On equivalence of linear differential operators

Valentin Lychagin

The Arctic University of Norway, Tromso & Institute of Control Science, Russian Academy of Science, Moscow

September 25, 2019

Joint research with:

- Pavel Bibikov IPU, RAS, Moscow
- Boris Kruglikov- UiTO, Tromso
- Valeriy Yumaguzhin- IPU,RAS, Moscow

Main publications:

- BL, Invariants of algebraic group actions from differential point of view. Journal of Geometry and Physics,136 (2019), 89–96.
- KL, Global Lie-Tresse theorem, Selecta Math. (NS) 22 (3) (2016) 1357–1411.
- LY, Classification of the second order linear differential operators and differential equations, Journal of Geometry and Physics, 130, (2018), pp. 213–228
- LY, On equivalence of third order linear differential operators on two-dimensional manifolds, Journal of Geometry and Physics, (2019), doi:https://doi.org/10.1016/j.geomphys.2019.103507.
- Substitution of the second second

- P1 Given two linear scalar differential operators $A, B \in \mathbf{Diff}_k(M)$ of order $k \ge 2$ on a manifold M, dim $M = n \ge 2$, when there is a diffeomorphism $\phi: M \to M$, such that $\phi_*(A) = B$?
- P2 Given two linear differential operators $A, B \in \text{Diff}_k(\xi)$ of order $k \ge 2$, acting in a line bundle $\xi : E(\xi) \to M$, when there is an automorphism $\overline{\phi} \in \text{Aut}(\xi)$ of the bundle, such that $\overline{\phi}_*(A) = B$?

- $A \in \operatorname{Diff}_{k}(\xi) \Longrightarrow \sigma_{k}(A) \stackrel{\text{def}}{=} A \operatorname{mod}\operatorname{Diff}_{k-1}(\xi)$ symbol of A.
- $\mathbf{Diff}_{k}(\xi) / \mathbf{Diff}_{k-1}(\xi) = \Sigma_{k}(M) \text{the module of symmetric } k$ -vectors.
- Classification of operators ⇒ Classification of symbols wrt diffeomorphism group,
- Classification of symbols wrt diffeomorphisms \implies GL classification of k-ary forms.
- Regular operator \Leftrightarrow regular GL- orbit of the symbol (1st approximation)

Connections and Quantizations

- Given two connections: ∇^M an affine connection on the manifold, and ∇^{ξ} a linear connection in the line bundle.
- Their covariant differentials

$$\begin{aligned} &d_{\nabla^{M}} : &\Omega^{1}\left(M\right) \to \Omega^{1}\left(M\right) \otimes \Omega^{1}\left(M\right), \\ &d_{\nabla^{\xi}} : &C^{\infty}\left(\xi\right) \to C^{\infty}\left(\xi\right) \otimes \Omega^{1}\left(M\right) \end{aligned}$$

define the derivation

$$d_{\nabla^{M}}^{s}:\Sigma^{\cdot}(M)\to\Sigma^{\cdot+1}(M)$$

in the graded algebra $\Sigma^{\cdot}(M) = (\Sigma_{\cdot}(M))^{*}$ of symmetric differential forms on M and the derivation

$$d_{
abla^{\xi}}^{s}:\Sigma^{\cdot}\left(\xi
ight)
ightarrow\Sigma^{\cdot+1}\left(\xi
ight),$$

over derivation $d_{\nabla^{\mathcal{M}}}^{s}$ in the graded module $\Sigma^{\cdot}(\xi) = C^{\infty}(\xi) \otimes \Sigma^{\cdot}(\mathcal{M})$ of symmetric differential forms with values in ξ .

5 / 16

Connections and Quantizations

• Define
$$\sigma_k \in \Sigma_k(M) \Longrightarrow \widehat{\sigma_k} \in \operatorname{Diff}_k(\xi)$$
 as follows:
 $\widehat{\sigma_k}(S) \stackrel{\text{def}}{=} \frac{1}{k!} \left\langle \sigma_k, \left(d_{\nabla^{\xi}}^s \right)^k(S) \right\rangle.$
• Quantization $Q \left(= Q^{\nabla^{\xi}, \nabla^M} \right)$ is a $C^{\infty}(M)$ – linear operator
 $Q : \Sigma.(M) \to \operatorname{Diff}.(\xi)$,
such that $Q(\sigma_k) = \widehat{\sigma_k}$, for all $\sigma_k \in \Sigma_k(M)$.

Fact

For any differential operator $A \in \mathbf{Diff}_k(\xi)$ there is a total symbol

$$\sigma\left(\mathsf{A}
ight) =\sigma_{k}\left(\mathsf{A}
ight) +\sigma_{k-1}\left(\mathsf{A}
ight) +\cdots+\sigma_{0}\left(\mathsf{A}
ight)$$
 ,

where $\sigma_{i}(A) \in \Sigma_{i}(M)$, such that

$$A=Q\left(\sigma\left(A\right) \right) .$$

- Classification operators =classification of total symbols, if we able to find connections **naturally associated with operators**.
- Example 1: k = 2. Then ∇^M is the Levi-Civita connection, associated with principal symbol of the operator, *if the operator has a constant type*. The connection ∇^ξ is uniquely defined by the following requirement σ₁ (A) = 0.
- Example 2: k = 3, n = 2. Then ∇^M is the Wagner connection, associated with principal symbol of the operator, *if the operator has a constant type*. The connection ∇^ξ is uniquely defined by some requirement on σ₂ (A).
- Message: First of all we should restrict ourselves by constant type operators.

- Let V be a vector space and $S^k V^*$ be the space of homogeneous polynomials of degree k. By type ω of a polynomial H we mean a GL-orbit: $\omega = GL(V) H$. Below ω shall be regular orbit.
- We say that differential operator A ∈ Diff_k (ξ) has constant type ω if ω = GL (T^{*}_x) smbl_k (A) (x), for all x ∈ M.
- Remark: Classification regular GL (V)-orbits in S^kV^{*} and therefore description of constant type operators could be done in a constructive way by using differential invariants (BL).

Wagner connection.

Let $A \in \text{Diff}_k(\xi)$ be a constant type operator and $k \ge 3$, $n \ge 2$. Then there is and unique affine connection $\nabla^w = \nabla^{\text{smbl}_k(A)}$, such that

 $d_{\nabla^{w}}\left(\mathrm{smbl}_{k}\left(A\right)\right)=0.$

• Chern connection.

Let $A \in \mathbf{Diff}_k(\xi)$ be a constant type operator and $k \ge 3, n \ge 2$. Then there is and unique affine connection $\nabla^c = \nabla^{[\mathrm{smbl}_k(A)]}$, depending on the conformal class $[\mathrm{smbl}_k(A)]$, and such that

$$\mathsf{d}_{
abla^c}\left(\sigma'
ight)= heta_{\sigma'}\otimes\sigma'$$
 ,

for any $\sigma' \in [\operatorname{smbl}_{k}(A)]$ and some $\theta_{\sigma'} \in \Omega^{1}(M)$.

- The curvature of the Wagner connection is zero.
- The curvature of the Chern connection is $d\theta_{\sigma'}$ and the torsion form is trivial.
- Both connections are natural:

$$\phi_*\left(
abla^{\mathrm{smbl}_k(A)}
ight) =
abla^{\mathrm{smbl}_k\left(\overline{\phi}_*A
ight)},
onumber \ \phi_*\left(
abla^{\mathrm{[smbl}_k(A)]}
ight) =
abla^{\mathrm{[smbl}_k\left(\overline{\phi}_*A
ight)]}.
onumber$$

Connections, associated with operators

Let's a differential operator A ∈ Diff_k (ξ) has a constant type and its symbol is the Wagner regular, i.e symmetric 2-vector
 (θ^σ)^{k-2}]σ ∈ Σ₂ (M) is non degenerated, where θ^σ is the torsion form of the Wagner connection.

Then there exists and unique a linear connection ∇^A in the line bundle ξ such that $(\theta^{\sigma})^{k-2} \rfloor \sigma_{k-1, \nabla^A} = 0.$

 \bullet Both connections ∇^A and the Wagner connection $\nabla^{{\rm smbl}_k(A)}$ are natural in the sense that

$$\overline{\phi}_*\left(
abla^{\mathcal{A}}
ight)=
abla^{\overline{\phi}_*(\mathcal{A})}$$
 , $\phi_*\left(
abla^{\mathrm{smbl}_k(\mathcal{A})}
ight)=
abla^{(\mathrm{smbl}_k\left(\overline{\phi}_*\mathcal{A}
ight))}$,

for any $\overline{\phi} \in \operatorname{Aut}(\xi)$.

Let σ. (A) be the total symbol of operator A ∈ Diff_k (ξ), then scalar operator A_μ = Q^w (σ. (A)) ∈ Diff_k (M) we call scalar shadow of A. Aut(ξ)-equivalence operators ⇒ Diffeo(M)- equivalence their shadows.

- $Aut(\xi)$ -action on jets of differential operators is *algebraic*.
- The global Lie-Tresse theorem (KL) could be applied.
- The field of rational differential invariants separates regular orbits in jet bundles.
- The routine technics allows to find generators in the field (LY).

Natural coordinates, natural atlas and natural model

- Let A ∈ Diff_k (M) be a linear scalar differential operator. We'll say this operator is in general position if for any point a ∈ M there are natural invariants I = (I₁, ..., I_n), where n = dim M, such that their values I_i (A), i = 1, ..., n, on this operator are independent in a neighborhood U^I of this point.
- Natural charts =local diffeomorphisms

$$\phi^{\prime}:U^{\prime}
ightarrow \mathbf{D}^{\prime}\subset \mathbb{R}^{n}$$
,

on open domains in \mathbb{R}^n , given by such natural invariants.

- Natural atlas= atlas of natural charts.
- Natural model= natural atlas, extended by images A_I = φ^I_{*} (A|_{U^I}) and A_{IJ} = φ^I_{*} (A|_{U^I∩U^J}) of the operator in natural coordinates.

Theorem

Let $A, A' \in \text{Diff}_k(M)$ be operators in general position. Then these operators are equivalent with respect to group of diffeomorphisms if and only if their natural models coincide.

- If two regular operators A, B ∈ Diff_k (ξ) of constant type ∞ are Aut(ξ)-equivalent then their scalar shadows A_β, B_β ∈ Diff_k (M) should be equivalent with respect to the diffeomorphism group.
- The diffeomorphism has the form of identity map in natural coordinates.
- Let diffeomorphism $\psi: M \to M$ sends A_{\natural} to B_{\natural} . Then diffeomorphism ψ has a lift $\overline{\psi} \in \operatorname{Aut}(\xi)$ if and only if $\psi^*(w_1(\xi)) = w_1(\xi)$, where $w_1(\xi)$ is the first Stiefel-Whitney class of the bundle.
- Condition $\psi^*(\kappa_B) = \kappa_A$, where $\kappa_A \in \Omega^2(M)$ and $\kappa_B \in \Omega^2(M)$ are curvature forms for linear connections ∇^A and ∇^B respectively, gives us closed 1-form $\theta_{\psi} \in \Omega^1(M)$, such that $d_{\nabla^{\overline{\psi}_*(B)}} d_{\nabla^A} = \theta_{\psi} \otimes \mathrm{id}$, and the 1-cohomology class $\vartheta_{A,B} \in H^1(M, \mathbb{R})$.

Equivalence of differential operators, acting in line bundles

Theorem

Two regular operators $A, B \in \mathbf{Diff}_k(\xi)$ of constant type ϖ are $\mathbf{Aut}(\xi)$ -equivalent if and only if their scalar shadows $A_{\natural}, B_{\natural} \in \mathbf{Diff}_k(M)$ are equivalent and the diffeomorphism $\psi : M \to M, \ \psi_*(A_{\natural}) = B_{\natural},$ satisfies in addition to the following conditions:

1 It preserves the first Stiefel-Whitney class $w_1(\xi)$ of the bundle:

$$\psi^{*}\left(\textit{w}_{1}\left(\xi
ight)
ight) = \textit{w}_{1}\left(\xi
ight)$$
 .

2 It transforms the curvature form of the connection ∇^B to the connection form of the connection ∇^A :

$$\psi^{*}\left(\kappa_{B}\right)=\kappa_{A}.$$

So The obstruction $\vartheta_{A,B} \in H^1(M,\mathbb{R})$ is trivial:

$$\vartheta_{A,B}=0.$$