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Reminder: diagonalisable systems of hydrodynamic type

Diagonal systems in Riemann invariants (Haantjes tensor is identically zero):
R! = v'(R)R..

Commuting flows:

R! = w'(R)R..

T

Commutativity conditions:
O;w _ ;v
wl —wt v — ot

Equivalent linear system for w®:

. . . 9.0t
oiw' = a;ij(w) —w' i = ———.

J ij ( ) S0 — o
Compatibility conditions (equivalent to 241 dimensional n-wave equations):
Oraij = aijkar; + aijajk — QijQif-

Thus, characteristic speeds w® of commuting flows can be viewed as components
of the linear Lax system for the n-wave equations.

Integrability = existence of an infinite commutative hierarchy.



Integrable systems of Jordan block type

Upper triangular Toeplitz systems (3-component case; Haantjes tensor is
identically zero):

R! vl 02 3 R!
R? = 0 ol 22 R?
R3 0 0 ol! R3
t x

Commuting flows have the same upper triangular Toeplitz form.

One can also consider block-diagonal systems with upper-triangular Toeplitz

blocks of different sizes.

Integrability = existence of an infinite commutative hierarchy.

Applications of systems of Jordan block type:
e reductions of multi-dimensional dispersionless integrable systems;
e principal hierarchies of non-semisimple Frobenius manifolds;

e delta-functional reductions of the kinetic equation for soliton gas.



Two-component hierarchy of Jordan block type

R! (PR R1
R? 0 o R?

t x

where 19 = 111 + 2wy is the Lax equation of the mKP hierarchy (low indices
denote differentiation by R!, R?).

Fixing w and varying @ we obtain commuting flows of the hierarchy.



Three-component hierarchy of Jordan block type

R1 VoY1 Y11 +wir R!
R? = 0 () 1 R2
R3 0 0 1 R3
t x

where w solves the mKP equation,
2
dwiz + 6wiwil —wii11 — 3waz — bwawil = 0,

and 1 satisfies the corresponding linear Lax equations:

3
Yo = P11 + 2w, Y3 = Y111 + 3wir1 + §(w2 + w11 + w1,

Fixing w and varying @ we obtain commuting flows of the hierarchy.

This generalises to the n-component case (higher flows of the mKP hierarchy will
appear).

Integrable hierarchies of Jordan block type are governed by the mKP hierarchy.



Hamiltonian systems of hydrodynamic type

Systems of hydrodynamic type:
R; = v} (R)R].

Hamiltonian formulation:

. . OH . . d .
T Alj 1) — ) 1] k —
R, =A SR A g7 (R) o + b (R)R,, H /h(R) dzx.
Tsarev’s equations:

k _ k
gikV; = 9jkV;

Vkv;- = Vj’”i)
here g is a flat metric and V denotes covariant differentiation in the Levi-Civita

connection of g.

Theorem. A Hamiltonian system of Jordan block type must be linearly
81)1 _ O
ORl — 7

degenerate:

There is no analogous condition for diagonalisable systems!



Linear degeneracy conditions

For general systems R! = v;- (R)RZ:

A system is linearly degenerate if the Lie derivative of every eigenvalue of the

matrix v;- along the corresponding eigenvector is zero.

For diagonalisable systems R! = v*(R)RL:

O 7
U. =0, 2=1,...,n.
OR?
For systems of Jordan block type (there is only one eigenvalue v'):
ov't
= 0.
OR1

Invariant formulation of linear degeneracy conditions:
Vi v" P4+ Vo 2+ .+ Vi, =0;
here det(AE — v) = A™ + fiA" 1 + foA" =2 4+ ... + f, is the characteristic

of of
BRI’ " DRT

polynomial of matrix v, Vf = ( ) is the gradient, and v* denotes

k-th power of the matrix v.



Example: kinetic equation for soliton
El’s integro-differential kinetic equation for dense soliton gas:
ft+(sf)z =0,
s(m) = S(n) + [~ G, ) fF(W)[s(w) — s(n)] du,
f(n) = f(n,x,t) is the distribution function;
s(n) = s(n, x,t) is the associated transport velocity;
n is a spectral parameter in the Lax pair of dispersive hydrodynamics;
S(n) is a free soliton velocity;

G(u,n) is a phase shift due to pairwise soliton collisions, G(u,n) = G(n, ).

KdV case corresponds to

1 _
Stm) =4n*,  G(u,n) = - loglm :



Delta-functional reduction of the kinetic equation

Delta-functional ansatz (El, Kamchatnov, Pavlov, Zykov, 2011 and Pavlov,
Taranov, El, 2012):

flna,t) = u'(z,t) 5(n—n'(z,1)).
=1

Quasilinear system for u* and n*:
ut—(uv)xv Ng = UV Ny,
where v* can be recovered from the auxiliary linear system

=—S(n") + > _"uFr ), & =GMm"n).
k+#£1

This 2n X 2n system is linearly degenerate, and can be written in the form of n
Jordan blocks of size 2 x 2.
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Transformation into n Jordan blocks of size 2 x 2

In the new dependent variables r*, n* where
k;éz

the above system reduces to n Jordan blocks of size 2 x 2:
ri =v'rh +p'nk,  mp=v'nl.

The coefficients v* and p* can be expressed in terms of (r,n)—variables as follows.
Let us introduce the n X n matrix é with diagonal entries 71,...,r" (so that

A

€’ = r?) and off-diagonal entries €'* = G(n*,n*), k #i. Let = —é~ 1, for n = 2:

Mm>
I

>
I

Let 3,5 be entries of 8 (indices ¢ and k are allowed to coincide), £¥(n¥) = —S(nk):

& S 1 (L | |
= Z B vt = " Z Bri&”, p' = — <Z ef‘;;z (vF — v )uf + (51)’> :
k=1 k=1

k=1
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General solution
There is a remarkably simple formula for the general solution of the above system
ri =o'ty +p'nl,  np =,
that works for arbitrary n:
7 \/
- ¢
i — (€
e

here pu*(n*) are arbitrary functions of their arguments and the functions
©*(nt,...,n™) satisfy the relations gpfnj = (n*,nI) ) (n?), i # j, no summation.
The last n equations define n*(x,t) as implicit functions of z and ¢; then the first

n equations define r*(x,t) explicitly.
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Commuting flows
The general commuting flow of the system

rp =0y + 0Ny, M = 0N,
has the form

rr=w'ry, +q'n,, Ny =w'n,,

where
i 1 k i 1 ki /K i ki ;
wh= =" Bri¢®,  d'=— e (wh —whuP —rtut el )

where 1*(n?) are n arbitrary functions of one variable and the functions
©*(nt,...,n™) satisfy the relations goinj = eJ'yd, j # i, no summation (same
functions as above). The general corr,lmuting flow depends on 2n arbitrary
functions of one variable: n functions u*(n*), plus extra n functions coming from
©*. This demonstrates integrability of the system in question.

General solution comes from the generalized hodograph formula:

wi(r,n) =z +vi(rn)t, ¢ (r,n) =pi(r,n)t.
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Conservation laws
The general conservation law of the system
ri =o'ty +p'n,, np=v'n,

has the form
Zuw (77)+Z<7’(77) Zuww (n)+ZT"(n)

here o*(n*) are arbitrary functions of one variable, the functions 7¢(n*) can be
recovered from the equations (7%)’ = (¢*)’¢* and the functions ¥*(nt,...,n")
satisfy the equations ¢fn ;= (07)'€9, j #i. The general conservation law
depends on 2n arbitrary functions of one variable: n functions o*(n'), plus extra

n functions coming from *.

14



Hamiltonian formulation

Starting from n = 2, the requirement of existence of a local Hamiltonian structure
implies separability of the 2-soliton phase shift G(n',n?), namely,

G 1,2 G=G 1G 2, which leads to the three different cases:

(a) G(nt,n?) = p1(n1)w2(n?) (general separable case);
(b) G(nt,n?) = ¢(n') (partially inhomogeneous hard rod gas);

(c) G(n',n?) = —a = const, hard rod gas.

In all these cases, the corresponding system possesses infinitely many local
compatible Hamiltonian structures, see joint paper with P. Vergallo for explicit

formulae.

Question: Is it possible to isolate other two-soliton phase shifts G by looking

for nonlocal Hamiltonian structures?
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