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Necessary conditions for the integrability
Di�erential Galois methods

I Hamiltonian system

d
dt
x = XH(x), x ∈ M2n, t ∈ C,

where M2n is a complex analytic symplectic manifold, and

H : M2n → C is an analytic Hamiltonian.

I Particular solution C 3 t 7→ ϕ(t) ∈ M2n.

I Variational equations

d
dt
y = X ′H(ϕ(t)) · y ,

I Di�erential Galois group G of VE is an algebraic subgroup of

Sp(2n,C).



Morales-Ramis Theorem
General systems

Theorem

If the system XH is integrable in the Liouville sense with �rst

integrals which are meromorphic in a neighbourhood of the phase

curve Γ ⊂ M2n corresponding to ϕ(t), then the di�erential Galois

group G of VE is virtually Abelian.



What is it the di�erential Galois group of an equation?

Consider linear system

d
dt
y = A · y , y where A = [aij ], aij ∈ K , (L)(
K ,

d
dt

)
di�erential �eld, e.g., K = C(t).

The Picard-Vessiot extension F ⊃ K contains n linearly

independent solutions of (L), i.e.,

y = (y1, . . . , yn) ∈ F n

Fundamental matrix Y ∈ GL(n,F ), and

d
dt
Y = A ·Y (1)



What is it the di�erential Galois group of an equation?

De�nition

The di�erential Galois group G := Gal(F/K ) of Picard-Vessiot
F ⊃ K is the group of di�erential automorphism σ : F → F , such

that σ|K = IdK .

For σ ∈ G we have Mσ ∈ GL(n,C ),

G 37→ Mσ ∈ GL(n,C ), σ(Y ) = Y ·Mσ

Theorem

Group Gal(F/K ) is a linear algebraic subgroup of GL(n,C ).



Lie algebra of a di�erential Galois group.

An element X ∈ g ⊂M(n,C ) can be consider as a linear vector

�eld on Cn

Cn 3 x 7−→ X · x ∈ C .



Basic implications
Non-Hamiltonian case

1. If a holomorphic system

d
dt
x = v (x), x ∈ Cn, (N)

has independent holomorphic �rst integrals F1, . . . ,Fm, then
the variational equations

d
dt
y =

∂v

∂x
(ϕ(t)) · y , (VE)

have polynomial independent �rst integrals f1, . . . , fm, which
are

2. invariants of the di�erential Galois group G of VE, and this

implies that

3. f1, . . . , fm are �rst integrals of each X ∈ g.



Basic implications
Hamiltonian case

1. If a holomorphic system

d
dt
x = XH(x), x ∈ Cn, (H)

has independent commuting holomorphic �rst integrals

F1, . . . ,Fm, then the variational equations

d
dt
y = X ′H (ϕ(t)) · y , (VEH)

have polynomial commuting and independent �rst integrals

f1, . . . , fm, which are

2. invariants of the di�erential Galois group G of VE, and this

implies that

3. f1, . . . , fm are commuting �rst integrals of each X ∈ g.



Key Lemma

Lemma

If Lie algebra g ⊂ sp(2n,C) admits n independent and commuting

�rst integrals then it is Abelian.



Normal variational equations

We can reduce VEH by one degree of freedom using variational

energy integral

d
dt
z = AN · z , z ∈ C2(n−1) (NVE)

The di�erential Galois group of (NVE) is a subgroup of

Sp(2(n− 1),C).



Our main theorem

Theorem (I)

Assume that a holomorphic Hamiltonian system with n degrees

admits 2n− 1 �rst integrals which are meromorphic in a

neighbourhood U of a phase curve Γ and independent in U \ Γ.
Then the Lie algebra gN of the di�erential Galois group GN of the

normal variational equations along Γ is the zero algebra, i.e., GN is

a �nite subgroup of Sp(2n− 2,C).



Proof

I GN admits 2n− 2 independent rational �rst integrals

f1, . . . , f2n−2;

I for each Y ∈ gN ⊂ sp(2n− 2,C), Y (fi ) = 0 for

i = 1, . . . , 2n− 2, thus Y = 0.



Proof

I GN admits 2n− 2 independent rational �rst integrals

f1, . . . , f2n−2;
I for each Y ∈ gN ⊂ sp(2n− 2,C), Y (fi ) = 0 for

i = 1, . . . , 2n− 2, thus Y = 0.



Natural systems with homogeneous potentials

Hamiltonian function

H =
1

2

n

∑
i=1

p2i + V (q),

where V (q) is a homogeneous function of degree k ∈ Z×.



Darboux Points and Particular Solutions

Assumption

Potential V ∈ C(q) is homogeneous and degV = k ∈ Z?.

De�nition

A proper Darboux point d ∈ Cn of potential V (q) is a solution of

V ′(d ) = d , d 6= 0.

Particular solution

q(t) = ϕ(t)d , p(t) = ϕ̇(t)d , provided ϕ̈ = −ϕk−1.

Phase curve Γε:

ϕ̇2 =
2

k

(
ε− ϕk

)



Variational equations

ẍ = −ϕ(t)k−2V ′′(d )x .

If V ′′(d ) is diagonalisable, then in an appropiate base

ÿi = −λi ϕ(t)
k−2yi , 1 ≤ i ≤ n, (2)

where λ1, . . . ,λn are eigenvalues of V ′′(d ). One of these

eigenvalues, let us say λn is k − 1.



Di�erential Galois group

G ⊂ G(λ1)× · · · × G(λn) ⊂ Sp(2n,C), G(λi ) ⊂ Sp(2,C).

and

GN ⊂ G(λ1)×· · ·×G(λn−1) ⊂ Sp(2n− 2,C), G(λi ) ⊂ Sp(2,C).

Hence

g ⊂ g1 ⊕ · · · ⊕ gn,

and

gN ⊂ g1 ⊕ · · · ⊕ gn−1,

where gi is a Lie subalgebra of sp(2,C), for i = 1, . . . , n.



Transformation to hypergeometric equations

η̈ = −λϕ(t)k−2η,

Γε : ε =
1

2
ϕ̇2 +

1

k
ϕk .

Di�erential Galois group G(k ,λ) ⊂ Sp(2,C).
Yoshida transformation

z :=
1

εk
ϕ(t)k .

z(1− z)η′′ + [c − (a+ b+ 1)z ]η′ − abη = 0,

a+ b =
k − 2

2k
, ab = − λi

2k
, c = 1− 1

k
.

 (H)

Di�erenial Galois group G (k ,λ) ⊂ GL(2,C).



Properties of G (k,λ)◦

Fact

The identity component G(k ,λ)◦ is isomorphic to G (k ,λ)◦.

Lemma

If G (k ,λ)◦ is solvable then it is Abelian.

Lemma (K)

The identity component G (k ,λ)◦ of the di�erential Galois group of

hypergeometric equation (H) is Abelian if and only if (k ,λ) belong
to the following list



Properties G (k,λ)◦

case k λ

1. ±2 λ

2. k p +
k

2
p(p − 1)

3. k
1

2

(
k − 1

k
+ p(p + 1)k

)
4. 3 − 1

24
+

1

6
(1+ 3p)2 , − 1

24
+

3

32
(1+ 4p)2

− 1

24
+

3

50
(1+ 5p)2 , − 1

24
+

6

25
(1+ 5p)2

5. 4 −1

8
+

2

9
(1+ 3p)2



Properties G (k,λ)◦

case k λ

6. 5 − 9

40
+

5

18
(1+ 3p)2 , − 9

40
+

2

5
(1+ 5p)2

7. −3 25

24
− 1

6
(1+ 3p)2 ,

25

24
− 3

32
(1+ 4p)2

25

24
− 3

50
(1+ 5p)2 ,

25

24
− 6

25
(1+ 5p)2

8. −4 9

8
− 2

9
(1+ 3p)2

9. −5 49

40
− 5

18
(1+ 3p)2 ,

49

40
− 2

5
(1+ 5p)2

where p is an integer and λ an arbitrary complex number.



Theorem

Assume that the Hamiltonian a natural Hamiltonian system system

with a homogeneous potential V ∈ C(q) of degree k ∈ Z? satis�es

the following conditions:

1. there exists a non-zero d ∈ Cn such that V ′(d ) = d , and

2. matrix V ′′(d ) is diagonalizable with eigenvalues

λ1, . . . ,λn−1,λn = k − 1;

3. the system admits 2n− 1 functionally independent �rst

integrals F1 = H,F2, . . . ,F2n−1 which are meromorphic in a

connected neighbourhood of phase curve Γε.



Our Theorem

Theorem (continuation)

Then each (k ,λi ) belongs to the list from Lemma K, and moreover

I if |k | > 2, then each pair (k ,λi ) for 1 ≤ i ≤ n− 1, belongs to

items 3�9 of the table from Lemma K;

I if |k | ≤ 2, then each pair (k ,λi ), for 1 ≤ i ≤ n− 1 belongs to

the following list

case k λ

I . −2 1− r2

II . −1 1

III . 1 0

IV . 2 r2

(3)

where r ∈ Q?;



Separable potential

V = Aqk1 + Bqk2

I Darboux points d1 = (0, ( 1

Bk
)1/(k−2)) and

d2 = (( 1

Ak
)1/(k−2), 0) for k 6= 2; for d = (1, 0) and

d = (0, 1)

I non-trivial eigenvalues λ(d i ) = 0 for k 6= 2; for k = 2

λ(d1) = B/A and λ(d2) = A/B
I by our theorem, if V is maximally super-integrable, then either

k = −2, or k = 1 or k = 2 and, in this last case, A/B = r2

for r ∈ Q?.



Radial potential

V = αrk , r =
√

q2
1
+ q2

2

I in�ntely many Darboux points

I non-trivial eigenvalue at each of them λ(d ) = 1. Thus, by our

theorem, if V is superintegrable, then k = −1 or k = 2.



Three body problem

V =
1

k

[
(q1 − q2)

k + (q2 − q3)
k + (q3 − q1)

k
]
, k ∈ Z\ {0, 1}

F2 = p1 + p2 + p3,

Lemma

Assume that k ∈ Z \ {−2, 0, 1, 2, 4}. Then the potential V is not

integrable by meromorphic �rst integrals in the Liouville sense.

I k = 4, one additional �rst integral F3;

I k = 2 two additional �rst integrals F3 and F4;

I k = −2 three additional �rst integrals F3, F4 and F5;

Lemma

Assume that k ∈ Z \ {0, 1,−2}. Then the potential V is not

maximally superintegrable by meromorphic �rst integrals.



Three body problem

V =
1

k

[
(q1 − q2)

k + (q2 − q3)
k + (q3 − q1)

k
]
, k ∈ Z\ {0, 1}

F2 = p1 + p2 + p3,

Lemma

Assume that k ∈ Z \ {−2, 0, 1, 2, 4}. Then the potential V is not

integrable by meromorphic �rst integrals in the Liouville sense.

I k = 4, one additional �rst integral F3;

I k = 2 two additional �rst integrals F3 and F4;

I k = −2 three additional �rst integrals F3, F4 and F5;

Lemma

Assume that k ∈ Z \ {0, 1,−2}. Then the potential V is not

maximally superintegrable by meromorphic �rst integrals.



Three body problem

V =
1

k

[
(q1 − q2)

k + (q2 − q3)
k + (q3 − q1)

k
]
, k ∈ Z\ {0, 1}

F2 = p1 + p2 + p3,

Lemma

Assume that k ∈ Z \ {−2, 0, 1, 2, 4}. Then the potential V is not

integrable by meromorphic �rst integrals in the Liouville sense.

I k = 4, one additional �rst integral F3;

I k = 2 two additional �rst integrals F3 and F4;

I k = −2 three additional �rst integrals F3, F4 and F5;

Lemma

Assume that k ∈ Z \ {0, 1,−2}. Then the potential V is not

maximally superintegrable by meromorphic �rst integrals.



k = −2

Potential

V (q1, q2) = V (r cos ϕ, r sin ϕ) =
1

r2
U(ϕ).

A Darboux point is given by

(c1, c2) = c(cos ϕ0, sin ϕ0), U ′(ϕ0) = 0, U(ϕ0) 6= 0.

Non-trivial eigenvalue of V ′′(c) is

λ = 1+
U ′′(ϕ0)

k U(ϕ0)
, k = −2.



k = −2
Necessary condition for the super-integrability is λ = 1− s2, with

s ∈ Q× Thus, from relation

λ = 1+
U ′′(ϕ0)

k U(ϕ0)
, k = −2.

after setting

U(ϕ) =
1

[f (ϕ)]2
.

we obtain the relation

f ′′(ϕ0) = −s2f (ϕ0),

If we assume that f satis�es this relation identically then we �nd

two independent solutions for f

f1(ϕ) = cos(sϕ), f2(ϕ) = sin(sϕ)

and therefore

U1(ϕ) =
1

cos2(sϕ)
, U2(ϕ) =

1

sin2(sϕ)
.



k = −2
Hamiltonian system given by

H =
1

2

(
p2r +

p2ϕ

r2

)
+

a

r2 cos2(nϕ)
=

p2r
2

+
1

r2
G , (4)

where G is

G =
p2ϕ

2
+

a

cos2(nϕ)
. (5)

is integrable. For n ∈ Q× it is super-integrable

F1 =
[n/2]

∑
k=0

(−1)k
(

n

2k

)
(2G )

n−2k
2

p2kr
rn−2k

[
pϕ cos(nϕ) +

n− 2k

2k + 1
rpr sin(nϕ)

]
,

F2 =
[n/2]

∑
k=0

(−1)k
(

n

2k

)
(2G )

n−2k−1
2

p2kr
rn−2k

[2G sin(nϕ)−

n− 2k

2k + 1
rprpϕ cos(nϕ)

]
.



Generalisation to a non-�at metric

We consider natural systems Hamiltonian systems de�ned by

H (κ) =
1

2

(
p2r +

p2ϕ

S2κ(r)

)
+ V (r , ϕ).

where

Cκ(x) :=


cos(
√

κx) for κ > 0,

1 for κ = 0,

cosh(
√
−κx) for κ < 0,

(6)

Sκ(x) :=


1√
κ
sin(
√

κx) for κ > 0,

x for κ = 0,
1√
−κ

sinh(
√
−κx) for κ < 0.

(7)

These functions satisfy the following identities

C2

κ(x) + κ S2κ(x) = 1, S′κ(x) = Cκ(x), C′κ(x) = −κ Sκ(x). (8)



Generalisation

We consider potentials of the form

V (κ)(r , ϕ) :=
1

S2κ(r)
U(ϕ). (9)

These potentials are separable. In fact

G :=
1

2
p2ϕ + U(ϕ), (10)

is a �rst integral of the system and we have also

H =
1

2
p2r +

1

S2κ(r)
G . (11)



Generalisation

Theorem

Let potential V (κ) satis�es the following assumption: there exists

ϕ0 ∈ C such that U ′(ϕ0) = 0 and U(ϕ0) 6= 0. If V (κ) is

super-integrable, then

λ := 1− 1

2

U ′′(ϕ0)

U(ϕ0)
= 1− s2,

for a certain non-zero rational number s.



Case S2

Take κ = 1, and

V
(κ)
n (r , ϕ) :=

1

S2κ(r)
U(ϕ), (12)

where

U(ϕ) =
a

cos2(nϕ)
+

b

sin2(nϕ)
.

If n ∈ Q×, then this potential is super-integrable.



Case S2

Assume, for simplicity that n ∈ N×, and a, b ∈ R, explicit forms of

�rst integrals

I1 =
n

∑
j=0

(−1)j
(
2n

2j

)
(2G )n−j

(
Cκ(r)

Sκ(r)

)2n−2j−1
p2jr

×
[
Gpϕ sin(2nϕ)

Cκ(r)

Sκ(r)
− 2(n− j)

2j + 1
pr (G cos(2nϕ) + b− a)

]
,

I2 =
n

∑
j=0

(−1)j
(
2n

2j

)
(2G )n−j

(
Cκ(r)

Sκ(r)

)2n−2j−1
p2jr

×
[
Cκ(r)

Sκ(r)
(G cos(2nϕ) + b− a) +

n− j

2j + 1
prpϕ sin(2nϕ)

]
.
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