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My personal memory of A. Vinogradov
A. Vinogradov, without any doubt, was a person with a strong personality.

Anytime I spoke to him about Mathematics, I found him enjoyable, deep,
never trivial.

He was a very influent Mathematician, and he influenced also my way to
do Mathematics, expecially regarding the Geometry of Differential
Equations.

I think that it is not possible to summarize in view words his personality
and his attitude to Mathematics, but if I had do it, I would say
non-trivial and brilliant.

He always was telling me that only when something is trivial for you and
non-trivial for the others, then you understood.

This and the encouragement to think “simply” are the most important
teachings I got from him.
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Basic definitions

Definition. A vector field is called projective w.r.t. a metric g , if its local
flow sends (unparametrized) geodesics into (unparametrized) geodesics.

Examples Killing/Affine/Homothetic vector fields are projective.

Of course, if two metrics share the same geodesics they admit the same
projective vector fields.

So, in the classification of metrics admitting projective vector fields, it is
crucial to understand the properties of metrics sharing the same geodesics,
called projectively equivalent metrics.

The class of connections sharing the same geodesics of a connection Γ is
called projective connection (associated to Γ).
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Problems of Sophus Lie

Problem (Sophus Lie)
Untersuchungen über geodätische Curven (Math. Ann. 20, 1882)
I. Es wird verlangt, die Form eines Bogenelementes einer jeden Fläche zu
bestimmen, deren geodätische Curven eine infinitesimale Transformation
gestatten.
II. Man soll die Form des Bogenelementes einer jeden Fläche zu
bestimmen, deren geodätische Curven mehrere infinitesimale
Transformationen gestatten.

In short: Determine the metrics of any surface whose geodesic curves
admit one (several) infinitesimal transformation(s).

Find all 2-dimensional metrics admitting one or more
(linear independent) projective vector fields
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Problems of Sophus Lie

Find all 2-dimensional metrics admitting one or more
(linear independent) projective vector fields

“Find”−→ Means to characterize the projective class of such metrics
(recall that two metrics admitting the same geodesics admit the same
projective vector fields).

“Find”−→ Means to find a complete list of normal forms of metrics
pair-wise non-isometric.

The problem has a natural multi-dimensional
generalization, that we shall discuss later
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Starting point for a classification of 2-dim. metrics with
projective symmetries

Theorem (Sophus Lie)
The Lie algebra of projective vector fields on a 2-dimensional manifold can
be 0, 1, 2, 3 and 8 dimensional.
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2-dim. metrics with
projective symmetries

8-dim.
proj. algebra

Constant
curvature

2 or 3-dim.
proj. algebra

Transitive
case

Bryant, M∼,
Matveev 2008

Non-transitive
case

Regular
action

Non-regular
action

M∼, Matveev
2020

1-dim.
proj. algebra

Regular
action

Matveev 2010
M∼, Vollmer 2020

Non-regular
action

?
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Starting point for a classification of 3-dim. metrics with
projective symmetries

It is completely different from the starting point for 2-dimensional metrics.

We shall use property that a pair of projectively equivalent metrics assume
a particular simple form in a suitable system of coordinates.

We shall give more details later.
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Scheme of the talk

1 Reduce a first part of the problem of Sophus Lie to a problem of
classifying projective connections with a given Lie algebra of
symmetries.

This will be done in the regular case.
2 Understand which projective connections from point 1. come from a

metric.
3 Use the results of points 1. and 2. to treat also the non-regular case.
4 Show some different techniques to solve the case of metrics with only

one projective symmetry.
5 3-dimensional case.
6 Complex case.
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Step 1: the Lie problem as a symmetry problem of ODEs

Equation of geodesics:
ẍ + Γ1

11ẋ2 + 2Γ1
12ẋ ẏ + Γ1

22ẏ2 = c(t)ẋ
ÿ + Γ2

11ẋ2 + 2Γ2
12ẋ ẏ + Γ2

22ẏ2 = c(t)ẏ
By eliminating the parameter t we obtain

y ′′ = −Γ2
11 + (Γ1

11 − 2Γ2
12)y ′ − (Γ2

22 − 2Γ1
12)y ′2 + Γ1

22y ′3 (1)
Any solution of (1) is a geodesic (up to parametrization).
If in (1) we replace Γ with the following Γ

Γk
ij = Γk

ij + φiδ
k
j + φjδ

k
i

the equation does not change.

We can say that a general second order ODE of the following form
y ′′ = F0(x , y) + F1(x , y)y ′ + F2(x , y)y ′2 + F3(x , y)y ′3 (2)

is a projective connection.
A projective symmetry is a point symmetry of (2).
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22ẏ2 = c(t)ẏ
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22ẏ2 = c(t)ẋ
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Step 2: metrizability of projective connections
y ′′ = −Γ2

11 + (Γ1
11 − 2Γ2

12)y ′ − (Γ2
22 − 2Γ1

12)y ′2 + Γ1
22y ′3 (5)

y ′′ = F0(x , y) + F1(x , y)y ′ + F2(x , y)y ′2 + F3(x , y)y ′3 (6)

General question: Is any projective connection metrizable?

By comparing (5) and (6) we realized that Existence
of a metric

g = g11dx2 + 2g12dxdy + g22dy2

 ⇔
 Solvability of the

following system
(Metrizability Equations)


−Γ2

11 =F0

= 1
2 det(g)

(
g12g11x − 2g11g12x + g11g11y

)

Γ1
11 − 2Γ2

12 =F1

= 1
2 det(g)

(
3g12g11y − 2g11g22x + g22g11x − 2g12g12x

)

2Γ1
12 − Γ2

22 =F2

= 1
2 det(g)

(
2g12g12y − 3g12g22x − g11g22y + 2g22g11y

)

Γ2
22 =F3

= 1
2 det(g)

(
2g22g12y − g22g22x − g12g22y

)
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2 det(g)
(
2g22g12y − g22g22x − g12g22y

)


Non–linear!

But with the
substitution
a = det(g)− 2

3 g
we obtain

a11x − 2
3 F1 a11 + 2F0 a12 = 0

a11y + 2a12x − 4
3 F2 a11 + 2

3 F1 a12 + 2F0 a22 = 0
2a12y + a22x − 2F3 a11 − 2

3 F2 a12 + 4
3 F1 a22 = 0

a22y − 2F3 a12 + 2
3 F2 a22 = 0

That is linear!
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Metrizability of proj. connections⇐⇒ Solutions to the above system

Theorem (Eastwood, Matveev (2009))
An N-dim. metric g lies in a given projective class if and only if the
following system has solution

∇aσ
bc − 1

N + 1(δc
a∇iσ

ib + δb
a∇iσ

ic) = 0 , σij := det(g)
1

N+1 g ij

Theorem (Bryant, Eastwood, Dunajski (2009))
There exists a differential invariant of order six which decides if a
2-dimensional projective connection is metrizable.

Metrics admitting projective symmetries 15 / 57



Step 2: metrizability of projective connections

a11x − 2
3 F1 a11 + 2F0 a12 = 0

a11y + 2a12x − 4
3 F2 a11 + 2

3 F1 a12 + 2F0 a22 = 0
2a12y + a22x − 2F3 a11 − 2

3 F2 a12 + 4
3 F1 a22 = 0

a22y − 2F3 a12 + 2
3 F2 a22 = 0


Metrizability of proj. connections⇐⇒ Solutions to the above system

Theorem (Eastwood, Matveev (2009))
An N-dim. metric g lies in a given projective class if and only if the
following system has solution

∇aσ
bc − 1

N + 1(δc
a∇iσ

ib + δb
a∇iσ

ic) = 0 , σij := det(g)
1

N+1 g ij

Theorem (Bryant, Eastwood, Dunajski (2009))
There exists a differential invariant of order six which decides if a
2-dimensional projective connection is metrizable.

Metrics admitting projective symmetries 15 / 57



Step 2: metrizability of projective connections

a11x − 2
3 F1 a11 + 2F0 a12 = 0

a11y + 2a12x − 4
3 F2 a11 + 2

3 F1 a12 + 2F0 a22 = 0
2a12y + a22x − 2F3 a11 − 2

3 F2 a12 + 4
3 F1 a22 = 0

a22y − 2F3 a12 + 2
3 F2 a22 = 0


Metrizability of proj. connections⇐⇒ Solutions to the above system

Theorem (Eastwood, Matveev (2009))
An N-dim. metric g lies in a given projective class if and only if the
following system has solution

∇aσ
bc − 1

N + 1(δc
a∇iσ

ib + δb
a∇iσ

ic) = 0 , σij := det(g)
1

N+1 g ij

Theorem (Bryant, Eastwood, Dunajski (2009))
There exists a differential invariant of order six which decides if a
2-dimensional projective connection is metrizable.

Metrics admitting projective symmetries 15 / 57



Step 2: metrizability of projective connections

a11x − 2
3 F1 a11 + 2F0 a12 = 0

a11y + 2a12x − 4
3 F2 a11 + 2

3 F1 a12 + 2F0 a22 = 0
2a12y + a22x − 2F3 a11 − 2

3 F2 a12 + 4
3 F1 a22 = 0

a22y − 2F3 a12 + 2
3 F2 a22 = 0


Metrizability of proj. connections⇐⇒ Solutions to the above system

Theorem (Eastwood, Matveev (2009))
An N-dim. metric g lies in a given projective class if and only if the
following system has solution

∇aσ
bc − 1

N + 1(δc
a∇iσ

ib + δb
a∇iσ

ic) = 0 , σij := det(g)
1

N+1 g ij

Theorem (Bryant, Eastwood, Dunajski (2009))
There exists a differential invariant of order six which decides if a
2-dimensional projective connection is metrizable.

Metrics admitting projective symmetries 15 / 57



2-dim. metrics with
projective symmetries

8-dim.
proj. algebra

Constant
curvature

2 or 3-dim.
proj. algebra

Transitive
case

Bryant, M∼,
Matveev 2008

Non-transitive
case

Regular
action

Non-regular
action

M∼, Matveev
2020

1-dim.
proj. algebra

Regular
action

Matveev 2010
M∼, Vollmer 2020

Non-regular
action

?
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Any second order ODE with 8-dim. Lie symmetry algebra is equivalent to

y ′′ = 0

and any metric admitting the previous equation as the equation of
unparametrized geodesics (projective connection) has constant curvature.
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Normal forms of projective connection with 2 symmetries
Recall how to solve the Lie problem.

y ′′ = F0(x , y) + F1(x , y)y ′ + F2(x , y)y ′2 + F3(x , y)y ′3 (7)
Find normal forms of (7) admitting 1, 2, 3 and 8 symmetries, and see
when it is metrizable.

(a) Lie algebras which can be the symmetry algebras for a projective
connection (Lie, 1882).

0 , R , s : {[X ,Y ] = X} , sl(2,R) , sl(3,R)︸ ︷︷ ︸
Constant curvature

(b) All possible realizations of the 2-dim. non commutative Lie algebra s
as vector fields on R2 (Lie 1882) .

transitive case: X = ∂
∂y , Y = ∂

∂x + y ∂
∂y

non–transitive case: X = ey ∂
∂y , Y = − ∂

∂y
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Normal forms of projective connection with 2 symmetries

Let us focus on the non-transitive case first.

Lemma
In the non–transitive case the metric has constant curvature.

In fact, the most general projective connection admitting

ey ∂

∂y , − ∂

∂y

as projective vector fields is

y ′′ = F0 + F1y ′ + F2y ′2 + F3y ′3 = h(x)y ′ + y ′2 (8)

and by computing the Liouville tensor (Cartan invariants) we realize that
they vanish. Thus, (8) is equivalent to y ′′ = 0, i.e., a metrizable projective
connection with metrics of constant curvature.

Metrics admitting projective symmetries 21 / 57



Normal forms of projective connection with 2 symmetries

Let us focus on the non-transitive case first.

Lemma
In the non–transitive case the metric has constant curvature.

In fact, the most general projective connection admitting

ey ∂

∂y , − ∂

∂y

as projective vector fields is

y ′′ = F0 + F1y ′ + F2y ′2 + F3y ′3 = h(x)y ′ + y ′2 (8)

and by computing the Liouville tensor (Cartan invariants) we realize that
they vanish. Thus, (8) is equivalent to y ′′ = 0, i.e., a metrizable projective
connection with metrics of constant curvature.

Metrics admitting projective symmetries 21 / 57



Normal forms of projective connection with 2 symmetries

Let us focus on the non-transitive case first.

Lemma
In the non–transitive case the metric has constant curvature.

In fact, the most general projective connection admitting

ey ∂

∂y , − ∂

∂y

as projective vector fields is

y ′′ = F0 + F1y ′ + F2y ′2 + F3y ′3

= h(x)y ′ + y ′2 (8)

and by computing the Liouville tensor (Cartan invariants) we realize that
they vanish. Thus, (8) is equivalent to y ′′ = 0, i.e., a metrizable projective
connection with metrics of constant curvature.

Metrics admitting projective symmetries 21 / 57



Normal forms of projective connection with 2 symmetries

Let us focus on the non-transitive case first.

Lemma
In the non–transitive case the metric has constant curvature.

In fact, the most general projective connection admitting

ey ∂

∂y , − ∂

∂y

as projective vector fields is

y ′′ = F0 + F1y ′ + F2y ′2 + F3y ′3 = h(x)y ′ + y ′2 (8)

and by computing the Liouville tensor (Cartan invariants) we realize that
they vanish. Thus, (8) is equivalent to y ′′ = 0, i.e., a metrizable projective
connection with metrics of constant curvature.

Metrics admitting projective symmetries 21 / 57



Normal forms of projective connection with 2 symmetries

Let us focus on the non-transitive case first.

Lemma
In the non–transitive case the metric has constant curvature.

In fact, the most general projective connection admitting

ey ∂

∂y , − ∂

∂y

as projective vector fields is

y ′′ = F0 + F1y ′ + F2y ′2 + F3y ′3 = h(x)y ′ + y ′2 (8)

and by computing the Liouville tensor (Cartan invariants) we realize that
they vanish.

Thus, (8) is equivalent to y ′′ = 0, i.e., a metrizable projective
connection with metrics of constant curvature.

Metrics admitting projective symmetries 21 / 57



Normal forms of projective connection with 2 symmetries

Let us focus on the non-transitive case first.

Lemma
In the non–transitive case the metric has constant curvature.

In fact, the most general projective connection admitting

ey ∂

∂y , − ∂

∂y

as projective vector fields is

y ′′ = F0 + F1y ′ + F2y ′2 + F3y ′3 = h(x)y ′ + y ′2 (8)

and by computing the Liouville tensor (Cartan invariants) we realize that
they vanish. Thus, (8) is equivalent to y ′′ = 0, i.e., a metrizable projective
connection with metrics of constant curvature.

Metrics admitting projective symmetries 21 / 57



Normal forms of projective connection with 2 symmetries

We now focus on the case when the projective algebra [X ,Y ] = X is
realized as follows:

X = ∂

∂y and Y = ∂

∂x + y ∂

∂y

Lemma
Let the connection Γ admit X and Y as projective vector fields. Then the
projective connection has the following form:

y ′′ = C0ex + C1y ′ + C2e−x y ′2 + C3e−2x y ′3 , Ci ∈ R

Reformulation of Lie problem: Find all metrics with projective
connection

y ′′ = C0ex + C1y ′ + C2e−x y ′2 + C3e−2x y ′3 , Ci ∈ R

Metrics admitting projective symmetries 22 / 57
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Normal forms of projective connection with 2 symmetries
Reformulation of Lie problem: Find all metrics with projective
connection

y ′′ = C0ex + C1y ′ + C2e−x y ′2 + C3e−2x y ′3 , Ci ∈ R (9)

by studying the (linear) metrizability equations with the help of the
following

Theorem (Koenigs)
Let I(g) := {quadratic integrals of the geodesic flow of g}. Then
dim I(g) ∈ {1, 2, 3, 4, 6} and dim I(g) = 6←→ g is of constant curvature.

we obtain the following

Theorem
The projective connection (9) comes from a metric iff

y′′ = C1y
′ ± e−2xy′3
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Metrics with at least 2 projective vector fields: regular case

Theorem (R. Bryant, G. Manno, V. Matveev (2008))
Let a 2-dim. metric g of nonconstant curvature admit two projective
vector fields which are linearly independent at p ∈ D2.

1 Metrics admitting precisely two projective vector fields:
(a) ε1e(b+2) x dx2 + ε2eb x dy2, εi ∈ {−1, 1}, b 6= {−2, 0, 1}

(b) a
(
ε1

e(b+2) x dx2

(eb x +ε2)2 + eb x dy2

eb x +ε2

)
, a 6= 0, εi ∈ {−1, 1}, b 6= {−2, 0, 1}

(c) a
(

e2 x dx2

x2 + ε dy2

x

)
, a 6= 0, ε ∈ {−1, 1}

2 Metrics admitting precisely three projective vector fields
(a) ε1e3x dx2 + ε2ex dy2, εi ∈ {−1, 1}

(b) a
(

e3x dx2

(ex +ε2)2 + ε1
ex dy2

(ex +ε2)

)
, a 6= 0, εi ∈ {−1, 1}

(c) a
(

dx2

(2x2+cx+ε2)2x + ε1
xdy2

2x2+cx+ε2

)
, a > 0, εi ∈ {−1, 1}

2 projective vector fields ⇒ existence of a Killing vector field.
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Question: which values
of b are admissible?

By studying the behavior of the Gaussian curvature R, g−1(dR, dR),
∆(R) we realize that the only possibility is that −2 < b < −1.
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Question: which values
of b are admissible?

g = (1 + yxh)− h+1
h dxdy , K = xh+1 ∂

∂x + h ∂
∂y , H = −x ∂

∂x + hy ∂
∂y
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Metrics with at least 2 projective vector fields: non-regular
case

1 Metrics admitting precisely two projective vector fields
(A) (1 + yxh)− h+1

h dxdy , h ∈ N \ {1};
(B) 1

(1+ε2xh)2 dx2 + ε1
1

1+ε2xh dy2, εi ∈ {−1, 1}, h ∈ N \ {1, 2}.

2 Metrics admitting precisely three projective vector fields
(A) (1 + x2 + εy2)(dx2 + εdy2), ε ∈ {−1, 1}

(B) (x2+εy2)2+1
((x2+εy2)2−1)2 (dx2 + εdy2), ε ∈ {−1, 1}

2 projective vector fields ⇒ existence of a Killing vector field.
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2-dim. metrics with
projective symmetries

8-dim.
proj. algebra

Constant
curvature

2 or 3-dim.
proj. algebra

Transitive
case

Bryant, M∼,
Matveev 2008

Non-transitive
case

Regular
action

Non-regular
action

M∼, Matveev
2020

1-dim.
proj. algebra

Regular
action

Matveev 2010
M∼, Vollmer 2020

Non-regular
action

?
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Metrics with only one projective symmetry

We have already seen that for solving such problem it is crucial to solve
the “Metrizability Equations”

∇aσ
bc − 1

3(δc
a∇iσ

ib + δb
a∇iσ

ic) = 0 , σij := det(g)
1
3 g ij . (10)

Let Sol := {the space of solutions to the above system}.
It can be proved that dim Sol ≤ 3.
Let us assume dim Sol = 2. Let w be a projective vector field. Then

Lw : Sol→ Sol Lw

(
σ1
σ2

)
= A

(
σ1
σ2

)

This is a system of differential equations that can be integrated. According
to the Jordan normal forms of matrix A, we obtain all possible cases.

σ1 , σ2 solutions of (10) ⇒ K1σ1 + K2σ2 are solution of (10)
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Metrics with only one projective symmetry
We have already seen that for solving such problem it is crucial to solve
the “Metrizability Equations”

∇aσ
bc − 1

3(δc
a∇iσ

ib + δb
a∇iσ

ic) = 0 , σij := det(g)
1
3 g ij . (11)

K1σ1 + K2σ2 are solutions

and from them we obtain the following metrics

g [K1,K2] = K1 det(g1)− 2
3 g1 + K2 det(g2)− 2

3 g2

det(K1 det(g1)− 2
3 g1 + K2 det(g2)− 2

3 g2)2

that is any metric of the form g [K1,K2] is projectively equivalent to g1
(and g2).

Key observation: The flow of (the unique up to a constant) projective
vector field send a metric g [K1,K2] in one of the same form.
We can then distinguish non-isometric metrics by studying some invariants,
for instance the length of the projective vector field along its flow.
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Example
The metric

g = k y − x
xy

(
e−3x

x dx2 + h e−3y

y dy2
)

admits exactly a 1-dimensional Lie algebra of symmetries spanned by

∂x + ∂y

The list is much more long, see
G. Manno, A. Vollmer: Normal forms of two-dimensional metrics
admitting exactly one essential projective vector field, J. Math. Pure
Appl., 135 (2020), 26–82.
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3-dimensional case

Theorem (Kiosak, Matveev (2010))
In this case, the dimension of the space of solutions Sol is at most two,
otherwise we are in the case of constant curvature.

Idea: If one has a simple local description of a pair g1 and g2 of
3-dimensional projectively equivalent metrics, then we have all by using
the formula

g [K1,K2] =

(
K1 det(g1) 1

4 g−1
1 + K2 det(g2) 1

4 g−1
2

)−1

det
(

K1 det(g1) 1
4 g−1

1 + K2 det(g2) 1
4 g−1

2

)
For metrics g1 and g2 such that the (1,1)–tensor∣∣∣∣det(g2)

det(g1)

∣∣∣∣
1
4

g−1
2 g1

is diagonalizable, we have a simple local description.
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3-dimensional case
Metrics g1 and g2 assume either the form

g1 =± (F1 − F2)(F1 − F3) (dx1)2 ± (F2 − F1)(F2 − F3) (dx2)2

± (F3 − F1)(F3 − F2) (dx3)2

g2 =± (F1 − F2)(F1 − F3)
F 2

1 F2F3
(dx1)2 ± (F2 − F1)(F2 − F3)

F1F 2
2 F3

(dx2)2

± (F3 − F1)(F3 − F2)
F1F2F 2

3
(dx3)2

where Fi = Fi (x i ),

or the form
g1 = ζ(z) (h ± dz2) g2 = ζ(z)

Z (z) ρ2

(
h
ρ
± dz2

Z (z)

)
where h = h11dx2 + 2h12dxdy + h22dy2, hij = hij(x , y), and

ζ(z) = Z (z)− ρ , ρ ∈ R .
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Examples
The metric, for ki 6= 0,

g = k1
(

1
x −

1
y

) (
1
x −

1
z

)
e2x dx2 + k2

(
1
y −

1
x

) (
1
y −

1
z

)
e2y dy2

+ k3
(

1
z −

1
x

) (
1
z −

1
y

)
e2z dz2

admits only a 1-dim. Lie algebra of projective vector field spanned by

∂x + ∂y + ∂z .

The metric
g = β

z2 (h + dz2)

admits only a 1-dim. Lie algebra of projective vector field spanned by
1
z ∂z .

The list of course is much longer, see
G. Manno, A. Vollmer: 3-dimensional Levi-Civita metrics with
projective vector fields, https://arxiv.org/abs/2110.06785
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Complex case

What about if we replace the concept of unparametrized geodesic with
that of J–planar curve?

More precisely, if (M, J ,∇) is a real 2n-dimensional smooth manifold
equipped with a complex structure J and a complex connection ∇, i.e., a
torsion free affine connection such that ∇J = 0, a J-planar curve is a
regular curve γ : I ⊆ R→ M such that

∇γ̇ γ̇ = α(t)γ̇ + β(t)J(γ̇)

for some smooth functions α, β ∈ C∞(I).

Promising results have been obtained with Jan Schumm and Andreas
Vollmer.
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