Sub-maximal symmetry and integrability

Boris Kruglikov

University of Tromsø

based on joint works with

Dennis The, Vladimir Matveev, Henrik Winther

and some others
Consider a manifold M and a non-holonomic (bracket generating) vector distribution $\Delta \subset TM$, possibly equipped with an additional structure, like sub-Riemannian metric or conformal or CR-structure.

Given such a structure, a sheaf of graded Lie algebras $\mathfrak{g} = \bigoplus \mathfrak{g}_i$ is naturally associated with it. If we consider only the distribution Δ, then $\mathfrak{m}(x) = \mathfrak{g}_{-}(x)$ is the well-known graded nilpotent Lie algebra (nilpotent approximation or Carnot algebra) at $x \in M$, and $\mathfrak{g}(x)$ is its Tanaka prolongation (Tanaka algebra).

If an additional structure on Δ is given, then \mathfrak{g}_0 (or some higher \mathfrak{g}_i, $i > 0$) is reduced and the algebra is further prolonged. In any case for a filtered structure \mathcal{F} on M we associate its sheaf of Tanaka algebras $\mathfrak{g}(x)$, $x \in M$.

Goal: To bound the symmetry algebra S via the algebras $\mathfrak{g}(x)$.

Integrable Nonlinear Equations

2015 Mikulov

Boris Kruglikov (Tromsø) ◇ Symmetry and Integrability
Consider a manifold M and a non-holonomic (bracket generating) vector distribution $\Delta \subset TM$, possibly equipped with an additional structure, like sub-Riemannian metric or conformal or CR-structure.

Given such a structure, a sheaf of graded Lie algebras $\mathfrak{g} = \bigoplus \mathfrak{g}_i$ is naturally associated with it. If we consider only the distribution Δ, then $\mathfrak{m}(x) = \mathfrak{g}_-(x)$ is the well-known graded nilpotent Lie algebra (nilpotent approximation or Carnot algebra) at $x \in M$, and $\mathfrak{g}(x)$ is its Tanaka prolongation (Tanaka algebra).

If an additional structure on Δ is given, then \mathfrak{g}_0 (or some higher \mathfrak{g}_i, $i > 0$) is reduced and the algebra is further prolonged. In any case for a filtered structure \mathcal{F} on M we associate its sheaf of Tanaka algebras $\mathfrak{g}(x)$, $x \in M$.

Goal: To bound the symmetry algebra S via the algebras $\mathfrak{g}(x)$.
Given a distribution Δ its weak derived flag is given by

$$\Delta_0 = 0, \ Delta_1 = \Delta, \ Delta_2 = [\Delta, \Delta_1], \ Delta_3 = [\Delta, \Delta_2], \ldots$$

We assume Δ completely non-holonomic, i.e. $\exists \nu: \Delta_\nu = TM$.

Further on let $g_i = \Delta_{-i}/\Delta_{-i-1}$ and $m = \oplus_{i < 0} g_i$. At every point $x \in M$ the space $m(x)$ has a natural structure of graded nilpotent Lie algebra (the bracket is induced by the commutators). Δ is called strongly regular if the GNLA $m = m_x$ does not depend on the point $x \in M$.

The Tanaka algebra $g = \text{pr}(m) = \oplus g_i$ of Δ is the graded Lie algebra given by the rule

$$g_k = \{u \in \bigoplus_{i < 0} g_{k+i} \otimes g_i^*: u([X, Y]) = [u(X), Y] + [X, u(Y)], \ X, Y \in m\}$$

for $k \geq 0$ and $g_- = \oplus_{i < 0} g_i = m$.
Reduction of the filtered structure

The fiber at $x \in M$ of the 0-frame bundle G_0 is the group $\text{Aut}_0(m_x)$ of all grading preserving isomorphisms $u_0 : m_x \to m_x$; the tangent is the Lie algebra $\text{der}_0(m_x)$ of grading preserving derivations.

Any tensorial structure on Δ reduces g_0, i.e. we restrict to a subset $G'_{0x} \subset G_{0x}$ of those automorphisms that preserve the structure. Regularity assumption is that these form a subbundle $G'_0 \subset G_0$.

Example (SR-structure)

Sub-Riemannian structure is a field of Riemannian structures g on the distribution $\Delta = g^{-1}$. It is equivalent to a reduction of the structure group to a (subgroup of) the orthogonal group of g^{-1}, implying the reduction to $\tilde{g}_0 \subset \text{der}_0(m) \cap (g^{-1},g)$.

A sub-conformal structure is a reduction of the structure group to $\tilde{g}_0 \subset \text{der}_0(m) \cap \text{co}(g^{-1},[g])$.

Integrable Nonlinear Equations

2015 Mikulov

Boris Kruglikov (Tromsø) Symmetry and Integrability
Reduction of the filtered structure

The fiber at $x \in M$ of the 0-frame bundle G_0 is the group $\text{Aut}_0(m_x)$ of all grading preserving isomorphisms $u_0 : m_x \to m_x$; the tangent is the Lie algebra $\text{der}_0(m_x)$ of grading preserving derivations.

Any tensorial structure on Δ reduces g_0, i.e. we restrict to a subset $G'_{0x} \subset G_{0x}$ of those automorphisms that preserve the structure. Regularity assumption is that these form a subbundle $G'_0 \subset G_0$.

Example (SR-structure)

Sub-Riemannian structure is a field of Riemannian structures g on the distribution $\Delta = g_{-1}$. It is equivalent to a reduction of the structure group to a (subgroup of) the orthogonal group of g_{-1}, implying the reduction to $\tilde{g}_0 \subset \text{der}_0(m) \cap \text{so}(g_{-1}, g)$.

A sub-conformal structure is a reduction of the structure group to $\tilde{g}_0 \subset \text{der}_0(m) \cap \text{co}(g_{-1}, [g])$.

Integrable Nonlinear Equations

2015 Mikulov

Boris Kruglikov (Tromsø) Symmetry and Integrability
Example (CR-structure)

Cauchy-Riemann structure is a field of complex structures J on the distribution $\Delta = \mathfrak{g}_{-1}$. It is equivalent to a reduction of the structure group to a (subgroup of) the complex linear group of \mathfrak{g}_{-1} (which shall be thus of even rank), implying the reduction to $\tilde{\mathfrak{g}}_0 \subset \text{der}_0(\mathfrak{m}) \cap \text{gl}(\mathfrak{g}_{-1}, J)$.

Higher order reductions result in reducing \mathfrak{g}_i for $i > 0$. This should respect the \mathfrak{g}_0 module structure and the $\mathfrak{g}_+ \text{ Lie algebra structure.}$
Cauchy-Riemann structure is a field of complex structures J on the distribution $\Delta = g_{-1}$. It is equivalent to a reduction of the structure group to a (subgroup of) the complex linear group of g_{-1} (which shall be thus of even rank), implying the reduction to $\tilde{g}_0 \subset \text{der}_0(m) \cap \text{gl}(g_{-1}, J)$.

Higher order reductions result in reducing g_i for $i > 0$. This should respect the g_0 module structure and the g_+ Lie algebra structure.

Parabolic geometries give examples of filtered structures obtained by reduction of g_0 or g_1. For instance, a conformal structure on M is a reduction of the bundle $\text{End}(TM)$ with the prolongation $g = g_{-1} \oplus g_0 \oplus g_1 \cong \mathfrak{so}(p+1, q+1)$, $n = p + q = \dim m$, $m = g_{-1}$.

By K. Yamaguchi’s prolongation theorem all but two parabolic G/P type geometries for a (complex) simple Lie group G and parabolic P are obtained via a reduction of g_0. The two exceptional structures of types A_n/P_1 and C_n/P_1 are obtained by a higher reduction.
Example (Projective structure: type $A_n/P_1 = SL(n+1)/P_1$)

To obtain the real projective geometry consider the algebra $\mathcal{D}_\infty(\mathbb{R}^n)$ of formal vector fields on $V = \mathbb{R}^n$, with gradation $\mathfrak{g}_{-1} = V$, $\mathfrak{g}_0 = V^* \otimes V = \mathbb{R} \oplus \mathfrak{sl}(V)$, $\mathfrak{g}_1 = S^2V^* \otimes V$, \ldots

The \mathfrak{g}_0-module decomposition into irreducibles $\mathfrak{g}_1 = \mathfrak{g}_1' \oplus \mathfrak{g}_1''$ has components $\mathfrak{g}_1' = (S^2V^* \otimes V)_0 = \text{Ker}(q : S^2V^* \otimes V \to V^*)$ and $\mathfrak{g}_1'' = V^* \mapsto S^2V^* \otimes V$, $i(p)(v, w) = p(v)w + p(w)v$.

Prolongation of the first is $\mathfrak{g}' = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1' \oplus \mathfrak{g}_2' \oplus \ldots$, where $\mathfrak{g}_k' = \text{Ker}(q : S^{k+1}V^* \otimes V \to S^kV^*)$. This is the gradation of the algebra $\mathcal{G}\mathcal{D}_\infty(\mathbb{R}^n) = \{\xi \in \mathcal{D}_\infty(\mathbb{R}^n) : \text{div}(\xi) = \text{const}\}$.

The other reduction has the trivial prolongation and we get $\mathfrak{g}'' = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1'' = \mathfrak{sl}(n+1) -$ the grading of $SL(n+1, \mathbb{R})/P_1$.

C-projective structure is obtained similarly by a complex space W: $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 = W \oplus \mathfrak{gl}_\mathbb{C}(W) \oplus W^*$ (real reductions). This parabolic geometry has type $SL(n+1, \mathbb{C})_{\mathbb{R}}/P_1$.
A filtered structure \mathcal{F} on the manifold M is given by a non-holonomic vector distribution Δ and a finitea number of successive reductions of the generalized frame bundles G_{i_k} of increasing orders $0 \leq i_1 < \cdots < i_s$.

aUnder the assumption of regularity or algebraicity, the finiteness follows from (a graded version of) Hilbert’s basis theorem.

The filtered structures (in somewhat different formulation) have been studied before by T. Morimoto.
Definition

A filtered structure \mathcal{F} on the manifold M is given by a non-holonomic vector distribution Δ and a finite number of successive reductions of the generalized frame bundles G_{i_k} of increasing orders $0 \leq i_1 < \cdots < i_s$.

Under the assumption of regularity or algebraicity, the finiteness follows from (a graded version of) Hilbert’s basis theorem.

The filtered structures (in somewhat different formulation) have been studied before by T. Morimoto.

Notice that in general, the prolongation manifolds G_i can be singular. The structure is called regular at the point x if for every i the spaces $g_i(y)$ form a smooth bundle in a neighborhood of x (the size of which can depend on i).

Lemma

*For every i the set of points x, where $\text{rank } g_i(x)$ is locally constant is open and dense in M.***
The structure is called regular if it is regular at every point on M. (clearly strongly regular distributions have regular prolongations)

If the structure is of finite type, i.e. $\exists \kappa : g_{\kappa}(x) = 0 \ \forall x \in M$, or is analytic, then the structure is regular on an open dense set. In smooth case regularity holds only on a set of the second category.
The structure is called regular if it is regular at every point on M. Clearly strongly regular distributions have regular prolongations. If the structure is of finite type, i.e. $\exists \kappa : g_\kappa(x) = 0 \ \forall x \in M$, or is analytic, then the structure is regular on an open dense set. In smooth case regularity holds only on a set of the second category.

Theorem (BK 2013)

The symmetry algebra S (possibly infinite-dimensional) of a filtered structure F has the natural filtration with the associated grading s naturally injected into $g(x)$ for any regular $x \in M$, and

$$\dim S \leq \sup_M \dim g(x).$$

For finite type or analytic filtered structures we have:

$$\dim S \leq \inf_M \dim g(x).$$
The structure is called regular if it is regular at every point on \(M \).

(clearly strongly regular distributions have regular prolongations)

If the structure is of finite type, i.e. \(\exists \kappa : g_\kappa(x) = 0 \ \forall x \in M \), or is analytic, then the structure is regular on an open dense set. In smooth case regularity holds only on a set of the second category.

Theorem (BK 2013)

The symmetry algebra \(S \) (possibly infinite-dimensional) of a filtered structure \(F \) has the natural filtration with the associated grading \(s \) naturally injected into \(g(x) \) for any regular \(x \in M \), and

\[
\dim S \leq \sup_M \dim g(x).
\]

For finite type or analytic filtered structures we have:

\[
\dim S \leq \inf_M \dim g(x).
\]

Let's sketch the proof of this theorem. The idea is to consider Lie equations for the symmetries of filtered structures as modules over weighted differential operators (weighted \(\mathcal{D} \)-modules).
The spaces \[F_i = \Gamma(\Delta_i) \] form the decreasing filtration of the Lie algebra of vector fields \(\mathfrak{D}(M) \) and induce the decreasing filtration of the associative algebra \(\mathcal{D} = \text{Diff}(M) \) of scalar differential operators on \(M \) (\(\mathcal{D} \) is a bi-module over \(C^\infty(M) \)):

\[
\mathcal{D}_j = \sum_{i_1 + \cdots + i_s \geq j} \prod_{t=1}^s F_{i_t}.
\]

The standard filtration by order of \(\mathcal{D} \) has the associated graded symbol algebra \(ST_x M = \bigoplus S^i T_x M \). The weighted filtration \(\mathcal{D}_i \) produces the symbol algebra \(\bigoplus_{i \leq 0} (\mathcal{D}_i / \mathcal{D}_{i+1})_x = \mathcal{U}(m_x) \).
The spaces $F_{-i} = \Gamma(\Delta_i)$ form the decreasing filtration of the Lie algebra of vector fields $\mathcal{D}(M)$ and induce the decreasing filtration of the associative algebra $\mathcal{D} = \text{Diff}(M)$ of scalar differential operators on M (\mathcal{D} is a bi-module over $C^\infty(M)$):

$$\mathcal{D}_j = \sum_{i_1 + \cdots + i_s \geq j} \prod_{t=1}^s F_{i_t}.$$

The standard filtration by order of \mathcal{D} has the associated graded symbol algebra $ST_x M = \bigoplus S^i T_x M$. The weighted filtration \mathcal{D}_i produces the symbol algebra $\bigoplus_{i \leq 0} (\mathcal{D}_i / \mathcal{D}_{i+1})_x = \mathcal{U}(m_x)$. The space of 1-forms has the decreasing filtration $\Omega^1_i = \Gamma(\Delta^\perp_{i-1})$ with $\Omega^1_i / \Omega^1_{i+1} = \Gamma(g^*_i)$. These two filtrations induce the decreasing filtration of the module of 1-form valued diff.operators

$$\text{Diff}(M; T^*M) = \text{Diff}(M) \otimes_{C^\infty(M)} \Omega^1(M).$$

These are functionals on the space of weighted jets of vector fields $J^\infty(TM)$, and the Lie equation corresponds to a submodule in $\text{Diff}(M; T^*M)$.
Elaborating upon the (formal) **Spencer theory** of differential equations, we obtain an embedding of \mathcal{S} to the Lie equation $\mathcal{E} \subset J^\infty(TM)$, namely \mathcal{S} injects into the stalk \mathcal{E}_x at a regular point x. Then $\mathcal{S}^j = \ker(\mathcal{S} \to \mathcal{E}_{i-1}|_x)$ defines a filtration on \mathcal{S} depending on x, whence

$$\mathfrak{s}_i = \mathcal{S}^i / \mathcal{S}^{i+1} = \ker(\mathcal{E}_i \to \mathcal{E}_{i-1}).$$

In particular $\mathfrak{s}_i \subset \mathfrak{g}_i(x)$ and the claim $\dim \mathcal{S} \leq \dim \mathfrak{g}(x)$ follows.
Elaborating upon the (formal) Spencer theory of differential equations, we obtain an embedding of S to the Lie equation $\mathcal{E} \subset J^\infty(TM)$, namely S injects into the stalk \mathcal{E}_x at a regular point x. Then $S^i = \text{Ker}(S \to \mathcal{E}_{i-1}|_x)$ defines a filtration on S depending on x, whence

$$s_i = S^i / S^{i+1} = \text{Ker}(\mathcal{E}_i \to \mathcal{E}_{i-1}).$$

In particular $s_i \subset g_i(x)$ and the claim $\dim S \leq \dim g(x)$ follows.

Corollary

*The embedding $s_i \subset g_i$ at regular x satisfies: $[s_i, g_{-1}] \subset s_{i-1}$.***

This statement was proved by T. Morimoto (1977) in the case of the standardly filtered Lie algebras and by BK & D. The (2013) in the case of filtration associated with parabolic geometries.

Notice that the claim is stronger than the natural pairing $[s_i, s_{-1}] \subset s_{i-1}$ since we only have $s_{-1} \subset g_{-1}$.
Question: What is the symmetry bound of a non-flat geometry? Often there is a gap between maximal and submaximal symmetry dimensions, i.e. ∃ forbidden dimensions.
The gap problem

Question: What is the symmetry bound of a non-flat geometry? Often there is a gap between maximal and submaximal symmetry dimensions, i.e. \(\exists \) forbidden dimensions.

Example (Riemannian geometry in \(\text{dim} = n \))

<table>
<thead>
<tr>
<th>(n)</th>
<th>max</th>
<th>submax</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>(\text{Lie (1882), Darboux (1894)})</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>4</td>
<td>(\text{Bianchi (1898), Ricci (1898)})</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>8</td>
<td>(\text{Egorov (1955)})</td>
</tr>
<tr>
<td>(\geq 5)</td>
<td>(\frac{n+1}{2})</td>
<td>(\frac{n}{2} + 1)</td>
<td>(\text{Wang (1947)})</td>
</tr>
</tbody>
</table>

For other signatures the result is the same, except the 4D case.

NB: We restrict to symmetry algebras, i.e. study the geometric structures locally. Globally some other bounds can be achieved, e.g. for \(n = 2 \) there is a global model with 2 symmetries (flat \(\mathbb{T}^2 \)).
We consider the gap problem in the class of parabolic geometries.

Parabolic geometry: Cartan geometry \((\mathcal{G} \to M, \omega)\) modelled on \((G \to G/P, \omega_{MC})\), where \(G\) is semi-simple Lie group, and \(P\) is a parabolic subgroup.

Examples

<table>
<thead>
<tr>
<th>Model (G/P)</th>
<th>Underlying (curved) geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SO(p+1, q+1)/P_1)</td>
<td>sign ((p, q)) conformal structure</td>
</tr>
<tr>
<td>(SL_{m+2}/P_{1,2})</td>
<td>2nd ord ODE system in (m) dep vars</td>
</tr>
<tr>
<td>(SL_{m+2}/P_1)</td>
<td>projective structure in (\text{dim} = m + 1)</td>
</tr>
<tr>
<td>(G_2/P_1)</td>
<td>((2, 3, 5))-distributions</td>
</tr>
<tr>
<td>(SL_{m+1}/P_{1,m})</td>
<td>Lagrangian contact structures</td>
</tr>
<tr>
<td>(Sp_{2m}/P_{1,2})</td>
<td>Contact path geometry</td>
</tr>
<tr>
<td>(SO(m, m+1)/P_m)</td>
<td>Generic ((m, \binom{m+1}{2})) distributions</td>
</tr>
</tbody>
</table>
 Known results on the parabolic gap phenomenon ≤ 2012

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Max</th>
<th>Submax</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>scalar 2nd order ODE mod point</td>
<td>8</td>
<td>3</td>
<td>Tresse (1896)</td>
</tr>
<tr>
<td>projective str 2D</td>
<td>8</td>
<td>3</td>
<td>Tresse (1896)</td>
</tr>
<tr>
<td>(2, 3, 5)-distributions</td>
<td>14</td>
<td>7</td>
<td>Cartan (1910)</td>
</tr>
<tr>
<td>projective str</td>
<td>$n^2 + 4n + 3$</td>
<td>$n^2 + 4$</td>
<td>Egorov (1951)</td>
</tr>
<tr>
<td>dim = $n + 1$, $n \geq 2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scalar 3rd order ODE mod contact</td>
<td>10</td>
<td>5</td>
<td>Wafo Soh, Qu Mahomed (2002)</td>
</tr>
<tr>
<td>conformal (2, 2) str</td>
<td>15</td>
<td>9</td>
<td>Kruglikov (2012)</td>
</tr>
<tr>
<td>pair of 2nd order ODE</td>
<td>15</td>
<td>9</td>
<td>Casey, Dunajski, Tod (2012)</td>
</tr>
<tr>
<td>Geometry</td>
<td>Max</td>
<td>Submax</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>Sign ((p, q)) conf geom (n = p + q, ~ p, q \geq 2)</td>
<td>((\frac{n+2}{2}))</td>
<td>((\frac{n-1}{2}) + 6)</td>
<td></td>
</tr>
<tr>
<td>Systems 2nd ord ODE in (m \geq 2) dep vars</td>
<td>((m + 2)^2 - 1)</td>
<td>(m^2 + 5)</td>
<td></td>
</tr>
<tr>
<td>Generic (m)-distributions on (\binom{m+1}{2})-dim manifolds</td>
<td>((\frac{2m+1}{2}))</td>
<td>(\begin{cases} \frac{m(3m-7)}{2} + 10, & m \geq 4; \ 11, & m = 3 \end{cases})</td>
<td></td>
</tr>
<tr>
<td>Lagrangian contact str</td>
<td>(m^2 + 2m)</td>
<td>((m - 1)^2 + 4, ~ m \geq 3)</td>
<td></td>
</tr>
<tr>
<td>Contact projective str</td>
<td>(m(2m + 1))</td>
<td>(\begin{cases} 2m^2 - 5m + 8, & m \geq 3; \ 5, & m = 2 \end{cases})</td>
<td></td>
</tr>
<tr>
<td>Contact path geometries</td>
<td>(m(2m + 1))</td>
<td>(2m^2 - 5m + 9, ~ m \geq 3)</td>
<td></td>
</tr>
<tr>
<td>Exotic parabolic contact structure of type (E_8/P_8)</td>
<td>248</td>
<td>147</td>
<td></td>
</tr>
</tbody>
</table>
Example (2nd order ODE \(y'' = f(x, y, y') \) mod point transf.)

\[
M : (x, y, p), \quad \Delta = \{\partial_p\} \oplus \{\partial_x + p\partial_y + f(x, y, p)\partial_p\}.
\]

\[
m = g_{-1} \oplus g_{-2}, \text{ where } g_{-1} = g'_{-1} \oplus g''_{-1}. \text{ Also, } g_0 \cong \mathbb{R} \oplus \mathbb{R}.
\]

Same as \(SL_3/B \) data:

\[
\begin{pmatrix}
0 & 1 & 2 \\
-1 & 0 & 1 \\
-2 & -1 & 0 \\
\end{pmatrix}
\]

Yamaguchi: \(\text{pr}(m, g_0) = \mathfrak{sl}_3 \).

Any 2nd order ODE = \((SL_3, B) \)-type geom.
Example \(((2, 3, 5)\)-distributions)\)

Any such \(\Delta\) can be described as Monge eqn \(z' = f(x, z, y, y', y'')\).

\[M : (x, z, y, p, q), \Delta = \{ \partial_q, \partial_x + p\partial_y + q\partial_p + f\partial_z \}, f_{qq} \neq 0. \]

\(m = g_{-1} \oplus g_{-2} \oplus g_{-3}\) with dims \((2, 1, 2)\), and \(g_0 = gl_2\).

\[\text{Same as } G_2/P_1 \text{ data:} \]

\[\text{Yamaguchi } pr(m, g_0) = Lie(G_2). \]

Any \((2, 3, 5)\)-dist. = \((G_2, P_1)\)-type geom.
General dim bound for regular normal parabolic geometries

\[\phi \in H^2_+(m, g), \ a^\phi_0 = \text{ann}(\phi) \subset g_0, \ a^\phi = \text{pr}(m, a^\phi_0) = m \oplus \sum_{i \geq 0} a^\phi_i \]

Theorem (BK & D.The 2013)

For \(G/P \) parabolic geometry: \(\dim(\inf(G, \omega)) \leq \inf_{x \in M} \dim(a^{\kappa_H(x)}) \).
General dim bound for regular normal parabolic geometries

\[\phi \in H^2_+(m, g), \quad a_0^\phi = \text{ann}(\phi) \subset g_0, \quad a^\phi = \text{pr}(m, a_0^\phi) = m \oplus \sum_{i \geq 0} a_i^\phi \]

Theorem (BK & D. The 2013)

For \(G/P \) parabolic geometry: \[
\dim(\inf(G, \omega)) \leq \inf_{x \in M} \dim(a^{K_H(x)}).
\]

Algorithm to compute the sub-maximal bound:

- Compute by Kostant BBW: \(H^2_+(m, g) = \bigoplus_i \mathbb{V}_i; \)
- Find lwv \(v_i \in \mathbb{V}_i \) in \(g_0 \)-irreps;
- Compute the annihilator \(a_0^{v_i} = \text{ann}(v_i) \subset g_0; \)
- Prolong \(a_0^{v_i} \leadsto a^{v_i} = m \oplus a_0^{v_i} \oplus a_1^{v_i} \oplus \ldots; \)
- Most cases are prolongation rigid, exceptions are classified;
- Most cases have the universal bound sharp (excepts classified):

\[U = \max_i \dim(a^{v_i}). \]
Ex 1. Finer strs: 4D Lorentzian conformal geometry

\[SO(2, 4)/P_1 \text{ geometry: } g_0 = \mathbb{R} \oplus so(1, 3) = \mathbb{R} \oplus sl(2, \mathbb{C})_{\mathbb{R}}, \]

\[H^2_+ \cong \mathbb{C}^4 \] (as a \(sl(2, \mathbb{C})_{\mathbb{R}} \)-rep)

and \(Z \in Z(g_0) \) acts with homogeneity +2. \(\mathbb{C} \)-basis of \(sl(2, \mathbb{C}) \):

\[
H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}
\]

<table>
<thead>
<tr>
<th>Petrov type</th>
<th>Normal form in (\mathbb{C}^4(g_1))</th>
<th>Annihilator (\mathfrak{h}_0)</th>
<th>(\text{dim}(\mathfrak{h}))</th>
<th>sharp?</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-p</td>
<td>(p^4)</td>
<td>(X, iX, 2Z - H)</td>
<td>7</td>
<td>✓</td>
</tr>
<tr>
<td>III-p</td>
<td>(p^3 q)</td>
<td>(Z - 2H)</td>
<td>5 (\leadsto) 4</td>
<td>×</td>
</tr>
<tr>
<td>D-p</td>
<td>(p^2 q^2)</td>
<td>(H, iH)</td>
<td>6</td>
<td>✓</td>
</tr>
<tr>
<td>II-p</td>
<td>(p^2 q(p - q))</td>
<td>0</td>
<td>4</td>
<td>✓</td>
</tr>
<tr>
<td>I-p</td>
<td>(p q(p - q)(p - k q))</td>
<td>0</td>
<td>4</td>
<td>✓</td>
</tr>
</tbody>
</table>
Ex 1. Finer strs: 4D Lorentzian conformal geometry

$SO(2, 4)/P_1$ geometry: $g_0 = \mathbb{R} \oplus so(1, 3) = \mathbb{R} \oplus sl(2, \mathbb{C})_{\mathbb{R}}$,

$H_+^2 \simeq \bigodot^4 \mathbb{C}^2$ (as a $sl(2, \mathbb{C})_{\mathbb{R}}$-rep)

and $Z \in \mathcal{Z}(g_0)$ acts with homogeneity +2. \mathbb{C}-basis of $sl(2, \mathbb{C})$:

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

<table>
<thead>
<tr>
<th>Petrov type</th>
<th>Normal form in $\bigodot^4 (g_1)$</th>
<th>Annihilator \mathfrak{h}_0</th>
<th>dim(\mathfrak{h})</th>
<th>sharp?</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>p^4</td>
<td>$X, iX, 2Z - H$</td>
<td>7</td>
<td>✓</td>
</tr>
<tr>
<td>III</td>
<td>p^3q</td>
<td>$Z - 2H$</td>
<td>5 \sim 4</td>
<td>\times</td>
</tr>
<tr>
<td>D</td>
<td>p^2q^2</td>
<td>H, iH</td>
<td>6</td>
<td>✓</td>
</tr>
<tr>
<td>II</td>
<td>$p^2q(p-q)$</td>
<td>0</td>
<td>4</td>
<td>✓</td>
</tr>
<tr>
<td>I</td>
<td>$pq(p-q)(p-kq)$</td>
<td>0</td>
<td>4</td>
<td>✓</td>
</tr>
</tbody>
</table>

Type II, new spacetime: $ds^2 = 35t^6 dx^2 - dy^2 + 2dx dz - t^{-6} dz^2 - dt^2$

Type N, Lorenzian pp-wave: $ds^2 = dx^2 + dy^2 + 2dz dt + x^2 dt^2$

Type III, Kaigorodov: $ds^2 = e^{4t} dx^2 + 4e^t dx dy + 2e^{-2t}(dy^2 + dy dz) - k dt^2$
Ex 2. Finer strs: $(2, 3, 5)$-distributions (over \mathbb{C})

G_2/P_1 geometry: $g_0 = gl_2(\mathbb{C})$, $g_{-1} = \mathbb{C}^2(x, y)$, $g_1 = (\mathbb{C}^2)^*(p, q)$.

$$H^2_+ \simeq \bigcirc(\mathbb{C}^2)^* \quad \text{(binary quartics)}$$

and $Z \in \mathcal{Z}(g_0)$ acts with homogeneity +4.

<table>
<thead>
<tr>
<th>Segre type</th>
<th>Normal form in $\bigcirc^4(g_1)$</th>
<th>Annihilator h_0</th>
<th>dim(h)</th>
<th>sharp?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4)</td>
<td>p^4</td>
<td>$\begin{pmatrix} 0 & 0 \ c & d \end{pmatrix}$</td>
<td>7</td>
<td>✓</td>
</tr>
<tr>
<td>(3, 1)</td>
<td>p^3q</td>
<td>$\begin{pmatrix} \lambda & 0 \ 0 & -3\lambda \end{pmatrix}$</td>
<td>6 \sim 4</td>
<td>×</td>
</tr>
<tr>
<td>(2, 2)</td>
<td>p^2q^2</td>
<td>$\begin{pmatrix} \lambda & 0 \ 0 & -\lambda \end{pmatrix}$</td>
<td>6</td>
<td>✓</td>
</tr>
<tr>
<td>(2, 1, 1)</td>
<td>$p^2q(p - q)$</td>
<td>$\begin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}$</td>
<td>5</td>
<td>✓</td>
</tr>
<tr>
<td>(1, 1, 1, 1)</td>
<td>$pq(p - q)(p - kq)$</td>
<td>$\begin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}$</td>
<td>5</td>
<td>✓</td>
</tr>
</tbody>
</table>
Submaximal (2,3,5)-models: 7D symmetry

Originally: E.Cartan (1910);
Topology clarified, contact iso: B.Doubrov & BK (2014)
Submaximal (2,3,5)-models: 7D symmetry

Originally: E.Cartan (1910);
Topology clarified, contact iso: B.Doubrov & BK (2014)

Type 1 submaximal structures (encoded as Monge equations):

$$z' = (y'')^m, \quad m \notin \{0, 1\} \cup \{-1, \frac{1}{3}, \frac{2}{3}, 2\},$$

together with the model $y' = \ln(z'')$. The space of parameters $\mathbb{C}(m) \simeq \mathbb{C}(k)$, $k = 2m - 1$ shall be quotient by the action of $\mathbb{Z}_2 \times \mathbb{Z}_2$: $k \mapsto \pm k^{\pm 1}$. The moduli space is $\mathbb{C}P^1 \setminus \text{pt} \simeq \mathbb{C}$.

Submaximal $(2,3,5)$-models: 7D symmetry

Originally: E.Cartan (1910); Topology clarified, contact iso: B.Doubrov & BK (2014)

Type 1 submaximal structures (encoded as Monge equations):

\[
z' = (y'')^m, \quad m \notin \{0, 1\} \cup \{-1, \frac{1}{3}, \frac{2}{3}, 2\},
\]

together with the model \(y' = \ln(z'')\). The space of parameters \(\mathbb{C}(m) \simeq \mathbb{C}(k), \ k = 2m - 1\) shall be quotient by the action of \(\mathbb{Z}_2 \times \mathbb{Z}_2\): \(k \mapsto \pm k \pm 1\). The moduli space is \(\mathbb{C}P^1 \setminus \text{pt} \simeq \mathbb{C}\).

Type 2 submaximal structures (B.Doubrov - I.Zelenko):

\[
y' = (z'')^2 + r_1(z')^2 + r_2z^2.
\]

The parameter space \(\mathbb{C}^2(r_1, r_2)\) to be quotient by the action of \(\mathbb{C}\): \((r_1, r_2) \mapsto (cr_1, c^2r_2)\). Removing the line \(r_2 = \frac{9}{100} r_1^2\) corresponding to \(G_2\)-symmetry, the resulting moduli space is again \(\mathbb{C}\).

There are explicit contact isomorphism between equivalent models.
Generic (3,6)-distributions are parabolic geometries of type B_3/P_3. The equivalence problem for them was solved by R. Bryant (2006). It follows that the maximal symmetry has dimension 21, and this is uniquely realizable by the flat model:

$$\theta_1 = dy_1 - x_3 dx_2, \quad \theta_2 = dy_2 - x_1 dx_3, \quad \theta_3 = dy_3 - x_2 dx_1.$$
Ex 3. (3,6)-distributions of generic type

Generic (3,6)-distributions are parabolic geometries of type B_3/P_3. The equivalence problem for them was solved by R. Bryant (2006). It follows that the maximal symmetry has dimension 21, and this is uniquely realizable by the flat model:

$$
\theta_1 = dy_1 - x_3 dx_2, \ \theta_2 = dy_2 - x_1 dx_3, \ \theta_3 = dy_3 - x_2 dx_1.
$$

The submaximal model was computed by BK & D. The to have 11 dimensions and was realized by the following Pfaffian system:

$$
\theta_1 = dy_1 - x_3 dx_2, \ \theta_2 = dy_2 - x_1 dx_3, \ \theta_3 = dy_3 - x_2 dx_1 - x_1^2 x_3^2 dx_3.
$$

The graded algebra associated to the filtered symmetry algebra is $\mathfrak{s} = \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{a}_0$ of dimensions $(3, 3, 5)$.
Generic (3,6)-distributions are parabolic geometries of type B_3/P_3. The equivalence problem for them was solved by R. Bryant (2006). It follows that the maximal symmetry has dimension 21, and this is uniquely realizable by the flat model:

$$\theta_1 = dy_1 - x_3 dx_2, \quad \theta_2 = dy_2 - x_1 dx_3, \quad \theta_3 = dy_3 - x_2 dx_1.$$

The submaximal model was computed by BK & D. The to have 11 dimensions and was realized by the following Pfaffian system:

$$\theta_1 = dy_1 - x_3 dx_2, \quad \theta_2 = dy_2 - x_1 dx_3, \quad \theta_3 = dy_3 - x_2 dx_1 - x_1^2 x_3^2 dx_3.$$

The graded algebra associated to the filtered symmetry algebra is $\mathfrak{s} = \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{a}_0$ of dimensions $(3, 3, 5)$.

One can consider a sub-Riemannian structure on (3,6)-distribution. The \mathfrak{g}_0-part reduces to $\mathfrak{s}_0(3)$, and the prolongation is trivial. Thus the symmetry algebra is of dimension 9 at most (and this is uniquely realizable).
Consider the geometry of a pair of transversal 3-distributions in a 6-space, each of generic (nondegenerate) type:

\[TM^6 = \Pi^3_- \oplus \Pi^3_+ , \quad [\Pi^3_\pm, \Pi^3_\pm] = TM. \]

Equivalently we have a field of endomorphisms

\[I \in \Gamma(TM \otimes T^*M), \quad I^2 = \text{Id}, \quad \text{Tr}(I) = 0; \]

then \(\Pi^3_\pm = \text{Ker}(\text{Id} \mp I) \). Let us call such structure NDG APS.

The fundamental invariant of this structure is the Nijenhuis tensor \(N_I : \Lambda^2 TM \to TM \), which splits into a pair of curvatures \(\Theta_\pm : \Lambda^2 \Pi_\pm \to \Pi_\mp \). Non-degeneracy means that both \(\Theta_\pm \) are isomorphisms or equivalently that \(N_I \) is an epimorphism.
Consider the geometry of a pair of transversal 3-distributions in a 6-space, each of generic (nondegenerate) type:

$$TM^6 = \Pi_3^- \oplus \Pi_3^+, \quad [\Pi_3^\pm, \Pi_3^\pm] = TM.$$

Equivalently we have a field of endomorphisms

$$I \in \Gamma(TM \otimes T^*M), \quad I^2 = \text{Id}, \quad \text{Tr}(I) = 0;$$

then $$\Pi_3^\pm = \text{Ker}(\text{Id} \mp I)$$. Let us call such structure NDG APS.

The fundamental invariant of this structure is the Nijenhuis tensor

$$N_I : \Lambda^2 TM \to TM,$$

which splits into a pair of curvatures

$$\Theta_\pm : \Lambda^2 \Pi_\pm \to \Pi_\mp.\text{ Non-degeneracy means that both } \Theta_\pm \text{ are isomorphisms or equivalently that } N_J \text{ is an epimorphism.}$$

This geometry is not parabolic and even not Cartan, as the formal stabilizer (fiber of the bundle \mathcal{P}_0 or equivalently of Lie equation) depends on the type of the Nijenhuis tensor N_I and can have dimensions from 2 to 8 (NB: 2 parameters in the normal form).
Theorem

Any NDG APS in 6D has symmetry algebra of dimension 14 at most. The latter case is uniquely realizable by $S^{3,3} = G^*_2/SL(3, \mathbb{R})$.

Notice that if we impose non-holonomic metrics on $\Pi^{3,\pm}$ such that Θ^{\pm} induce isometries then, even though the formal stabilizer has dimension 3, this is not realizable and the maximal dimension of the symmetry group of such geometry is 6 (trivial isotropy).
Theorem

Any NDG APS in 6D has symmetry algebra of dimension 14 at most. The latter case is uniquely realizable by $S^3,3 = G_2^*/SL(3,\mathbb{R})$.

Notice that if we impose non-holonomic metrics on Π^3_\pm such that Θ_\pm induce isometries then, even though the formal stabilizer has dimension 3, this is not realizable and the maximal dimension of the symmetry group of such geometry is 6 (trivial isotropy).
Finite type structures have finite-dimensional symmetry algebra and the symmetry transformations form a Lie group. In particular, this is true for all Cartan geometries. But there exist interesting structures beyond the realm of Cartan geometries.

Almost complex structures have infinite type, and it is possible that an almost complex manifold \((M,J)\) has infinite-dimensional Lie algebra \(\text{sym}(M,J)\). An obvious example is \((\mathbb{C}^n, i)\), but this effect persists also for non-integrable almost complex structure.

Example. Consider \(\mathbb{C}^2(\mathbb{C}, w)\) with the almost complex structure

\[
J\partial_z = i\partial_z + w\partial\bar{w}, \quad J\partial_w = i\partial_w.
\]

This structure is non-integrable \(NJ(\partial_z, \partial_w) = -2i\partial\bar{w}\), and it has the following infinite transformation pseudogroup of symmetries:

\((z, w) \mapsto (e^{2irz} + c, e^{-ir}(w + \zeta(z)))\),

where \(r \in \mathbb{R}\), \(c \in \mathbb{C}\) and \(\zeta = i\bar{\zeta}(\text{reducible to the Laplace eqn})\).
Finite type structures have finite-dimensional symmetry algebra and
the symmetry transformations form a Lie group. In particular, this
is true for all Cartan geometries. But there exist interesting
structures beyond the realm of Cartan geometries.

Almost complex structures have infinite type, and it is possible that
an almost complex manifold (M, J) has infinite-dimensional Lie
algebra $\mathfrak{sym}(M, J)$. An obvious example is (\mathbb{C}^n, i), but this effect
persists also for non-integrable almost complex structure.

Example. Consider $\mathbb{C}^2(\mathbb{C}^2, i)$ with the almost complex structure
$J\partial z = i\partial z + w\partial \bar{w}$, $J\partial w = i\partial w$.
This structure is non-integrable $N J(\partial z, \partial w) = -2i\partial \bar{w}$, and it has
the following infinite transformation pseudogroup of symmetries:
$(z, w) \mapsto (e^{2ir}z + c, e^{-ir}(w + \zeta(z)))$,
where $r \in \mathbb{R}$, $c \in \mathbb{C}$ and $\zeta(\bar{z}) = i\frac{1}{2}\zeta(z)$ (reducible to the Laplace eqn).
Finite type structures have finite-dimensional symmetry algebra and the symmetry transformations form a Lie group. In particular, this is true for all Cartan geometries. But there exist interesting structures beyond the realm of Cartan geometries.

Almost complex structures have infinite type, and it is possible that an almost complex manifold \((M, J)\) has infinite-dimensional Lie algebra \(\mathfrak{sym}(M, J)\). An obvious example is \((\mathbb{C}^n, i)\), but this effect persists also for non-integrable almost complex structure.

Example. Consider \(\mathbb{C}^2(z, w)\) with the almost complex structure

\[
J \partial_z = i \partial_z + w \partial \bar{w}, \quad J \partial_w = i \partial_w.
\]

This structure is non-integrable \(N_J(\partial_z, \partial_w) = -2i \partial \bar{w}\), and it has the following infinite transformation pseudogroup of symmetries:

\[
(z, w) \mapsto (e^{2ir} z + c, e^{-ir} (w + \zeta(z))),
\]

where \(r \in \mathbb{R}, c \in \mathbb{C}\) and \(\zeta \bar{z} = \frac{i}{2} \bar{\zeta}\) (reducible to the Laplace eqn).
Ex 4. Elliptic version of two B_3/P_3: NDG ACS in 6D

$\text{Aut}(M, J)$ is a (finite-dimensional) Lie group if (M, J) is either
- compact (W. Boothby, S. Kobayashi, H. Wang 1963),
- Kobayashi-hyperbolic (BK & M. Overhold 1999),
- has non-degenerate Nijenhuis tensor at one point (BK 2012).

For $\dim M = 6$ the non-degeneracy condition means

$$N_J : \Lambda^2_{\mathbb{C}} T_x M \xrightarrow{\sim} T_x M$$
Ex 4. Elliptic version of two B_3/P_3: NDG ACS in 6D

$\text{Aut}(M,J)$ is a (finite-dimensional) Lie group if (M,J) is either
- compact (W. Boothby, S. Kobayashi, H. Wang 1963),
- Kobayashi-hyperbolic (BK & M. Overhold 1999),
- has non-degenerate Nijenhuis tensor at one point (BK 2012).

For $\text{dim} M = 6$ the non-degeneracy condition means

$$NJ : \Lambda^2\mathbb{C}T_xM \overset{\sim}{\to} T_xM$$

Theorem (BK 2013)

Let the almost complex structure J on M^6 be non-degenerate. Then $\text{dim Aut}(M,J) \leq 14$ and the equality is attained only when $M = S^6$ and J is G_2^c-invariant or $M = S^{2,4}$ and J is G_2^*-invariant.
Ex 4. Elliptic version of two B_3/P_3: NDG ACS in 6D

$\text{Aut}(M, J)$ is a (finite-dimensional) Lie group if (M, J) is either
- compact (W. Boothby, S. Kobayashi, H. Wang 1963),
- Kobayashi-hyperbolic (BK & M. Overhold 1999),
- has non-degenerate Nijenhuis tensor at one point (BK 2012).

For $\dim M = 6$ the non-degeneracy condition means

$$N_J : \Lambda^2 \mathbb{C}T_x M \rightarrow T_x M$$

Theorem (BK 2013)

Let the almost complex structure J on M^6 be non-degenerate. Then $\dim \text{Aut}(M, J) \leq 14$ and the equality is attained only when $M = S^6$ and J is G_2^c-invariant or $M = S^{2,4}$ and J is G_2^*-invariant.

Theorem (BK & H. Winther 2015)

Let almost complex structure J on M^6 be nondegenerate. If $\dim \text{Aut}(M, J) \neq 14$, then $\dim \text{Aut}(M, J) \leq 10$. If $\dim = 10$, then (M, J) is strictly nearly pseudo-Kähler.
C-projective structures are equivalence classes of minimal complex connections ∇ on an almost complex manifold (M^{2n}, J), where two connections are equivalent if they have the same J-planar curves γ: $\nabla \dot{\gamma} \dot{\gamma} \in \langle \dot{\gamma}, J \dot{\gamma} \rangle$ (a connection is complex minimal iff $\nabla J = 0$ and $T_\nabla = \frac{1}{4} N_J$).
C-projective structures are equivalence classes of minimal complex connections ∇ on an almost complex manifold (M^{2n}, J), where two connections are equivalent if they have the same J-planar curves γ: $\nabla \dot{\gamma} \dot{\gamma} \in \langle \dot{\gamma}, J \dot{\gamma} \rangle$ (a connection is complex minimal if $\nabla J = 0$ and $T_\nabla = \frac{1}{4} N_J$). In this case:

$$H^2_+(g_-, g) = V_I \oplus V_{II} \oplus V_{III},$$

where $V_I = \Lambda^{2,0} g_-^* \otimes \mathfrak{sl}(g_-, \mathbb{C})$ for $n > 2$ and $V_I = \Lambda^{2,0} g_-^* \otimes \mathfrak{g}_-^*$ for $n = 2$; $V_{II} = \Lambda^{1,1} g_-^* \otimes \mathfrak{sl}(g_-, \mathbb{C})$; $V_{III} = \Lambda^{0,2} g_-^* \otimes \mathfrak{g}_-$.
C-projective structures are equivalence classes of minimal complex connections ∇ on an almost complex manifold (M^{2n}, J), where two connections are equivalent if they have the same J-planar curves γ: $\nabla \dot{\gamma} \in \langle \dot{\gamma}, J\dot{\gamma} \rangle$ (a connection is complex minimal iff $\nabla J = 0$ and $T\nabla = \frac{1}{4} N_J$). In this case:

$$H^2_+(\mathfrak{g}_-, \mathfrak{g}) = \mathbb{V}_I \oplus \mathbb{V}_{II} \oplus \mathbb{V}_{III},$$

where $\mathbb{V}_I = \Lambda^{2,0}_{\mathbb{C}} \mathfrak{g}_-^* \otimes_{\mathbb{C}} \mathfrak{sl}(\mathfrak{g}_-, \mathbb{C})$ for $n > 2$ and $\mathbb{V}_I = \Lambda^{2,0}_{\mathbb{C}} \mathfrak{g}_-^* \otimes_{\mathbb{C}} \mathfrak{g}_-^*$ for $n = 2$; $\mathbb{V}_{II} = \Lambda^{1,1}_{\mathbb{C}} \mathfrak{g}_-^* \otimes_{\mathbb{C}} \mathfrak{sl}(\mathfrak{g}_-, \mathbb{C})$; $\mathbb{V}_{III} = \Lambda^{0,2}_{\mathbb{C}} \mathfrak{g}_-^* \otimes_{\mathbb{C}} \mathfrak{g}_-^*.

Theorem (BK & V. Matveev & D. The 2014)

<table>
<thead>
<tr>
<th>SubMax</th>
<th>$n = 2$</th>
<th>$n = 3$</th>
<th>$n = 4$</th>
<th>$n = 5$</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>6</td>
<td>16</td>
<td>26</td>
<td>40</td>
<td>$2n^2 - 4n + 10$</td>
</tr>
<tr>
<td>Type II</td>
<td>8</td>
<td>16</td>
<td>28</td>
<td>44</td>
<td>$2n^2 - 2n + 4$</td>
</tr>
<tr>
<td>Type III</td>
<td>8</td>
<td>18</td>
<td>28</td>
<td>42</td>
<td>$2n^2 - 4n + 12$</td>
</tr>
</tbody>
</table>

The middle line (winning submax) is the only candidate and it is metrizable C-proj structure (in contrast with the real case!).
Examples of submaximal symmetric models

General signature conformal str: The submaximal structure is unique and is given by the pp-wave metric

\[ds^2 = dx
dy + dz
dt + y^2 dt^2 + \epsilon_1 du_1^2 + \cdots + \epsilon_{n-4} du_{n-4}^2. \]

It is Einstein (Ricci-flat) in any dimension and self-dual in 4D. Its geodesic flow is integrable in both classical and quantum sense.
Examples of submaximal symmetric models

General signature conformal str: The submaximal structure is unique and is given by the pp-wave metric

\[ds^2 = dx\, dy + dz\, dt + y^2 dt^2 + \epsilon_1 du_1^2 + \cdots + \epsilon_{n-4} du_{n-4}^2. \]

It is Einstein (Ricci-flat) in any dimension and self-dual in 4D. Its geodesic flow is integrable in both classical and quantum sense.

(2,3,5)-distributions: The submaximal structures have 1D moduli. They are parametrized by the Monge underdetermined ODE \(y' = (z'')^m \), \(2m - 1 \notin \{ \pm 1/3, \pm 1, \pm 3 \} \), and also a separate model \(y' = \ln(z'') \). Deformations of these structures lead via Fefferman-Graham and Nurowski constructions to Ricci flat metrics with special holonomies \((G_2, \text{Heiseinberg}) \).
Examples of submaximal symmetric models

General signature conformal str: The submaximal structure is unique and is given by the pp-wave metric

\[ds^2 = dx \, dy + dz \, dt + y^2 \, dt^2 + \epsilon_1 du_1^2 + \cdots + \epsilon_{n-4} du_{n-4}^2. \]

It is Einstein (Ricci-flat) in any dimension and self-dual in 4D. Its geodesic flow is integrable in both classical and quantum sense.

(2,3,5)-distributions: The submaximal structures have 1D moduli. They are parametrized by the Monge underdetermined ODE \(y' = (z'')^m \), \(2m - 1 \not\in \{ \pm 1/3, \pm 1, \pm 3 \} \), and also a separate model \(y' = \ln(z'') \). Deformations of these structures lead via Fefferman-Graham and Nurowski constructions to Ricci flat metrics with special holonomies (\(G_2 \), Heisenberg).

3rd ord ODE mod contact: Maximal structures \(y''' = 0 \) have 10D symm. Submaximal structures have 5D symm, and are linearizable (with constant coefficients). They are exactly solvable.
Scalar 2nd ord ODE mod point: Submaximal metrizable models here represent super-integrable geodesic flows. Non-metrizable equations are also integrable (solvable in quadratures).
Scalar 2nd ord ODE mod point: Submaximal metrizable models here represent super-integrable geodesic flows. Non-metrizable equations are also integrable (solvable in quadratures).

Systems of 2nd ord ODE: The submaximal structure is given by

\[\ddot{x}_1 = 0, \ldots, \ddot{x}_{n-1} = 0, \quad \dot{x}_n = \dot{x}_1^3. \]

It is solvable via simple quadrature, and is an integrable extension of the flat ODE system in \((n - 1)\) dim (uncoupled harmonic oscillators). Moreover for this system Fels’ \(T\)-torsion vanishes, and so it determines an integrable Segré structure.
Scalar 2nd ord ODE mod point: Submaximal metrizable models here represent super-integrable geodesic flows. Non-metrizable equations are also integrable (solvable in quadratures).

Systems of 2nd ord ODE: The submaximal structure is given by

\[\ddot{x}_1 = 0, \ldots, \ddot{x}_{n-1} = 0, \quad \ddot{x}_n = \dot{x}_1^3. \]

It is solvable via simple quadrature, and is an integrable extension of the flat ODE system in \((n - 1)\) dim (uncoupled harmonic oscillators). Moreover for this system Fels’ \(T\)-torsion vanishes, and so it determines an integrable Segré structure.

Projective structures: Every projective structure can be written via its equation of geodesics (defined up to projective reparametrization). The submaximal model then writes

\[\ddot{x}_1 = x_1 \dot{x}_1^2 \dot{x}_2, \quad \ddot{x}_2 = x_1 \dot{x}_1 \dot{x}_2^2, \quad \ddot{x}_3 = x_1 \dot{x}_1 \dot{x}_2 \dot{x}_3, \ldots, \quad \ddot{x}_n = x_1 \dot{x}_1 \dot{x}_2 \dot{x}_n. \]

This system is solvable via quadrature. Its Fels’ \(S\)-curvature is 0.
Generalizations: infinite-dimensional pseudogroups

◊ Parabolic Monge-Ampère equations in 2D have the symmetry pseudogroup depending on at most 3 function of 3 arguments. Otherwise the symmetry has functions with \(\leq 2 \) arguments.

◊ Cauchy-Riemann equation for automorphisms has the maximal functional dimension for to the (integrable) complex structure. In the submaximal cases integrability is manifested by the existence of pseudoholomorphic foliations.

◊ The maximal symmetry of integrable symplectic Monge-Ampère equations in 4D is achieved in the Hirota type: 4 functions of 2 arguments, \(SDiff(2)^4 \) (BK & Morozov). The next size is unknown.

◊ Linearization of the 2nd order dispersionless PDE in 3D is flatness (maximal symmetry) of the conformal metric (symbol). The submaximal property of the symbol waits interpretation. Integrability is expressible via the geometry of the formal linearization (BK & Ferapontov).