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Plan:

• First-order integrable Lagrangians.

• Second-order integrable Lagrangians in 2D:

– hydrodynamic form of Euler-Lagrange equations;

– integrability conditions;

– equivalence group;

– link to WDVV;

– partial classification results.

• Second-order integrable Lagrangians in 3D:

– Lagrangian densities coming from KP hierarchy;

– Lagrangian densities of the form f(uxy, uxt, uyt).

E.V. Ferapontov, M.V. Pavlov, Lingling Xue, Second-order integrable Lagrangians and

WDVV equations, Lett. Math. Phys. (2021) 111:58.
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First-order integrable Lagrangians

Consider 3D first-order Lagrangians of the form∫
f(ux, uy , ut) dxdydt.

The corresponding Euler-Lagrange equations are second-order PDEs for u(x, y, t):

(fux )x + (fuy )y + (fut )t = 0.

Integrability conditions → Lagrangian densities f with interesting properties.

In 2D, every Euler-Lagrange equation of the form

(fux )x + (fuy )y = 0

is automatically integrable (linearisable via hodograph transformation).

E.V. Ferapontov, K.R. Khusnutdinova and S.P. Tsarev, On a class of three-dimensional

integrable Lagrangians, Comm. Math. Phys. 261, no. 1 (2006) 225-243.

E.V. Ferapontov and A.V. Odesskii, Integrable Lagrangians and modular forms,

Journal of Geometry and Physics 60, no. 6-8 (2010) 896-906.

F. Cléry, E.V. Ferapontov, A.V. Odesskii, D. Zagier, Integrable Lagrangians and

Picard modular forms, work in progress.
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Second-order integrable Lagrangians

Consider 2D second-order Lagrangians of the form∫
f(uxx, uxy , uyy) dxdy.

The corresponding Euler-Lagrange equations are fourth-order PDEs for u(x, y):

(fuxx )xx + (fuxy )xy + (fuyy )yy = 0.

Their integrability theory is nontrivial already in 2D. We will establish a link of

integrable Lagrangian densities f to WDVV prepotentials of the form

F (t1, t2, t3, t4) =
1

2
t21t4 + t1t2t3 +W (t2, t3, t4).

Second-order integrable Lagrangians in 3D,∫
f(uxx, uxy , uxt, uyy , uyt, utt) dxdydt,

are also an interesting object of study (no direct link to WDVV yet).
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Hydrodynamic form of Euler-Lagrange equation

The Euler-Lagrange equation,

(fuxx )xx + (fuxy )xy + (fuyy )yy = 0,

is a fourth-order PDE for u(x, y). Setting a = uxx, b = uxy , c = uyy we have

bx = ay , cx = by , (fa)xx + (fb)xy + (fc)yy = 0.

Introducing an auxiliary variable p via the relations

py = − (fa)x , px = (fb)x + (fc)y ,

we can rewrite the above PDE as a first-order conservative system:

ay = bx, by = cx, (fc)y = (p− fb)x, py = −(fa)x.

The integrability conditions can be obtained from the requirement of

diagonalisability of this system, which is equivalent to the vanishing of its

Haantjes tensor. This imposes constraints for the Lagrangian density f(a, b, c).
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Integrability conditions

These form a third-order PDE system for the Lagrangian density f(a, b, c):

(fabfcc − facfbc)a = (fbcfaa − fabfac)c,
(faafcc − f2ac)a = (faafbb − f2ab)c,
(faafcc − f2ac)c = (fccfbb − f2bc)a,

(fbbfcc − f2bc)b = 2(fabfcc − facfbc)c,
(fbbfaa − f2ab)b = 2(fbcfaa − facfab)a.

This system is in involution, possesses a Lax pair, and its general solution

depends on six arbitrary functions of one variable. Symmetry group:

U → (AU +B)(CU +D)−1, f →
f

det(CU +D)
,

where U =

(
a b

b c

)
and A,B,C,D are 2× 2 matrices such that

(
A B

C D

)
belongs to the symplectic group Sp(4,R). Furthermore,

f → λ0f + λ1(ac− b2) + λ2a+ λ3b+ λ4c+ λ5.

Thus, density f transforms as a genus two Siegel modular form of weight −1.
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WDVV equations

Let F (u1, . . . , un) be a function of n independent variables (prepotential) such

that the matrix

ηij = Fu1uiuj

is constant and non-degenerate (thus, u1 is marked variable), and the coefficients

cijk = ηisFusujuk

satisfy the associativity condition csijc
r
sk = cskjc

r
si. This gives a system of

third-order PDEs for the prepotential F .

Commuting ‘primary’ flows:

uitα = ciαku
k
x = (ηisFusuα )x

where tα are the higher ‘times’. Primary flows are Hamiltonian with the

Hamiltonian operator ηis d
dx

and the Hamiltonian density Fuα .

We will need a particular case of the general construction when n = 4 and the

matrix η is anti-diagonal:

F (u1, u2, u3, u4) =
1

2
(u1)2u4 + u1u2u3 +W (u2, u3, u4).
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WDVV equations: continuation

Setting (u1, u2, u3, u4) = (P,B,C,A) we obtain

F =
1

2
P 2A+ PBC +W (A,B,C).

In this case WDVV equations reduce to the following system for W :

WAAA = W 2
ABC +WABBWACC −WAABWBCC −WAACWBBC ,

WAAB = WBBBWACC −WABBWBCC ,

WAAC = WABBWCCC −WACCWBBC ,

2WABC = WBBBWCCC −WBBCWBCC .

These equations are equivalent to the integrability conditions for Lagrangian

densities f(a, b, c) discussed above.
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Integrable Lagrangians and WDVV equations

Recall the first-order conservative form of Euler-Lagrange equation:

ay = bx, by = cx, (fc)y = (p− fb)x, py = −(fa)x.

Applying partial Legendre transformation, f(a, b, c)→ h(A,B,C), where

A = a, B = b, C = fc, h = cfc − f, hA = −fa, hB = −fb, hC = c, P = p,

we obtain Hamiltonian system

Ay = Bx, By = (hC)x, Cy = (P + hB)x, Py = (hA)x, (1)

with the Hamiltonian density h(A,B,C) +BP and Hamiltonian operator ηij d
dx

where η is 4× 4 antidiagonal matrix. Setting h = WC we identify (1) as one of

the primary flows corresponding to the WDVV prepotential of the form

F =
1

2
P 2A+ PBC +W (A,B,C).

Explicit link between Lagrangian density f(a, b, c) and WDVV prepotential

W (A,B,C) is as follows:

a = A, b = B, c = WCC , f = CWCC −WC , fa = −WAC , fb = −WBC , fc = C.
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Partial classification results

Lagrangian for integrable geodesic flows on 2-torus:

f = uxy(u2xx − u2yy) + α(u2xx − u2yy) + uxy(βuxx + γuyy).

Lagrangian governing Newtonian equations with 5th order polynomial integral:

f = u2yy + u2xxuyy + uxxu
2
xy +

1

4
u4xx.

Modular Lagrangian:

f = euxxg(uxy , uyy), g(b, c) = [∆(ic/π)]−1/8θ1(b, ic/π).

Lagrangians in terms of dilogarithms:

f = αq(uxy) + (euxx + euyy ) sinhuxy , q(b) = Li2(−eb)− Li2(eb).

where Li2 is the dilogarithm function: (Li2(x))′ = − ln(1−x)
x

. Many other

integrable Lagrangian densities come from known WDVV prepotentials via the

above link.
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Lagrangian densities from polynomial prepotentials

Taking polynomial prepotentials F associated with finite Coxeter groups W we

can compute the corresponding integrable Lagrangian densities f(uxx, uxy , uyy)

= f(a, b, c), which will in general be algebraic functions of a, b, c.

Group W (A4):

F =
1

2
t21 t4 + t1 t2 t3 +

1

2
t32 +

1

3
t43 + 6t2t

2
3t4 + 9t22t

2
4 + 24t23t

3
4 +

216

5
t64;

f =
(
c− 48 a3 − 12 ab

)3/2
.

Swapping t2 and t3 (which is an obvious symmetry of WDVV equations) and

following the same procedure gives a polynomial density f :

F =
1

2
t21 t4 + t1 t2 t3 +

1

2
t33 +

1

3
t42 + 6t3t

2
2t4 + 9t23t

2
4 + 24t22t

3
4 +

216

5
t64;

f = 54 a4 − 6 a2c+
1

6
c2 − 6 b2a.
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Second-order integrable Lagrangians in 3D

Let us consider Lagrangians of the form∫
f(uxx, uxy , uxt, uyy , uyt, utt) dxdydt.

Equivalence group:

U → (AU +B)(CU +D)−1, f →
f

det(CU +D)
,

where U is the Hessian matrix of u(x, y, t) and A,B,C,D are 3× 3 matrices such

that

(
A B

C D

)
belongs to the symplectic group Sp(6,R). Furthermore,

integrable Lagrangians are invariant under addition of a ‘null-Lagrangian’:

f → λ0f +
∑

λσUσ ,

where Uσ denote all possible minors of the Hessian matrix U. Density f

transforms as a genus three Siegel modular form of weight −1. Integrability

conditions in 3D can be obtained by taking travelling wave reductions to 2D and

imposing 2D integrability conditions. This gives a (large) PDE system for f .
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Lagrangian densities coming from KP hierarchy

The following 3D Lagrangian densities describe some higher flows of the KP

hierarchy; dispersive terms are shown in red.

f = u
2
yy − uxxuxt + u

2
xxuyy + uxxu

2
xy +

1

4
u
4
xx +

ε2

8
u
2
xxuxxxx −

ε2

2
u
2
xxy +

ε4

80
u
2
xxxx

f =

(
uxy − utt − uxxuxt +

1

3
u
3
xx +

ε2

12
(4uxxuxxxx + 3u

2
xxx − 4uxxxt) +

ε4

45
uxxxxxx

)3/2

f = u
−2
xt

(
uxtuyt − uxxu

2
xt +

ε2

4
u
2
xxt −

ε2

3
uxtuxxxt

)3/2
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Lagrangian densities of the form f(uxy, uxt, uyt)

Set uxy = v3, uxt = v2, uyt = v1 and consider a spherical triangle with interior

angles A,B,C and side lengths a, b, c such that

tanh v1 = cos a, tanh v2 = cos b, tanh v3 = cos c.

The spherical law of cosines is:

cos a = cos b cos c+ sin b sin c cosA,

cos b = cos a cos c+ sin a sin c cosB,

cos c = cos a cos b+ sin a sin b cosC.

The integrability conditions for f imply the following Schläfly-type formula:

df = (A− π/2)
da

sin a
+ (B − π/2)

db

sin b
+ (C − π/2)

dc

sin c
.

Recall that the classical Schläfly formula expresses the differential of the volume

of a spherical polyhedron in terms of its side lengths and dihedral angles.
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Explicit formula for f(v1, v2, v3)

General solution:

f(v1, v2, v3) = π
2

(v1 + v2 + v3)− (Av1 +Bv2 + Cv3)

−L
(

2π−A−B−C
2

)
− L

(
A+B−C

2

)
− L

(
A+C−B

2

)
− L

(
B+C−A

2

)
where L denotes the Lobachevsky function, L(s) = −

∫ s
0 ln cos ξ dξ. The function

f has the meaning of a certain hyperbolic volume.

Integrable Lagrangian densities in terms of Siegel modular forms: work in

progress (with A. Odesskii, M. Pavlov, L. Xue).

15


