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Reminder: diagonalisable systems of hydrodynamic type

Diagonal systems in Riemann invariants (Haantjes tensor is identically zero):

Rit = vi(R)Rix.

Commuting flows:

Riτ = wi(R)Rix.

Commutativity conditions:

∂jw
i

wj − wi
=

∂jv
i

vj − vi
.

Equivalent linear system for wi:

∂jw
i = aij(w

j − wi), aij ≡
∂jv

i

vj − vi
.

Compatibility conditions (equivalent to 2+1 dimensional n-wave equations):

∂kaij = aikakj + aijajk − aijaik.

Thus, characteristic speeds wi of commuting flows can be viewed as components

of the linear Lax system for the n-wave equations.

Integrability ≡ existence of an infinite commutative hierarchy.
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Integrable systems of Jordan block type

Upper triangular Toeplitz systems (3-component case; Haantjes tensor is

identically zero): 
R1

R2

R3


t

=


v1 v2 v3

0 v1 v2

0 0 v1




R1

R2

R3


x

.

Commuting flows have the same upper triangular Toeplitz form.

One can also consider block-diagonal systems with upper-triangular Toeplitz

blocks of different sizes.

Integrability ≡ existence of an infinite commutative hierarchy.

Applications of systems of Jordan block type:

• reductions of multi-dimensional dispersionless integrable systems;

• principal hierarchies of non-semisimple Frobenius manifolds;

• delta-functional reductions of the kinetic equation for soliton gas.
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Two-component hierarchy of Jordan block type

 R1

R2


t

=

 ψ ψ1

0 ψ

 R1

R2


x

where ψ2 = ψ11 + 2w1ψ1 is the Lax equation of the mKP hierarchy (low indices

denote differentiation by R1, R2).

Fixing w and varying ψ we obtain commuting flows of the hierarchy.
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Three-component hierarchy of Jordan block type


R1

R2

R3


t

=


ψ ψ1 ψ11 + w1ψ1

0 ψ ψ1

0 0 ψ




R1

R2

R3


x

where w solves the mKP equation,

4w13 + 6w2
1w11 − w1111 − 3w22 − 6w2w11 = 0,

and ψ satisfies the corresponding linear Lax equations:

ψ2 = ψ11 + 2w1ψ1, ψ3 = ψ111 + 3w1ψ11 +
3

2
(w2 + w11 + w2

1)ψ1.

Fixing w and varying ψ we obtain commuting flows of the hierarchy.

This generalises to the n-component case (higher flows of the mKP hierarchy will

appear).

Integrable hierarchies of Jordan block type are governed by the mKP hierarchy.
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Hamiltonian systems of hydrodynamic type

Systems of hydrodynamic type:

Rit = vij(R)Rjx.

Hamiltonian formulation:

Rit = Aij
δH

δRj
, Aij = gij(R)

d

dx
+ bijk (R)Rkx, H =

∫
h(R) dx.

Tsarev’s equations:

gikv
k
j = gjkv

k
i ,

∇kvij = ∇jvik,

here g is a flat metric and ∇ denotes covariant differentiation in the Levi-Civita

connection of g.

Theorem. A Hamiltonian system of Jordan block type must be linearly

degenerate: ∂v1

∂R1 = 0.

There is no analogous condition for diagonalisable systems!
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Linear degeneracy conditions

For general systems Rit = vij(R)Rjx:

A system is linearly degenerate if the Lie derivative of every eigenvalue of the

matrix vij along the corresponding eigenvector is zero.

For diagonalisable systems Rit = vi(R)Rix:

∂vi

∂Ri
= 0, i = 1, . . . , n.

For systems of Jordan block type (there is only one eigenvalue v1):

∂v1

∂R1
= 0.

Invariant formulation of linear degeneracy conditions:

∇f1 vn−1 +∇f2 vn−2 + . . .+∇fn = 0;

here det(λE − v) = λn + f1λn−1 + f2λn−2 + . . .+ fn is the characteristic

polynomial of matrix v, ∇f = ( ∂f
∂R1 , . . . ,

∂f
∂Rn ) is the gradient, and vk denotes

k-th power of the matrix v.

8



Example: kinetic equation for soliton

El’s integro-differential kinetic equation for dense soliton gas:

ft + (sf)x = 0,

s(η) = S(η) +
∫∞
0 G(µ, η)f(µ)[s(µ)− s(η)] dµ,

f(η) = f(η, x, t) is the distribution function;

s(η) = s(η, x, t) is the associated transport velocity;

η is a spectral parameter in the Lax pair of dispersive hydrodynamics;

S(η) is a free soliton velocity;

G(µ, η) is a phase shift due to pairwise soliton collisions, G(µ, η) = G(η, µ).

KdV case corresponds to

S(η) = 4η2, G(µ, η) =
1

ηµ
log |

η − µ
η + µ

|.
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Delta-functional reduction of the kinetic equation

Delta-functional ansatz (El, Kamchatnov, Pavlov, Zykov, 2011 and Pavlov,

Taranov, El, 2012):

f(η, x, t) =

n∑
i=1

ui(x, t) δ(η − ηi(x, t)).

Quasilinear system for ui and ηi:

uit = (uivi)x, ηit = viηix,

where vi can be recovered from the auxiliary linear system

vi = −S(ηi) +
∑
k 6=i

εkiuk(vk − vi), εki = G(ηk, ηi).

This 2n× 2n system is linearly degenerate, and can be written in the form of n

Jordan blocks of size 2× 2.
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Transformation into n Jordan blocks of size 2× 2

In the new dependent variables ri, ηi where

ri = −(1 +
∑
k 6=i

εkiuk)/ui,

the above system reduces to n Jordan blocks of size 2× 2:

rit = virix + piηix, ηit = viηix.

The coefficients vi and pi can be expressed in terms of (r, η)−variables as follows.

Let us introduce the n× n matrix ε̂ with diagonal entries r1, . . . , rn (so that

εii = ri) and off-diagonal entries εik = G(ηi, ηk), k 6= i. Let β̂ = −ε̂−1, for n = 2:

ε̂ =

 r1 ε12

ε12 r2

 , β̂ =
1

r1r2 − (ε12)2

 −r2 ε12

ε12 −r1

 .

Let βik be entries of β̂ (indices i and k are allowed to coincide), ξk(ηk) = −S(ηk):

ui =
n∑
k=1

βki, vi =
1

ui

n∑
k=1

βkiξ
k, pi =

1

ui

(
n∑
k=1

εki
,ηi

(vk − vi)uk + (ξi)′

)
.
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General solution

There is a remarkably simple formula for the general solution of the above system

rit = virix + piηix, ηit = viηix

that works for arbitrary n:

ri =
ϕi
,ηi
− (ξi)′ t

µi
, ϕi(η1, . . . , ηn) = x+ ξi(ηi) t;

here µi(ηi) are arbitrary functions of their arguments and the functions

ϕi(η1, . . . , ηn) satisfy the relations ϕi
,ηj

= εji(ηi, ηj)µj(ηj), i 6= j, no summation.

The last n equations define ηi(x, t) as implicit functions of x and t; then the first

n equations define ri(x, t) explicitly.
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Commuting flows

The general commuting flow of the system

rit = virix + piηix, ηit = viηix,

has the form

riτ = wirix + qiηix, ηiτ = wiηix,

where

wi =
1

ui

n∑
k=1

βkiϕ
k, qi =

1

ui

(
n∑
k=1

εki
,ηi

(wk − wi)uk − riµi + ϕi
,ηi

)
,

where µi(ηi) are n arbitrary functions of one variable and the functions

ϕi(η1, . . . , ηn) satisfy the relations ϕi
,ηj

= εjiµj , j 6= i, no summation (same

functions as above). The general commuting flow depends on 2n arbitrary

functions of one variable: n functions µi(ηi), plus extra n functions coming from

ϕi. This demonstrates integrability of the system in question.

General solution comes from the generalized hodograph formula:

wi(r, η) = x+ vi(r, η) t, qi(r, η) = pi(r, η) t.
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Conservation laws

The general conservation law of the system

rit = virix + piηix, ηit = viηix,

has the form[ n∑
i=1

uiψi(η) +

n∑
i=1

σi(ηi)
]
t

=
[ n∑
i=1

uiviψi(η) +

n∑
i=1

τ i(ηi)
]
x
;

here σi(ηi) are arbitrary functions of one variable, the functions τ i(ηi) can be

recovered from the equations (τ i)′ = (σi)′ξi and the functions ψi(η1, . . . , ηn)

satisfy the equations ψi
,ηj

= (σj)′εij , j 6= i. The general conservation law

depends on 2n arbitrary functions of one variable: n functions σi(ηi), plus extra

n functions coming from ψi.
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Hamiltonian formulation

Starting from n = 2, the requirement of existence of a local Hamiltonian structure

implies separability of the 2-soliton phase shift G(η1, η2), namely,

G,η1η2 G = G,η1G,η2 , which leads to the three different cases:

(a) G(η1, η2) = ϕ1(η1)ϕ2(η2) (general separable case);

(b) G(η1, η2) = ϕ(η1) (partially inhomogeneous hard rod gas);

(c) G(η1, η2) = −a = const, hard rod gas.

In all these cases, the corresponding system possesses infinitely many local

compatible Hamiltonian structures, see joint paper with P. Vergallo for explicit

formulae.

Question: Is it possible to isolate other two-soliton phase shifts G by looking

for nonlocal Hamiltonian structures?
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