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Plan:

• Einstein-Weyl geometry in 3D.

• Einstein-Weyl structures via the Manakov-Santini system.

• Hirota type equations in 3D with Einstein-Weyl conformal structure.

• Second-order PDEs in 3D with Einstein-Weyl conformal structure:

– Einstein-Weyl geometry as a dispersionless integrability test;

– Partial classification results;

– Dispersionless Lax pairs;

– Rigidity conjecture.

Based on:

S. Berjawi, E.V. Ferapontov, B. Kruglikov, V.S. Novikov, Second-order PDEs in

3D with Einstein-Weyl conformal structure, (2021); arXiv:2104.02716.
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Einstein-Weyl geometry in 3D

Einstein-Weyl geometry is a triple (D, g, ω) where D is a symmetric

connection, g is a conformal structure and ω is a covector such that

Dkgij = ωkgij , R(ij) = Λgij .

Here R(ij) is the symmetrised Ricci tensor of D and Λ is some function

(the first set of equations defines D uniquely in terms of g and ω).

Conformal invariance: D→ D, g → λg, ω → ω + d lnλ.

Theorem (Cartan, 1941): In 3D, the triple (D, g, ω) satisfies the

Einstein-Weyl equations if and only if there exists a two-parameter

family of surfaces that are totally geodesic with respect to D and null

with respect to g.

Generic Einstein-Weyl structures depend on four arbitrary functions of

two variables.

3D Einstein-Weyl equations are integrable (Hitchin, 1980).
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Einstein-Weyl structures via the Manakov-Santini system

The Manakov-Santini system (2006) is

uxt−uyy+(uux)x+vxuxy−vyuxx = 0, vxt−vyy+uvxx+vxvxy−vyvxx = 0.

Its solutions give rise to Einstein-Weyl structures (Dunajski, 2008):

g = (dy − vxdt)2 − 4(dx− (u− vy)dt)dt,

ω = −vxxdy + (4ux − 2vxy + vxvxx)dt.

All 3D Einstein-Weyl structures arise in this way! Lax pair [X,Y ] = 0:

X = ∂y+(λ−vx)∂x+ux∂λ, Y = ∂t−(λ2−λvx+vy−u)∂x−(λux−uy)∂λ.

Projecting integral surfaces of the distribution spanned by X,Y from

(x, y, t, λ)-space to (x, y, t)-space one obtains Cartan’s two-parameter

family of null totally geodesic surfaces.

M. Dunajski, E.V. Ferapontov and B. Kruglikov, On the Einstein-Weyl and

conformal self-duality equations, J. Math. Phys. 56, 083501 (2015).
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Hirota type equations in 3D and conformal structures

Hirota type equation for u(x1, x2, x3):

F (uij) = 0.

Principal symbol:
∂F

∂uij
pipj = gij pipj .

Conformal structure (depends on a solution):

g = gij dx
idxj , (gij is the inverse matrix of gij).

Example of dKP equation:

uxt −
1

2
u2xx − uyy = 0.

Principal symbol:

pxpt − uxxp2x − p2y .

Conformal structure:

g = 4dxdt− dy2 + 4uxxdt
2.
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Hirota type equations in 3D with Einstein-Weyl conformal

structure

What can we say about Hirota type equations

F (uij) = 0

whose conformal structure is Einstein-Weyl on every solution (equations

with EW property)? Here is a summary of known results:

• covector ω is given by explicit formula in terms of g:

ωs = 2gsjDxk (gjk) +Dxs(ln det gij).

• Einstein-Weyl property of conformal structure is equivalent to the

existence of a Lax pair in λ-dependent commuting vector fields.

• Einstein-Weyl property of conformal structure is equivalent to

integrability by the method of hydrodynamic reductions.

E.V. Ferapontov and B. Kruglikov, Dispersionless integrable systems in 3D and

Einstein-Weyl geometry, J. Diff. Geom. 97 (2014) 215-254.
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Examples of integrable Hirota type equations in 3D

dKP equation:

uxt −
1

2
u2
xx − uyy = 0.

Boyer-Finley equation:

uxx + uyy − eutt = 0.

Dispersionless Hirota equation:

euxx + euyy − eutt = 0.

Example with modular coefficients (Pavlov, 2003):

utt −
uxy
uxt
− 1

6
f(uxx)u2

xt = 0

where f satisfies the Chazy equation f ′′′ + 2ff ′′ − 3(f ′)2 = 0. Generic

integrable Hirota type equations depend on 21 arbitrary parameters

(Ferapontov, Hadjikos, Khusnutdinova, 2010), and can be expressed via

genus three even theta constants (Cléry, Ferapontov, 2020).
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Second-order PDEs with Einstein-Weyl conformal structure

What can we say about general second-order PDEs in 3D,

F (xi, u, ui, uij) = 0,

whose conformal structure is Einstein-Weyl on every solution? Here is a brief

summary of our results in this direction:

• Covector ω is given by an explicit formula in terms of the equation:

ωs = 2gsjDxk (gjk) +Dxs (ln det gij) + φs,

(here correction terms φs can also be explicitly determined), thus providing

an efficient ‘dispersionless integrability test’, as well as partial classification

results.

• Einstein-Weyl property is equivalent to the existence of a dispersionless Lax

pair in λ-dependent commuting vector fields (Calderbank, Kruglikov, 2016).

• Rigidity conjecture: a ‘generic’ (for example, non-Monge-Ampère)

second-order PDE satisfying Einstein-Weyl property can be reduced to a

dispersionless Hirota form via a suitable contact transformation.
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Partial classification results: Dunajski-Tod equations

Consider Monge-Ampère equations of the form

(utt − u)uxy − (uxt − ux)(uyt + uy) = f(x, y, t, u, ux, uy , ut).

Conformal structure:

g = (udt+ uxdx− uydy − dut)2 + 4fdxdy.

Covector ω:

ω = 2
(uxt − ux
utt − u

dx−
uyt + uy

utt − u
dy

)
+ 2R

(
dt+

uxt − ux
utt − u

dx+
uyt + uy

utt − u
dy

)
where R = Dtf

f
. Einstein-Weyl conditions impose differential constraints for f

which lead to the following (contact non-equivalent) integrable cases:

f = c2
uxuy

cosh2 ct
, f =

u2
t−u

2

(x−y)2 , f = ectux,

f = e−t(ux + ut + u), f = et(ut − u), f = ect.
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Partial classification results: quasilinear wave equations

Consider equations of the form

utt = f(x, y, t, u, ux, uy , ut)uxy .

Conformal structure:

g =
4

f
dxdy − dt2,

Covector ω:

ω = (−2Dt ln f + ϕ(t)) dt,

here ϕ(t) can also be expressed in terms of f . Einstein-Weyl conditions impose

differential constraints for f which lead to the following (contact non-equivalent)

integrable cases:

f =
sinh2(ut)
uxuy

, f =
u2
t

uxuy
, f = eut

uy
,

f = 1
uy
, f = eut

t3/2
, f = eut .
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Dispersionless Lax pairs

Consider a second-order PDE with Einstein-Weyl property. Let g and ω be the

corresponding conformal structure and covector, respectively. Let us introduce

the null coframe θ0, θ1, θ2 such that

g = 4θ0θ2 − (θ1)2.

Let V0, V1, V2 be the dual frame, and let ckij be the structure functions defined by

commutator expansions [Vi, Vj ] = ckijVk. The Lax pair is given by vector fields

X = V0 + λV1 +m∂λ, Y = V1 + λV2 + n∂λ,

where

m =( 1
2
c112 − 1

4
ω2)λ3 + ( 1

2
c102 − c212 − 1

2
ω1)λ2 + ( 1

2
c101 − c202 − 1

4
ω0)λ− c201,

n =− c012λ3 + ( 1
2
c112 − c002 + 1

4
ω2)λ2 + ( 1

2
c102 − c001 + 1

2
ω1)λ+ ( 1

2
c101 + 1

4
ω0),

here ωi are components of the Weyl covector: ω = ωiθ
i. Note that for given g

and ω, this formula is entirely ‘algebraic’. As we already know that ω can be

expressed ‘algebraically’ in terms of the equation, we conclude that

reconstruction of the Lax pair does not involve any ‘integration’ !
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Rigidity result 1

Let us consider Lagrangians of the form∫
uxuyϕ(ut) dxdydt. (1)

The requirement of integrability (EW property) of the corresponding second-order

Euler-Lagrange equation implies that the function ϕ(z) satisfies a fourth-order ODE

ϕ
′′′′

(ϕ
2
ϕ

′′ − 2ϕϕ
′2

)− 9ϕ
′2
ϕ

′′2
+ 2ϕϕ

′
ϕ

′′
ϕ

′′′
+ 8ϕ

′3
ϕ

′′′ − ϕ
2
ϕ

′′′2
= 0,

whose general solution is a modular form of weight one and level three known as the

Eisenstein series E1,3(z).

Proposition. Every Lagrangian of the form∫
uxuyf(t, u, ut) dxdydt, (2)

whose Euler-Lagrange equation satisfies EW property, is equivalent to its undeformed

version (1) via a change of variables. Thus, Lagrangian (1) is rigid within the class (2).

Proof: EW property implies

f(t, u, ut) =
(guht − hugt)

2

huut + ht

ϕ

(
guut + gt

huut + ht

)
;

here h(t, u) and g(t, u) are two arbitrary functions.
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Rigidity result 2

Equations of the form

utt =
uxy

uxt

+
1

6
ϕ(uxx)u

2
xt (3)

have appeared in the classification of integrable hydrodynamic chains; the requirement

of integrability (EW property) implies that ϕ(z) must satisfy the Chazy equation:

ϕ
′′′

+ 2ϕϕ
′′ − 3ϕ

′2
= 0.

whose general solution is the Eisenstein series E2(z).

Proposition. Every equation of the form

utt =
uxy

uxt

+
1

6
f(x, u, ux, uxx)u

2
xt, (4)

which satisfies EW property, is equivalent to its undeformed version (3) via a suitable

contact transformation. In other words, equation (3) is rigid within the class (4).

Proof: EW property implies

f(x, ux, uxx) =
1

(huxuxx + hx)2
ϕ

(
guxuxx + gx

huxuxx + hx

)
+

6hux

huxuxx + hx

;

here g(x, ux) and h(x, ux) are two functions which satisfy a single constraint

guxhx − huxgx = 1.
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Discussion

1. We have studied second-order PDEs in 3D whose characteristic conformal structure

is Einstein-Weyl on every solution. A special subclass thereof are PDEs whose

characteristic conformal structure is flat on every solution (that is, has zero Cotton

tensor). We conjecture that every such PDE is contact equivalent to 4u = f where 4
denotes the Laplace operator of a constant-coefficient metric and f is some function

depending on the 1-jet of u.

2. We have demonstrated the existence of a formula for covector ω for PDEs that

satisfy EW property and do not belong to the Monge-Ampère class. We expect that

analogous formula can be constructed for all second-order PDEs whose characteristic

conformal structure is not flat on generic solution.

3. Second-order PDEs in 3D that are integrable by the method of hydrodynamic

reductions must necessarily have EW property. Since EW property (unlike

hydrodynamic integrability) is contact-invariant, it is tempting to adopt it as a

contact-invariant approach to dispersionless integrability. This would have a serious

drawback: it is unknown at present how to solve such equations. We expect, however,

that Monge-Ampère equations with Einstein-Weyl conformal structure (which is not

flat on generic solution) can be transformed, via a suitable Bäcklund transformation,

into a form to which the method of hydrodynamic reductions would already apply.
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