Necessary conditions for super-intetegrability Case of natural systems in constant curvature spaces

A. J. Maciejewski, M.Przybylska and H. Yoshida

October 14, 2010

Necessary conditions for the integrability Differential Galois methods

► Hamiltonian system

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x} = \mathbf{X}_{H}(\mathbf{x}), \qquad \mathbf{x} \in M^{2n}, \qquad t \in \mathbb{C},$$

where M^{2n} is a complex analytic symplectic manifold, and $H: M^{2n} \to \mathbb{C}$ is an analytic Hamiltonian.

- Particular solution $\mathbb{C}
 i t \mapsto \pmb{\varphi}(t) \in M^{2n}$.
- Variational equations

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{y} = \mathbf{X}'_{H}(\boldsymbol{\varphi}(t)) \cdot \mathbf{y},$$

▶ Differential Galois group G of VE is an algebraic subgroup of Sp(2n, C).

Morales-Ramis Theorem

General systems

Theorem

If the system X_H is integrable in the Liouville sense with first integrals which are meromorphic in a neighbourhood of the phase curve $\Gamma \subset M^{2n}$ corresponding to $\varphi(t)$, then the differential Galois group G of VE is virtually Abelian. Consider linear system

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{y} = \mathbf{A} \cdot \mathbf{y}, \qquad \mathbf{y} \quad \text{where} \quad \mathbf{A} = [a_{ij}], \quad a_{ij} \in \mathcal{K}, \qquad (\mathsf{L})$$
$$\left(\mathcal{K}, \frac{\mathrm{d}}{\mathrm{d}t}\right) \quad \text{differential field, e.g.,} \quad \mathcal{K} = \mathbb{C}(t).$$

The Picard-Vessiot extension $F \supset K$ contains *n* linearly independent solutions of (L), i.e.,

$$\boldsymbol{y} = (y^1, \ldots, y^n) \in F^n$$

Fundamental matrix $\boldsymbol{Y} \in \operatorname{GL}(n, F)$, and

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{Y} = \boldsymbol{A}\cdot\boldsymbol{Y} \tag{1}$$

Definition

The differential Galois group $\mathcal{G} := \operatorname{Gal}(F/K)$ of Picard-Vessiot $F \supset K$ is the group of differential automorphism $\sigma : F \rightarrow F$, such that $\sigma_{|K} = \operatorname{Id}_{K}$.

For
$$\sigma \in \mathfrak{G}$$
 we have $M_{\sigma} \in \operatorname{GL}(n, C)$,
 $\mathfrak{G} \ni \mapsto M_{\sigma} \in \operatorname{GL}(n, C)$, $\sigma(\mathbf{Y}) = \mathbf{Y} \cdot \mathbf{M}_{\sigma}$

Theorem

Group Gal(F/K) is a linear algebraic subgroup of GL(n, C).

An element $X \in \mathfrak{g} \subset \mathbb{M}(n, C)$ can be consider as a linear vector field on C^n

 $C^n \ni \mathbf{x} \longmapsto \mathbf{X} \cdot \mathbf{x} \in C.$

1. If a holomorphic system

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x} = \mathbf{v}(\mathbf{x}), \qquad \mathbf{x} \in \mathbb{C}^n, \tag{N}$$

has independent holomorphic first integrals F_1, \ldots, F_m , then the variational equations

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{y} = \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \left(\boldsymbol{\varphi}(t) \right) \cdot \mathbf{y}, \tag{VE}$$

have polynomial independent first integrals f_1, \ldots, f_m , which are

- 2. invariants of the differential Galois group G of VE, and this implies that
- 3. f_1, \ldots, f_m are first integrals of each $\boldsymbol{X} \in \mathfrak{g}$.

1. If a holomorphic system

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{x} = \boldsymbol{X}_{H}(\boldsymbol{x}), \qquad \boldsymbol{x} \in \mathbb{C}^{n}, \tag{H}$$

has independent commuting holomorphic first integrals F_1, \ldots, F_m , then the variational equations

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{y} = \mathbf{X}'_{H}(\boldsymbol{\varphi}(t)) \cdot \mathbf{y}, \qquad (\mathsf{VEH})$$

have polynomial commuting and independent first integrals f_1, \ldots, f_m , which are

- 2. invariants of the differential Galois group G of VE, and this implies that
- 3. f_1, \ldots, f_m are commuting first integrals of each $\boldsymbol{X} \in \mathfrak{g}$.

Lemma

If Lie algebra $\mathfrak{g} \subset sp(2n, \mathbb{C})$ admits n independent and commuting first integrals then it is Abelian.

We can reduce VEH by one degree of freedom using variational energy integral

$$\frac{\mathrm{d}}{\mathrm{d}t}z = \mathbf{A}_{\mathrm{N}} \cdot z, \qquad z \in \mathbb{C}^{2(n-1)} \tag{NVE}$$

The differential Galois group of (NVE) is a subgroup of $Sp(2(n-1), \mathbb{C})$.

Theorem (I)

Assume that a holomorphic Hamiltonian system with n degrees admits 2n - 1 first integrals which are meromorphic in a neighbourhood U of a phase curve Γ and independent in $U \setminus \Gamma$. Then the Lie algebra \mathfrak{g}_N of the differential Galois group \mathfrak{G}_N of the normal variational equations along Γ is the zero algebra, i.e., \mathfrak{G}_N is a finite subgroup of $\operatorname{Sp}(2n - 2, \mathbb{C})$. ▶ G_N admits 2n - 2 independent rational first integrals f₁,..., f_{2n-2};

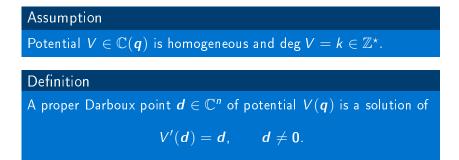
- G_N admits 2n − 2 independent rational first integrals f₁,..., f_{2n−2};
- ▶ for each $Y \in \mathfrak{g}_N \subset \operatorname{sp}(2n-2, \mathbb{C}), \ Y(f_i) = 0$ for i = 1, ..., 2n-2, thus Y = 0.

Hamiltonian function

$$H=\frac{1}{2}\sum_{i=1}^{n}p_i^2+V(\boldsymbol{q}),$$

where $V(\boldsymbol{q})$ is a homogeneous function of degree $k \in \mathbb{Z}^{\times}$.

Darboux Points and Particular Solutions



Particular solution

 $\boldsymbol{q}(t)= arphi(t) \boldsymbol{d}, \quad \boldsymbol{p}(t)= \dot{arphi}(t) \boldsymbol{d}, \quad ext{provided} \quad \ddot{arphi}= -arphi^{k-1}.$

Phase curve Γ_{ε} :

$$\dot{\varphi}^2 = \frac{2}{k} \left(\varepsilon - \varphi^k \right)$$

$$\ddot{\boldsymbol{x}} = -\varphi(t)^{k-2} V''(\boldsymbol{d}) \boldsymbol{x}.$$

If V''(d) is diagonalisable, then in an appropriate base

$$\ddot{y}_i = -\lambda_i \varphi(t)^{k-2} y_i, \qquad 1 \le i \le n,$$
(2)

where $\lambda_1, \ldots, \lambda_n$ are eigenvalues of $V''(\boldsymbol{d})$. One of these eigenvalues, let us say λ_n is k-1.

Differential Galois group

$$\mathfrak{G} \subset \mathfrak{G}(\lambda_1) \times \cdots \times \mathfrak{G}(\lambda_n) \subset \operatorname{Sp}(2n, \mathbb{C}), \qquad \mathfrak{G}(\lambda_i) \subset \operatorname{Sp}(2, \mathbb{C}).$$

and

$$\mathfrak{G}_{N} \subset \mathfrak{G}(\lambda_{1}) \times \cdots \times \mathfrak{G}(\lambda_{n-1}) \subset \operatorname{Sp}(2n-2,\mathbb{C}), \qquad \mathfrak{G}(\lambda_{i}) \subset \operatorname{Sp}(2,\mathbb{C}).$$

Hence

$$\mathfrak{g} \subset \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_n$$
,

and

$$\mathfrak{g}_{\mathbb{N}} \subset \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_{n-1},$$

where \mathfrak{g}_i is a Lie subalgebra of $\operatorname{sp}(2, \mathbb{C})$, for $i = 1, \ldots, n$.

Transformation to hypergeometric equations

$$\ddot{\eta} = -\lambda \varphi(t)^{k-2} \eta,$$

 $\Gamma_{\varepsilon}: \qquad \varepsilon = rac{1}{2} \dot{\varphi}^2 + rac{1}{k} \varphi^k.$

Differential Galois group $\mathfrak{G}(k,\lambda) \subset \mathrm{Sp}(2,\mathbb{C})$. Yoshida transformation

$$z:=\frac{1}{\varepsilon k}\varphi(t)^k.$$

$$z(1-z)\eta'' + [c - (a+b+1)z]\eta' - ab\eta = 0,$$

$$a+b = \frac{k-2}{2k}, \quad ab = -\frac{\lambda_i}{2k}, \quad c = 1 - \frac{1}{k}.$$
(H)

Differential Galois group $G(k, \lambda) \subset GL(2, \mathbb{C})$.

Fact

The identity component $\mathfrak{G}(k,\lambda)^{\circ}$ is isomorphic to $G(k,\lambda)^{\circ}$.

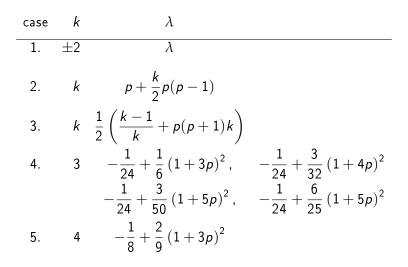
Lemma

If $G(k, \lambda)^{\circ}$ is solvable then it is Abelian.

Lemma (K)

The identity component $G(k, \lambda)^{\circ}$ of the differential Galois group of hypergeometric equation (H) is Abelian if and only if (k, λ) belong to the following list

Properties $G(k, \lambda)^{\circ}$



Properties $G(k, \lambda)^{\circ}$

case	k	λ	
6.	5	$-rac{9}{40}+rac{5}{18}\left(1+3 ho ight)^{2}$,	$-\frac{9}{40} + \frac{2}{5} \left(1 + 5p\right)^2$
7.	-3	$rac{25}{24} - rac{1}{6} \left(1 + 3 p ight)^2$,	$\frac{25}{24} - \frac{3}{32} \left(1 + 4p\right)^2$
		$rac{25}{24} - rac{3}{50} \left(1 + 5 ho ight)^2$,	$\frac{25}{24} - \frac{6}{25} \left(1 + 5p\right)^2$
8.	—4	$\frac{9}{8} - \frac{2}{9} \left(1 + 3p\right)^2$	
9.	-5	$rac{49}{40} - rac{5}{18} \left(1 + 3 ho ight)^2$,	$\frac{49}{40} - \frac{2}{5}(1+5p)^2$

where p is an integer and λ an arbitrary complex number.

Theorem

Assume that the Hamiltonian a natural Hamiltonian system system with a homogeneous potential $V \in \mathbb{C}(q)$ of degree $k \in \mathbb{Z}^*$ satisfies the following conditions:

- 1. there exists a non-zero $oldsymbol{d}\in\mathbb{C}^n$ such that $V'(oldsymbol{d})=oldsymbol{d}$, and
- 2. matrix V''(d) is diagonalizable with eigenvalues $\lambda_1, \ldots, \lambda_{n-1}, \lambda_n = k 1;$
- 3. the system admits 2n 1 functionally independent first integrals $F_1 = H, F_2, ..., F_{2n-1}$ which are meromorphic in a connected neighbourhood of phase curve Γ_{ε} .

Our Theorem

Theorem (continuation)

Then each (k, λ_i) belongs to the list from Lemma K, and moreover

- if |k| > 2, then each pair (k, λ_i) for 1 ≤ i ≤ n − 1, belongs to items 3–9 of the table from Lemma K;
- ▶ if $|k| \le 2$, then each pair (k, λ_i) , for $1 \le i \le n 1$ belongs to the following list

case
$$k \ \lambda$$

l. -2 1- r^2
ll. -1 1 (3)
lll. 1 0
lV. 2 r^2

$$V = Aq_1^k + Bq_2^k$$

- ▶ Darboux points $d_1 = (0, (\frac{1}{Bk})^{1/(k-2)})$ and $d_2 = ((\frac{1}{Ak})^{1/(k-2)}, 0)$ for $k \neq 2$; for d = (1, 0) and d = (0, 1)
- ▶ non-trivial eigenvalues \(\lambda(\mathbf{d}_i) = 0\) for \(k \neq 2\); for \(k = 2\) \(\lambda(\mathbf{d}_1) = B/A\) and \(\lambda(\mathbf{d}_2) = A/B\)
- by our theorem, if V is maximally super-integrable, then either k = -2, or k = 1 or k = 2 and, in this last case, A/B = r² for r ∈ Q^{*}.

$$V = \alpha r^k, \quad r = \sqrt{q_1^2 + q_2^2}$$

- infinitely many Darboux points
- ▶ non-trivial eigenvalue at each of them \u03c0(d) = 1. Thus, by our theorem, if V is superintegrable, then k = -1 or k = 2.

Three body problem

$$V = \frac{1}{k} \left[(q_1 - q_2)^k + (q_2 - q_3)^k + (q_3 - q_1)^k \right], \qquad k \in \mathbb{Z} \setminus \{0, 1\}$$
$$F_2 = p_1 + p_2 + p_3,$$

Lemma

Assume that $k \in \mathbb{Z} \setminus \{-2, 0, 1, 2, 4\}$. Then the potential V is not integrable by meromorphic first integrals in the Liouville sense.

Lemma

Assume that $k \in \mathbb{Z} \setminus \{0, 1, -2\}$. Then the potential V is not maximally superintegrable by meromorphic first integrals.

Three body problem

$$V = \frac{1}{k} \left[(q_1 - q_2)^k + (q_2 - q_3)^k + (q_3 - q_1)^k \right], \qquad k \in \mathbb{Z} \setminus \{0, 1\}$$
$$F_2 = p_1 + p_2 + p_3,$$

Lemma

Assume that $k \in \mathbb{Z} \setminus \{-2, 0, 1, 2, 4\}$. Then the potential V is not integrable by meromorphic first integrals in the Liouville sense.

- k = 4, one additional first integral F_3 ;
- k = 2 two additional first integrals F_3 and F_4 ;

Lemma

Assume that $k \in \mathbb{Z} \setminus \{0, 1, -2\}$. Then the potential V is not maximally superintegrable by meromorphic first integrals.

Three body problem

$$V = \frac{1}{k} \left[(q_1 - q_2)^k + (q_2 - q_3)^k + (q_3 - q_1)^k \right], \qquad k \in \mathbb{Z} \setminus \{0, 1\}$$
$$F_2 = p_1 + p_2 + p_3,$$

Lemma

Assume that $k \in \mathbb{Z} \setminus \{-2, 0, 1, 2, 4\}$. Then the potential V is not integrable by meromorphic first integrals in the Liouville sense.

- k = 4, one additional first integral F_3 ;
- k = 2 two additional first integrals F_3 and F_4 ;
- k = -2 three additional first integrals F_3 , F_4 and F_5 ;

Lemma

Assume that $k \in \mathbb{Z} \setminus \{0, 1, -2\}$. Then the potential V is not maximally superintegrable by meromorphic first integrals.

Potential

$$V(q_1, q_2) = V(r \cos \varphi, r \sin \varphi) = \frac{1}{r^2} U(\varphi).$$

A Darboux point is given by

 $(c_1, c_2) = c(\cos \varphi_0, \sin \varphi_0), \qquad U'(\varphi_0) = 0, \quad U(\varphi_0) \neq 0.$

Non-trivial eigenvalue of V''(c) is

$$\lambda = 1 + \frac{U''(\varphi_0)}{k \ U(\varphi_0)}, \qquad k = -2.$$

k = -2

Necessary condition for the super-integrability is $\lambda=1-s^2$, with $s\in\mathbb{Q}^{ imes}$ Thus, from relation

$$\lambda = 1 + \frac{U''(\varphi_0)}{k \ U(\varphi_0)}, \qquad k = -2.$$

after setting

$$U(\varphi) = \frac{1}{[f(\varphi)]^2}.$$

we obtain the relation

$$f''(arphi_0)=-s^2f(arphi_0)$$
,

If we assume that f satisfies this relation identically then we find two independent solutions for f

$$f_1(\varphi) = \cos(s\varphi), \quad f_2(\varphi) = \sin(s\varphi)$$

and therefore

$$U_1(\varphi) = rac{1}{\cos^2(s\varphi)}, \quad U_2(\varphi) = rac{1}{\sin^2(s\varphi)}.$$

k = -2

Hamiltonian system given by

$$H = \frac{1}{2} \left(p_r^2 + \frac{p_{\varphi}^2}{r^2} \right) + \frac{a}{r^2 \cos^2(n\varphi)} = \frac{p_r^2}{2} + \frac{1}{r^2} G, \qquad (4)$$

where G is

$$G = \frac{p_{\varphi}^2}{2} + \frac{a}{\cos^2(n\varphi)}.$$
 (5)

is integrable. For $n \in \mathbb{Q}^{ imes}$ it is super-integrable

$$F_{1} = \sum_{k=0}^{[n/2]} (-1)^{k} {n \choose 2k} (2G)^{\frac{n-2k}{2}} \frac{p_{r}^{2k}}{r^{n-2k}} \left[p_{\varphi} \cos(n\varphi) + \frac{n-2k}{2k+1} r p_{r} \sin(n\varphi) \right]$$

$$F_{2} = \sum_{k=0}^{[n/2]} (-1)^{k} {n \choose 2k} (2G)^{\frac{n-2k-1}{2}} \frac{p_{r}^{2k}}{r^{n-2k}} [2G\sin(n\varphi) - \frac{n-2k}{2k+1}rp_{r}p_{\varphi}\cos(n\varphi)].$$

Generalisation to a non-flat metric

We consider natural systems Hamiltonian systems defined by

$$H^{(\kappa)} = \frac{1}{2} \left(p_r^2 + \frac{p_{\varphi}^2}{\mathsf{S}_{\kappa}^2(r)} \right) + V(r, \varphi).$$

where

$$C_{\kappa}(x) := \begin{cases} \cos(\sqrt{\kappa}x) & \text{for } \kappa > 0, \\ 1 & \text{for } \kappa = 0, \\ \cosh(\sqrt{-\kappa}x) & \text{for } \kappa < 0, \end{cases}$$
(6)
$$S_{\kappa}(x) := \begin{cases} \frac{1}{\sqrt{\kappa}} \sin(\sqrt{\kappa}x) & \text{for } \kappa > 0, \\ x & \text{for } \kappa = 0, \\ \frac{1}{\sqrt{-\kappa}} \sinh(\sqrt{-\kappa}x) & \text{for } \kappa < 0. \end{cases}$$
(7)

These functions satisfy the following identities

$$C_{\kappa}^{2}(x) + \kappa S_{\kappa}^{2}(x) = 1$$
, $S_{\kappa}'(x) = C_{\kappa}(x)$, $C_{\kappa}'(x) = -\kappa S_{\kappa}(x)$. (8)

We consider potentials of the form

$$V^{(\kappa)}(r,\varphi) := \frac{1}{\mathsf{S}^2_{\kappa}(r)} U(\varphi). \tag{9}$$

These potentials are separable. In fact

$$G := \frac{1}{2}p_{\varphi}^2 + U(\varphi), \tag{10}$$

is a first integral of the system and we have also

$$H = \frac{1}{2}p_r^2 + \frac{1}{S_\kappa^2(r)}G.$$
 (11)

Theorem

Let potential $V^{(\kappa)}$ satisfies the following assumption: there exists $\varphi_0 \in \mathbb{C}$ such that $U'(\varphi_0) = 0$ and $U(\varphi_0) \neq 0$. If $V^{(\kappa)}$ is super-integrable, then

$$\lambda := 1 - rac{1}{2} rac{U''(arphi_0)}{U(arphi_0)} = 1 - s^2$$
 ,

for a certain non-zero rational number s.

Take $\kappa = 1$, and

$$V_n^{(\kappa)}(r,\varphi) := \frac{1}{\mathsf{S}_\kappa^2(r)} U(\varphi), \tag{12}$$

where

$$U(\varphi) = \frac{a}{\cos^2(n\varphi)} + \frac{b}{\sin^2(n\varphi)}.$$

If $n \in \mathbb{Q}^{ imes}$, then this potential is super-integrable.

Assume, for simplicity that $n \in \mathbb{N}^{\times}$, and $a, b \in \mathbb{R}$, explicit forms of first integrals

$$I_{1} = \sum_{j=0}^{n} (-1)^{j} {\binom{2n}{2j}} (2G)^{n-j} \left(\frac{\mathsf{C}_{\kappa}(r)}{\mathsf{S}_{\kappa}(r)}\right)^{2n-2j-1} p_{r}^{2j}$$
$$\times \left[\mathsf{G}p_{\varphi} \sin(2n\varphi) \frac{\mathsf{C}_{\kappa}(r)}{\mathsf{S}_{\kappa}(r)} - \frac{2(n-j)}{2j+1} p_{r} (\mathsf{G}\cos(2n\varphi) + b - a) \right],$$

$$\begin{split} l_2 &= \sum_{j=0}^n (-1)^j \binom{2n}{2j} (2G)^{n-j} \left(\frac{\mathsf{C}_{\kappa}(r)}{\mathsf{S}_{\kappa}(r)} \right)^{2n-2j-1} p_r^{2j} \\ &\times \left[\frac{\mathsf{C}_{\kappa}(r)}{\mathsf{S}_{\kappa}(r)} (G\cos(2n\varphi) + b - a) + \frac{n-j}{2j+1} p_r p_{\varphi} \sin(2n\varphi) \right]. \end{split}$$