims of the project:

– obtaining lists of integrable classes of surfaces, as complete as possible
– identifying known cases
– finding mutual transformations
– obtaining new PDE integrable in the sense of soliton theory.

Criterion of integrability

In the case of two independent variables x, y and a matrix Lie algebra
g, a g-valued zero curvature representation (ZCR) for a system of PDE E is
defined to be a form α = Adx+B dy with A,B ∈ g such that

DyA−DxB + [A,B] = 0 mod E.

A ZCR is the compatibility condition for the linear system

DxΨ = AΨ, DyΨ = BΨ.

A gauge transformation with respect to a gauge matrix S is Ψ 7−→ SΨ, i.e.,

A 7−→ (DxS)S−1 + SAS−1, B 7−→ (DyS)S−1 + SBS−1.
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The zero curvature representation (ZCR) involving a parameter not remov-
able by a gauge transformation is a prerequisite to integrability.

The classification problem

How to tell whether a given nonlinear system has a zero curvature repre-
sentation?

A solution: M.M., A direct procedure to compute zero-curvature representa-
tions. The case sl2, in: Secondary Calculus and Cohomological Physics, Proc. Conf.
Moscow, 1997 (ELibEMS, 1998) pp. 10.

Description of the method

Solve the determining system

(DyA−DxB + [A,B])|E = 0,∑
I,l

(−D̂D)I

(
∂F l

∂ukI
Cl

)∣∣∣∣
E

= 0

with auxiliary variables Cl 6= 0, supposed to be in a normal form. For the
normal forms see op. cit., P. Sebestyén, Normal forms of irreducible sl3-valued
zero curvature representations, Rep. Math. Phys. 55 (2005) No. 3, 435–445 and
P. Sebestyén, On normal forms of irreducible sln-valued zero curvature represen-
tations, Rep. Math. Phys. 62 (2008) No. 1.

Properties of the determining system

– is a system of differential equations in total derivatives
– is quasilinear in A,B and linear in Cl
– usually possible to solve using computer algebra
– solution algorithms are resource demanding
– computation splits into cases to avoid division by zero (a consequence of

nonlinearity in A,B).

The spectral parameter problem

Given a parameterless ZCR, when a parameter can be incorporated?

Example. Gauss–Weingarten equations = a parameterless zero curvature
representation of the Gauss–Mainardi–Codazzi equations.
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A cohomological solution

To solve the spectral parameter problem in a given Lie algebra:
1. compute the cohomological obstructions, resulting from expanding the
zero curvature representation in terms of the (prospective) spectral parameter
A =

∑
iAiλ

i, B =
∑

iBiλ
i

DyA0 −DxB0 + [A0, B0] = 0 (the seed ZCR),

DyA1 −DxB1 + [A1, B0] + [A0, B1] = 0,

DyA2 −DxB2 + [A2, B0] + [A1, B1] + [A0, B2] = 0,

etc.
2. compute the full zero curvature representation using the information ob-
tained in the first step to cut off branches.

For details see M.M., On the spectral parameter problem, Acta Appl. Math.
109 (2010) 239–255.

The classification project

We consider geometrically determined classes of surfaces, meaning classes
determined by a single condition

F (p1, . . . , pk) = 0,

where pi are differential invariants with respect to reparameterizations and
euclidean motions (principal curvatures, their gradients, etc.).

We classify relations F = 0 such that
– the associated Gauss–Mainardi–Codazzi equations possess a ZCR de-

pending on a nonremovable (spectral) parameter;
– the ZCR has a prescribed order r and takes values in a prescribed Lie

algebra sl(n).

Weingarten surfaces

To start with, we focused on Weingarten surfaces, i.e., classes of immersed
surfaces in E3 determined by a functional relation between the principal
curvatures k1, k2.

Thus, the classification problem is: Which functional relations

f(k1, k2) = 0
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determine an integrable class of Weingarten surfaces?

Examples

Classical integrable classes: K = k1k2 = const, H = 1
2
(k1 + k2) = const,

more generally, aK + bH + c = const (linear Weingarten surfaces).
Forgotten integrable classes: E.g., 1/k1 − 1/k2 = const.

See H. Baran and M. Marvan, On integrability of Weingarten surfaces: a forgotten
class, J. Phys. A: Math. Theor. 42 (2009) 404007.

Preliminaries

Parameterized by the lines of curvature, surfaces r(x, y) have the funda-
mental forms

I = u2 dx2 + v2 dy2, II =
u2

ρ
dx2 +

v2

σ
dy2.

where ρ, σ are the principal radii of curvature, ρ = 1/k1, σ = 1/k2.
In the Weingarten case, ρ = ρ(σ), the Mainardi–Codazzi subsystem can

be explicitly solved. The full GMC system then reduces to the Gauss equation
alone, which can be written in the form

Rxx + Syy + T = 0,

where R, S, T are functions of σ.

Results of computation

Weingarten surfaces determined by an explicit dependence ρ(σ) possess
a one-parametric zero curvature representation if the determining equation

ρ′′′ =
3

2ρ′
ρ′′2 +

ρ′ − 1

ρ− σ
ρ′′ + 2

(ρ′ − 1)ρ′(ρ′ + 1)

(ρ− σ)2

holds (the prime denotes d/dσ).
See H. Baran and M. Marvan, Classification of integrable Weingarten surfaces

possessing an sl(2)-valued zero curvature representation, Nonlinearity 23 (2010)
2577–2597.

Thed determining equation has two geometric symmetries:
– scaling (changing the ruler) ρ 7−→ eTρ, σ 7−→ eTσ;

4



– translation (offsetting, normal shift) ρ 7−→ ρ+ T , σ 7−→ σ + T .

These symmetries help us to reduce the order by two. The resulting 1st order
ODE is separable.

The general solution ρ(σ) is given by the elliptic integral

ρ+ σ =
1

m

∫ m(ρ−σ) 1± s2√
1 + 2cs2 + s4

ds.

Here m is a scaling parameter, the integration constant is an offsetting pa-
rameter, and c is a “true” parameter.

Summary of the special cases

Except ρ = const and σ = const, the special cases when the above elliptic
integral reduces to elementary functions are, up to scaling and offsetting,

relation integrable equation

ρ+ σ = 0 zxx + zyy + ez = 0

ρσ = 1 zxx + zyy − sinh z = 0

ρσ = −1 zxx − zyy + sin z = 0

ρ− σ = sinh(ρ+ σ) (tanh z − z)xx + (coth z − z)yy + csch 2z = 0

ρ− σ = sin(ρ+ σ) (tan z − z)xx + (cot z + z)yy + csc 2z = 0

ρ− σ = 1 zxx + (1/z)yy + 2 = 0

ρ− σ = tanh ρ 1
4

(sinh z − z)xx + (coth 1
2
z)yy + coth 1

2
z = 0

ρ− σ = tan ρ 1
4

(sin z − z)xx + (cot 1
2
z)yy + cot 1

2
z = 0

ρ− σ = coth ρ 1
4

(sinh z + z)xx − (tanh 1
2
z)yy + tanh 1

2
z = 0

ρ− σ = − cot ρ 1
4

(sin z + z)xx + (tan 1
2
z)yy + tan 1

2
z = 0

All the special cases were known in the XIX century.
The general case

ρ+ σ =
1

m

∫ m(ρ−σ) 1± s2√
1 + 2cs2 + s4

ds

is also provably integrable through a link to deformations of quadrics of
revolution.
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