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This poster concerns a joint project with H. Baran of classification of
integrable PDEs describing immersed surfaces in R3. The integrability cri-
terion we apply is the existence of an sl(n)-valued curvature representation
depending on a non-removable parameter.

Aims of the project:

— obtaining lists of integrable classes of surfaces, as complete as possible
— identifying known cases

— finding mutual transformations

— obtaining new PDE integrable in the sense of soliton theory.

Criterion of integrability

In the case of two independent variables x,y and a matrix Lie algebra
g, a g-valued zero curvature representation (ZCR) for a system of PDE € is
defined to be a form o = Adx + Bdy with A, B € g such that

D,A—D,B+[A,B]=0 mod&.
A ZCR is the compatibility condition for the linear system
D,V =AvY, D,V =DBV.
A gauge transformation with respect to a gauge matrix S is ¥ +— SV, i.e.,

A (D,S)S™ 4+ SAS™, B+ (D,S)S™' +SBS™.



The zero curvature representation (ZCR) involving a parameter not remov-
able by a gauge transformation is a prerequisite to integrability.
The classification problem

How to tell whether a given nonlinear system has a zero curvature repre-
sentation?

A solution: M.M., A direct procedure to compute zero-curvature representa-
tions. The case slo, in: Secondary Calculus and Cohomological Physics, Proc. Conf.
Moscow, 1997 (ELibEMS, 1998) pp. 10.

Description of the method

Solve the determining system

(DyA - D:cB + [Aa B])’E = Oa
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with auxiliary variables C; # 0, supposed to be in a normal form. For the
normal forms see op. cit., P. Sebestyén, Normal forms of irreducible sl3-valued
zero curvature representations, Rep. Math. Phys. 55 (2005) No. 3, 435-445 and
P. Sebestyén, On normal forms of irreducible sl,-valued zero curvature represen-
tations, Rep. Math. Phys. 62 (2008) No. 1.

Properties of the determining system

— is a system of differential equations in total derivatives

— is quasilinear in A, B and linear in ()

— usually possible to solve using computer algebra

— solution algorithms are resource demanding

— computation splits into cases to avoid division by zero (a consequence of
nonlinearity in A, B).

The spectral parameter problem

Given a parameterless ZCR, when a parameter can be incorporated?

Example. Gauss-Weingarten equations = a parameterless zero curvature
representation of the Gauss-Mainardi-Codazzi equations.



A cohomological solution

To solve the spectral parameter problem in a given Lie algebra:
1. compute the cohomological obstructions, resulting from expanding the
zero curvature representation in terms of the (prospective) spectral parameter

A=Y, AN, B=Y, BN

DyAO — DzBO + [Ao, Bo] =0 (the seed ZCR),
DyAl - DLI:BI + [Alv BU] + [A07 Bl] - Oa
DyAQ - DxBQ + [A27 BO] + [Alv Bl] + [AOa BQ] - Oa

etc.
2. compute the full zero curvature representation using the information ob-
tained in the first step to cut off branches.

For details see M.M., On the spectral parameter problem, Acta Appl. Math.
109 (2010) 239-255.

The classification project

We consider geometrically determined classes of surfaces, meaning classes
determined by a single condition

F(pi,...,pr) =0,

where p; are differential invariants with respect to reparameterizations and
euclidean motions (principal curvatures, their gradients, etc.).
We classify relations F' = 0 such that
— the associated Gauss—Mainardi-Codazzi equations possess a ZCR de-
pending on a nonremovable (spectral) parameter;
— the ZCR has a prescribed order r and takes values in a prescribed Lie
algebra sl(n).

Weingarten surfaces

To start with, we focused on Weingarten surfaces, i.e., classes of immersed
surfaces in E? determined by a functional relation between the principal
curvatures ki, ks.

Thus, the classification problem is: Which functional relations

f(klka) =0



determine an integrable class of Weingarten surfaces?

Examples

Classical integrable classes: K = kiky = const, H = %(kl + ko) = const,
more generally, a K + bH + ¢ = const (linear Weingarten surfaces).
Forgotten integrable classes: E.g., 1/ky — 1/ko = const.
See H. Baran and M. Marvan, On integrability of Weingarten surfaces: a forgotten
class, J. Phys. A: Math. Theor. 42 (2009) 404007.

Preliminaries

Parameterized by the lines of curvature, surfaces r(z,y) have the funda-
mental forms

2 2
[=u?da? +0°dy?, 1= u—de—f— U—dyQ.
p o

where p, o are the principal radii of curvature, p = 1/ky, 0 = 1/ks.

In the Weingarten case, p = p(0), the Mainardi-Codazzi subsystem can
be explicitly solved. The full GMC system then reduces to the Gauss equation
alone, which can be written in the form

Ryr + Sy, +T =0,
where R, S,T are functions of o.

Results of computation

Weingarten surfaces determined by an explicit dependence p(o) possess
a one-parametric zero curvature representation if the determining equation
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holds (the prime denotes d/do).

See H. Baran and M. Marvan, Classification of integrable Weingarten surfaces
possessing an sl(2)-valued zero curvature representation, Nonlinearity 23 (2010)
2577-2597.

Thed determining equation has two geometric symmetries:

— scaling (changing the ruler) p — elp, o — elo;



— translation (offsetting, normal shift) p+— p+7T, 0 +— o+ T.

These symmetries help us to reduce the order by two. The resulting 1st order
ODE is separable.
The general solution p(o) is given by the elliptic integral

1 =) 1+ s
p—l—U:/ ds.
m \/1+2032+s4

Here m is a scaling parameter, the integration constant is an offsetting pa-
rameter, and c is a “true” parameter.
Summary of the special cases

Except p = const and o = const, the special cases when the above elliptic
integral reduces to elementary functions are, up to scaling and offsetting,

relation integrable equation
p+o=0 Zpz + 2y + € =0
po =1 Zpz + 2yy —sinhz = 0
po = —1 Zpw — Zyy +sinz =0

p—o =sinh(p+0) (tanhz — 2),, + (cothz — 2),, + csch2z =0
p—o=sin(p+o) (tanz—z), + (cotz+ 2),, + csc2z =0

p—o=1 Zoz + (1/2)yy +2=10

p— o =tanhp T (sinhz — 2)4, (cotth)yy+coth%z:O
p— o =tanp T (sinz — 2)ye + (cot 5 2)y, + cot 32 =0
p— o =cothp }l(smhz+z)m—(tanth)yy—l—tanh%z:O
p—0=—cotp 1(sinz+ z)g + (tan i z)y, +tansz =0

All the special cases were known in the XIX century.
The general case

1 /m@—ff) 1+ 52
pt+o=— ds
m \/1+2€S2+84

is also provably integrable through a link to deformations of quadrics of
revolution.



