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Surfaces in Euclidean space

The first and the second fundamental form associated with a surface r(x1, x2) in Euclidean
space are

g
ij

= r
x

i · r
x

j , h
ij

= r
x

i
x

j · n,

where n is the unit normal. The vectors r
x

1 , r
x

2 ,n satisfy the Gauss–Weingarten equations
0

@
r

x

1

r
x

2

n

1

A

x

k

= A
k

0

@
r

x

1

r
x

2

n

1

A, k = 1, 2,

where A1, A2 are certain matrices constructed from the components g
ij

, h
ij

and their derivatives.
The compatibility conditions

D
x

2A1 �D
x1A2 + [A1, A2] = 0

of the Gauss–Weingarten equations are equivalent to the Gauss–Mainardi–Codazzi–Peterson
system. The latter system consists of three equations in six unknowns g

ij

, h
ij

. In curvature
coordinates x, y we have g = u2 dx2 + v2 dy2, h = pu2 dx2 + qv2 dy2, where p, q are principal
curvatures; then the Gauss–Mainardi–Codazzi–Peterson system assumes the form

(p� q)uu
y

+ u2p
y

= 0,

(p� q)vv
x

� v2q
x

= 0,

uu
yy

+ vv
xx

� vu
x

v
x

u
� uu

y

v
y

v
+ u2v2pq = 0.

These are 3 equations in 4 unknowns. We have one condition at our disposal to permit integra-
bility. To be geometric, the extra condition must be written in terms of invariants of surfaces
with respect to rigid movements and reparameterizations. The simplest such invariants are the
principal curvatures p, q; others can be obtained by invariant di↵erentiations (1/u)D

x

, (1/v)D
y

(i.e., di↵erentiation along the lines of curvature parameterized by the arc length).

Criterion of integrability

In the case of two independent variables x, y and a matrix Lie algebra g, a g-valued zero
curvature representation (ZCR) for a system of PDE E is a form ↵ = A dx+B dy with A, B 2 g
such that

D
y

A�D
x

B + [A, B] = 0 mod E.
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A gauge transformation with respect to a gauge matrix S

A 7�! (D
x

S)S�1 + SAS�1, B 7�! (D
y

S)S�1 + SBS�1.

Such a ZCR is the compatibility condition for the linear system D
x

 = A , D
y

 = B ; the
gauge transformation corresponds to  7�! S .

To be indicative of integrability, the ZCR should depend on a parameter that is not remov-
able by the gauge transformation.

Example. Gauss–Weingarten equations = a parameterless zero curvature representation of
the Gauss–Mainardi–Codazzi equations.

The spectral parameter problem

Given a parameterless ZCR, when a parameter can be incorporated?

A cohomological solution

To solve the spectral parameter problem in a given Lie algebra:

1. Consider the conditions, resulting from expanding the ZCR in terms of the (prospective)
spectral parameter A =

P
i

A
i

�i, B =
P

i

B
i

�i

D
y

A0 �D
x

B0 + [A0, B0] = 0 (the seed ZCR),

D
y

A1 �D
x

B1 + [A1, B0] + [A0, B1] = 0,

D
y

A2 �D
x

B2 + [A2, B0] + [A1, B1] + [A0, B2] = 0,

...

2. The second equation can be rewritten as (D
x

� ad
A0)B1 = (D

y

� ad
B0)A1, meaning that

A1 dx + B1 dy is a cocycle. Coboundaries A1 = (D
x

� ad
A0)S, B1 = (D

y

� ad
B0)S corre-

spond to removable �. Denote by H1 the cohomology group {cocycles}/{coboundaries}.
Then H1 contains obstructions to expandability of A0 dx + B0 dy to A(�) dx + B(�) dy:
If H1 = 0, then no non-removable � can be incorporated.

3. For an arbitrary generator A1 dx + B1 dy of H1, attempt to compute A
i

, B
i

in successive
steps, i � 2. If any of these steps fails, then no non-removable � can be incorporated.

4. For the remaining candidates compute the full zero curvature representation A(�) dx +
B(�) dy. Information obtained in the previous steps helps to cut o↵ branches.

M.M., On the spectral parameter problem, Acta Appl. Math. 109 (2010) 239–255.
M.M., A direct procedure to compute zero-curvature representations. The case sl2, in: Secondary Calculus

and Cohomological Physics, Proc. Conf. Moscow, 1997 (ELibEMS, 1998) pp. 10.

The classification project for surfaces

We depart from the always-existing zero curvature representation equivalent to the Gauss–
Weingarten system, and solve the spectral parameter problem as explained above. Computa-
tions are conveniently performed in curvature coordinates.

Weingarten surfaces

H. Baran and M. Marvan, Classification of integrable Weingarten surfaces possessing an sl(2)-valued zero
curvature representation, Nonlinearity 23 (2010) 2577–2597.
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By definition, Weingarten surfaces satisfy a functional relation between the principal cur-
vatures p, q. We ask which functional relations f(p, q) = 0 determine an integrable class of
Weingarten surfaces.

Let ⇢, � denote the principal radii of curvature, ⇢ = 1/p, � = 1/q. In the Weingarten case,
⇢ = ⇢(�), the Mainardi–Codazzi subsystem can be explicitly solved, while the Gauss equation
assumes the form

R
xx

+ S
yy

+ T = 0,

where R, S, T are some functions of �.

The result

Weingarten surfaces determined by an explicit dependence ⇢(�) possess a one-parametric
zero curvature representation if the determining equation

⇢000 =
3

2⇢0
⇢002 +

⇢0 � 1

⇢� �
⇢00 + 2

(⇢0 � 1)⇢0(⇢0 + 1)

(⇢� �)2

holds (the prime denotes d/d�).
The general solution ⇢(�) is given by the elliptic integral

⇢ + � =
1

m

Z
m(⇢��) 1 ± s2

p
1 + 2cs2 + s4

ds.

Here m is a scaling parameter, the integration constant is an o↵setting parameter, and c is a
“true” parameter. There exists a link to deformations of quadrics of revolution.

Summary of special cases

All the special cases when the above elliptic integral reduces to elementary functions were
known in the XIX century. Except tubular surfaces (⇢ = const or � = const), they are

No. relation integrable equation

1. ⇢ + � = 0 z
xx

+ z
yy

+ ez = 0
2. ⇢� = 1 z

xx

+ z
yy

� sinh z = 0
3. ⇢� = �1 z

xx

� z
yy

+ sin z = 0
4. ⇢� � = sinh(⇢ + �) (tanh z � z)

xx

+ (coth z � z)
yy

+ csch 2z = 0
5. ⇢� � = sin(⇢ + �) (tan z � z)

xx

+ (cot z + z)
yy

+ csc 2z = 0
6. ⇢� � = 1 z

xx

+ (1/z)
yy

+ 2 = 0
7. ⇢� � = tanh ⇢ 1

4
(sinh z � z)

xx

+ (coth 1
2 z)

yy

+ coth 1
2 z = 0

8. ⇢� � = tan ⇢ 1
4
(sin z � z)

xx

+ (cot 1
2 z)

yy

+ cot 1
2 z = 0

9. ⇢� � = coth ⇢ 1
4
(sinh z + z)

xx

� (tanh 1
2 z)

yy

+ tanh 1
2 z = 0

10. ⇢� � = � cot ⇢ 1
4
(sin z + z)

xx

+ (tan 1
2 z)

yy

+ tan 1
2 z = 0

up to scaling and o↵setting. The first three integrable equations are well known, the fourth and
fifth have been solved by Darboux, the others are new.

The constant astigmatism equation

H. Baran and M. Marvan, On integrability of Weingarten surfaces: a forgotten class, J. Phys. A: Math.

Theor. 42 (2009) 404007.
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The sixth equation

z
xx

+
⇣1

z

⌘

yy

+ 2 = 0 (1)

is called the constant astigmatism equation. The ZCR with a non-removable parameter � is
given by
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CCA.

Open problem. Solve the constant astigmatism equation by spectral methods.

A link to equiareal patterns on the sphere

A. Hlaváč and M.M., Another integrable case in two-dimensional plasticity, J. Phys. A: Math. Theor., to
appear.

The geometric meaning of the variable z can be seen from the third fundamental form,
which turns out to be

dn · dn = z dx2 +
1

z
dy2. (2)

Since dn ·dn coincides with the first fundamental form of the Gaussian sphere n(x, y), it follows
that one obtains a parameterization of the unit sphere with the following properties:

1. the coordinate lines are orthogonal;

2. the parameterization is area preserving.

These properties characterize equiareal patterns on the sphere. Evenly distributed coordinate
lines cover the surface with curvilinear rectangles of equal area.

Example. The well-known Archimedean projection of the cylinder (cos y, sin y, x) onto an
inscribed sphere (see Fig. 1) provides an example of an orthogonal equiareal pattern. We have

gArch =
dx2

1� x2 + (1� x2) dy2,

where z = 1/(1� x2) is a solution of the constant astigmatism equation which corresponds to
von Lilienthal surfaces.

A converse statement says that if (2) is an orthogonal equiareal parameterization of the
unit sphere, then z is a solution of the the constant astigmatism equation (1). The proof is by
computation of the Gaussian curvature of the sphere through the Brioschi formula.
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Figure 1: The Archimedean equiareal parameterisation of the sphere (left) and a slip line field
composed of loxodromes (right)

A link to two-dimensional plasticity

The orthogonal equiareal patterns were first observed in connection with plane plasticity
(Boussinesq 1872, Sadowsky 1941) under Tresca yield condition. Conversely, given an ortho-
gonal equiareal pattern (2), then the two-dimensional tensor � with components

�1
1 = 1

2 ln z, �1
2 = �2

1 = 0, �2
2 = 1

2
(ln z � 2). (3)

has the necessary properties of the stress tensor for ductile materials in the absence of “body”
forces:

1. the symmetry, �
ij

= �
ji

,

2. the equilibrium equation �ij

;j = 0,

3. the Tresca yield condition �1
1 � �2

2 = const.

The pattern itself is then composed of principal stress lines.
The physical meaning is that a plastic material yields under stress; yielding occurs along

slip lines, which are positioned at the angle of 1
4⇡ to the principal stress lines.

Therefore, by a slip line field associated with the orthogonal equiareal pattern (2) on a
surface S we shall mean a parameterization ⇠, ⌘ such that the angle between @

x

and @
⇠

as well
as the angle between @

y

and @
⌘

is equal to 1
4⇡.

Continuing the example of Archimedean parameterization, we easily see that the corre-
sponding orthogonal net of slip lines is formed by the ±45� loxodromes (lines of constant
bearing); see Fig. 1(b) or model No. 249 in the Göttingen collection of mathematical models
http://www.uni-math.gwdg.de/modellsammlung/.

A link to the sine-Gordon equation

To obtain solutions of the constant astigmatism equation depending on an arbitrary num-
ber of parameters we can extend the well-known Bäcklund transformation of the sine-Gordon
equation

!
⇠⌘

= 1
2 sin 2!.
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The Bäcklund transform of a surface r(⇠, ⌘) is related to another sine-Gordon solution !(�),
satisfying compatible first-order equations

!
(�)
⇠

= !
⇠

+ � sin(!(�) + !), !(�)
⌘

= �!
⌘

+
1

�
sin(!(�) � !). (4)

Here � is a constant called the Bäcklund parameter. Particularly useful is Bianchi’s superposi-
tion principle

tan
!(�1�2) � !

2
=

�1 + �2

�1 � �2
tan

!(�1) � !(�2)

2
(5)

If a general solution of system (4) is known for every value of the Bäcklund parameter �,
solutions !(�1�2···�s) depending on any finite number of Bäcklund parameters and integration
constants can be obtained step by step, by purely algebraic manipulations, via (5).

In the particular case of � = ±1 the Bäcklund transformation coincides with Bianchi’s com-
plementarity relation. Consequently, the superposition formula (5) yields a method to obtain
abundant pairs of complementary sine-Gordon solutions !(�1�2···�s) and !(�1�2···�s1).

Surfaces of constant astigmatism are easy to obtain from a pair of complementary pseudo-
spherical surfaces r and r(1). Denote

ñn = r(1) � r =
sin(! � !̃!)

sin(2!)
r

⇠

+
sin(! + !̃!)

sin(2!)
r

⌘

. (6)

Then ñn is a unit vector tangent to both surfaces r and r(1) and determines what is called a
pseudospherical congruence. Normal surfaces of this congruence are the constant astigmatism
surfaces sought. The following proposition is essentially due to Bianchi.

Proposition 1. Let !(1)(⇠, ⌘, c) be a general solution of system (4), where we set � = 1 and c
denotes the integration constant. Then r̃r = r � f ñn, where f = ln(d!(1)/dc) and ñn is the unit
vector given by formula (6), is a surface of constant astigmatism having surfaces r and r(1) as
evolutes.

Proposition 1 implies that the constant astigmatism surfaces r̃r = r � f ñn can be found by
purely algebraic manipulations and di↵erentiation once a one-parameter family of pseudopo-
tentials !(1) is known. The coordinates ⇠, ⌘ have a geometric meaning of a slip line field.

Proposition 2. If S is a constant astigmatism surface, then the asymptotic coordinates on the
focal surfaces of S correspond to slip line fields on the Gaussian image of S.

Proposition 1 as such yields neither a solution of the constant astigmatism equation nor an
orthogonal equiareal pattern on the sphere ñn.

Proposition 3. Let !(1)(⇠, ⌘, c) be a general solution of system (4), where � = 1 and c denotes
the integration constant, let f = ln(d!(1)/dc) and x = df/ dc. Let y(⇠, ⌘) be a solution of the
system

y
⇠

= e�f sin(! + !(1)), y
⌘

= e�f sin(! � !(1)). (7)

Then x, y are adapted curvature coordinates on the surface r̃r. Moreover, if z = e�2f , then z(x, y)
is a solution of the constant astigmatism equation (1). Finally, z dx2 + dy2/z is an orthogonal
equiareal pattern on the unit sphere ñn, while ⇠, ⌘ is the associated slip line field (see above).
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One can also obtain superposition formulas for f, x, y similar to formula (5). Given two
sine-Gordon solutions ! and !(�) related by the Bäcklund transformation B(�), let f (�), x(�),
y(�) denote functions, called associated potentials, satisfying the compatible equations

f
(�)
⇠

= � cos(!(�) + !), f (�)
⌘

=
1

�
cos(!(�) � !),

x
(�)
⇠

= �ef

(�)
sin(!(�) + !), x(�)

⌘

=
1

�
ef

(�)
sin(!(�) � !),

y
(�)
⇠

= �e�f

(�)
sin(!(�) + !), y(�)

⌘

= �1

�
e�f

(�)
sin(!(�) � !).

(8)

Proposition 4. Let !, !(�1), !(�2), !(�1�2) be four sine-Gordon solutions related by the Bianchi
superposition principle (5). Then the associated potentials f (�1�2), x(�1�2), y(�1�2) corresponding
to the pair !(�1), !(�1�2) are related to the associated potentials f (�2), x(�2), y(�2) corresponding
to the pair !, !(�2) by formulas

f (�1�2) = f (�2) � ln
⇣
2 cos(!(�1) � !(�2))� �1

�2
� �2

�1

⌘
,

x(�1�2) =
�1�2

�2
1 � �2

2

✓
x(�2) � 2�1�2 sin(!(�1) � !(�2))

�2
1 � 2�1�2 cos(!(�1) � !(�2)) + �2

2

ef

(�2)

◆
,

y(�1�2) =
⇣�1

�2
� �2

�1

⌘
y(�2) � 2e�f

(�2)
sin(!(�1) � !(�2)),

(9)

up to an additive constant.

Example.

Figure 2: Dini’s pseudospherical surface (left) and its constant astigmatism involute (right).

Lipschitz surfaces in principal coordinates

In 1887 Lipschitz presented a class of surfaces of constant astigmatism in terms of spherical
coordinates related to the Gaussian image. Consider the unit sphere

n = (cos � sin ✓, sin � sin ✓, cos ✓)

parameterised by the latitude ✓ and longitude �, yet unknown functions of parameters x, y. The
Lipschitz class is specified by allowing the position angle ! between n

✓

and n
x

= �
x

n
�

+ ✓
x

n
✓

to depend solely on the latitude ✓.
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Proposition 5. The general Lipschitz solution of the constant astigmatism equation (1) depends
on four constants h11, h10, h01, h00 and consists of functions

z =
1� h2 +

p
(1� h2)2 � 4(H1h�H2)

2

2(h11x + h01)
2 , (10)

where h = h11xy + h10x + h01y + h00, H1 = h11, H2 = h11h00 � h10h01. Formula (10) covers all
Lipshitz solutions except a particular solution

z =
1

c1 � (x� c0)
2 ,

c1, c0 being arbitrary constants.

Actually, (10) is a symmetry-invariant solution of the constant astigmatism equation.

Proposition 6. The general Lipschitz solution (10) satisfies

h11s + h01t
x � h10t

y = 0,

where tx = z
x

, ty = z
y

, s = xz
x

� yz
y

+ 2z are generators of the Lie symmetries of the constant
astigmatism equation.

The orthogonal equiareal pattern corresponding to the general Lipschitz solution is given
by

✓ = arccos h,

� = � ln(h11x + h01)

h11
+

Z
1� h2 +

p
(1� h2)2 � 4(H1h�H2)

2

2(H1h�H2)(1� h2)
dh.

The function � can be expressed in terms of elementary functions if and only if

h00 = ±1 or h00 = ±1 + h2
11

2h11
.

For h00 = 1 we obtain the pattern on Fig. 3. In the other case � and ✓ cannot be simultaneously
real.

Figure 3: An orthogonal equiareal pattern on the sphere corresponding to the Lipschitz solution
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