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The problem

P1 Given two linear scalar differential operators
A,B ∈ Diffk (M) of order k ≥ 2 on a manifold M,
dimM = n ≥ 2, when there is a diffeomorphism
φ : M → M, such that φ∗ (A) = B ?

P2 Given two linear differential operators A,B ∈ Diffk (ξ) of
order k ≥ 2 , acting in a line bundle ξ : E (ξ)→ M, when
there is an automorphism φ ∈ Aut(ξ) of the bundle, such
that φ∗ (A) = B ?
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Symbols

A ∈ Diffk (ξ) =⇒ σk (A)
def
= A modDiffk−1 (ξ) - symbol of A.

Diffk (ξ) /Diffk−1 (ξ) = Σk (M)− the module of symmetric
k-vectors.

Classification of operators =⇒ Classification of symbols wrt
diffeomorphism group,

Classification of symbols wrt diffeomorphisms =⇒ GL− classification
of k-ary forms.

Regular operator ⇔ regular GL− orbit of the symbol (1st
approximation)
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Connections and Quantizations

Given two connections: ∇M− an affi ne connection on the manifold,
and ∇ξ− a linear connection in the line bundle.
Their covariant differentials

d∇M : Ω1 (M)→ Ω1 (M)⊗Ω1 (M) ,

d∇ξ : C∞ (ξ)→ C∞ (ξ)⊗Ω1 (M)

define the derivation

d s∇M : Σ· (M)→ Σ·+1 (M)

in the graded algebra Σ· (M) = (Σ· (M))
∗ of symmetric differential

forms on M and the derivation

d s∇ξ : Σ· (ξ)→ Σ·+1 (ξ) ,

over derivation d s∇M in the graded module Σ· (ξ) = C∞ (ξ)⊗ Σ· (M)
of symmetric differential forms with values in ξ.
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Connections and Quantizations

Define σk ∈ Σk (M) =⇒ σ̂k ∈ Diffk (ξ) as follows:

σ̂k (S)
def
=
1
k !

〈
σk ,
(
d s∇ξ

)k
(S)
〉
.

Quantization Q
(
= Q∇

ξ ,∇M
)
is a C∞ (M)− linear operator

Q : Σ· (M)→ Diff· (ξ) ,

such that Q (σk ) = σ̂k ,for all σk ∈ Σk (M) .

Fact
For any differential operator A ∈ Diffk (ξ) there is a total symbol

σ (A) = σk (A) + σk−1 (A) + · · ·+ σ0 (A) ,

where σi (A) ∈ Σi (M) , such that

A = Q (σ (A)) .
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Observations

Classification operators =classification of total symbols, if we able to
find connections naturally associated with operators.
Example 1: k = 2. Then ∇M is the Levi-Civita connection, associated
with principal symbol of the operator, if the operator has a constant
type. The connection ∇ξ is uniquely defined by the following
requirement σ1 (A) = 0.

Example 2: k = 3, n = 2. Then ∇M is the Wagner connection,
associated with principal symbol of the operator, if the operator has a
constant type. The connection ∇ξ is uniquely defined by some
requirement on σ2 (A) .

Message: First of all we should restrict ourselves by constant type
operators.

Lychagin (The Arctic University of Norway, Tromso & Institute of Control Science, Russian Academy of Science, Moscow )linear operators September 25, 2019 7 / 16



Constant type operators

Let V be a vector space and SkV ∗ be the space of homogeneous
polynomials of degree k. By type v of a polynomial H we mean a
GL−orbit: v = GL (V )H. Below v shall be regular orbit.
We say that differential operator A ∈ Diffk (ξ) has constant type v
if v = GL (T ∗x ) smblk (A) (x) , for all x ∈ M.
Remark: Classification regular GL (V )-orbits in SkV ∗ and therefore
description of constant type operators could be done in a constructive
way by using differential invariants (BL).
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Connections, associated with operators

Wagner connection.
Let A ∈ Diffk (ξ) be a constant type operator and k ≥ 3, n ≥ 2.
Then there is and unique affi ne connection ∇w = ∇smblk (A), such
that

d∇w (smblk (A)) = 0.

Chern connection.
Let A ∈ Diffk (ξ) be a constant type operator and k ≥ 3, n ≥ 2.
Then there is and unique affi ne connection ∇c = ∇[smblk (A)],
depending on the conformal class [smblk (A)], and such that

d∇c
(
σ′
)
= θσ′ ⊗ σ′,

for any σ′ ∈ [smblk (A)] and some θσ′ ∈ Ω1 (M) .
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Connections, associated with operators

The curvature of the Wagner connection is zero.

The curvature of the Chern connection is dθσ′ and the torsion form is
trivial.

Both connections are natural:

φ∗

(
∇smblk (A)

)
= ∇smblk(φ∗A),

φ∗

(
∇[smblk (A)]

)
= ∇[smblk(φ∗A)].
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Connections, associated with operators

Let’s a differential operator A ∈ Diffk (ξ) has a constant type and its
symbol is the Wagner regular, i.e symmetric 2-vector
(θσ)k−2cσ ∈ Σ2 (M) is non degenerated, where θσ is the torsion form
of the Wagner connection.
Then there exists and unique a linear connection ∇A in the line
bundle ξ such that (θσ)k−2cσk−1,∇A = 0.
Both connections ∇A and the Wagner connection ∇smblk (A) are
natural in the sense that

φ∗

(
∇A
)
= ∇φ∗(A), φ∗

(
∇smblk (A)

)
= ∇(smblk(φ∗A)),

for any φ ∈ Aut(ξ).
Let σ· (A) be the total symbol of operator A ∈ Diffk (ξ), then scalar
operator A] = Qw (σ· (A)) ∈ Diffk (M) we call scalar shadow of A.
Aut(ξ)-equivalence operators=⇒Diffeo(M)- equivalence their
shadows.
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Rational differential invariants of differential operators

Aut(ξ)-action on jets of differential operators is algebraic.
The global Lie-Tresse theorem (KL) could be applied.

The field of rational differential invariants separates regular orbits in
jet bundles.

The routine technics allows to find generators in the field (LY).
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Natural coordinates, natural atlas and natural model

Let A ∈ Diffk (M) be a linear scalar differential operator. We’ll say
this operator is in general position if for any point a ∈ M there are
natural invariants I = (I1, ..., In) , where n = dimM, such that their
values Ii (A) , i = 1, ..., n, on this operator are independent in a
neighborhood U I of this point.

Natural charts =local diffeomorphisms

φI : U I → DI ⊂ Rn,

on open domains in Rn, given by such natural invariants.

Natural atlas= atlas of natural charts.

Natural model= natural atlas, extended by images AI = φI∗ (A|U I )
and AIJ = φI∗ (A|U I∩U J ) of the operator in natural coordinates.
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Equivalence of scalar differential operators

Theorem
Let A,A′ ∈ Diffk (M) be operators in general position. Then these
operators are equivalent with respect to group of diffeomorphisms if and
only if their natural models coincide.
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Equivalence of differential operators,acting in line bundles

If two regular operators A,B ∈ Diffk (ξ) of constant type v are
Aut(ξ)-equivalent then their scalar shadows A\,B\ ∈ Diffk (M)
should be equivalent with respect to the diffeomorphism group.

The diffeomorphism has the form of identity map in natural
coordinates.

Let diffeomorphism ψ : M → M sends A\ to B\.Then diffeomorphism
ψ has a lift ψ ∈ Aut(ξ) if and only if ψ∗ (w1 (ξ)) = w1 (ξ) , where
w1 (ξ) is the first Stiefel-Whitney class of the bundle.

Condition ψ∗ (κB ) = κA, where κA ∈ Ω2 (M) and κB ∈ Ω2 (M) are
curvature forms for linear connections ∇A and ∇B respectively, gives
us closed 1-form θψ ∈ Ω1 (M) , such that d∇ψ∗(B ) − d∇A = θψ ⊗ id,
and the 1-cohomology class ϑA,B ∈ H1 (M,R) .
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Equivalence of differential operators,acting in line bundles

Theorem
Two regular operators A,B ∈ Diffk (ξ) of constant type v are
Aut(ξ)-equivalent if and only if their scalar shadows A\,B\ ∈ Diffk (M)
are equivalent and the diffeomorphism ψ : M → M, ψ∗

(
A\
)
= B\,

satisfies in addition to the following conditions:

1 It preserves the first Stiefel-Whitney class w1 (ξ) of the bundle:

ψ∗ (w1 (ξ)) = w1 (ξ) .

2 It transforms the curvature form of the connection ∇B to the
connection form of the connection ∇A :

ψ∗ (κB ) = κA.

3 The obstruction ϑA,B ∈ H1 (M,R) is trivial:

ϑA,B = 0.
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