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Notation

Jet spaces: J∞(n,m), uj
σ

Total derivatives: Di =
∂

∂x i +∑
j ,σ

uσ i
∂

∂uj
σ

C -DOs:

∥∥∥∥∥∑
σ

aij
σDσ

∥∥∥∥∥
Space of evolutionary fields: κ
Differential equations: E = {F = 0, . . . ,DσF = 0, . . .}, F ∈ P

internal coordinates

Linearization: `E =

∥∥∥∥∥∑
σ

∂F s

∂uj
σ

Dσ

∥∥∥∥∥ , `E : κ → P

Symmetries: symE = ker`E



Notation

Horizontal complex: Λi
h =

{
∑aα1...αi dxα1 ∧·· ·∧dxαi

}
dh : Λi → Λi+1, dh = ∑dx i ∧Di

Conservation laws: ω ∈ Λn−1, dhω = 0, CL(E )

Cosymmetries: cosymE = ker`∗E ,

`∗E : P̂ → κ̂, •̂= Hom(•,Λn
h)

Gen. functions: δ : CL(E )→ cosymE

Coverings: τ : Ẽ = E ×RN(. . . ,w i , . . .)→ E

τ∗(D̃i ) = Di , [D̃i , D̃j ] = 0, C -DO ∆ 7→ ∆̃

Nonlocal variables: . . . ,w i , . . .

Abelian coverings: ρ ∈ Λ1, dhρ = 0 7→ τ
ρ

ρ = ∑Xi dx i 7→
{

D̃i = Di +Xi
∂

∂w

}



A toy example: Korteweg-de Vries equation

Consider
ut = uux +uxxx .

Internal coordinates: x , t,u = u0,u1, . . . ,uk , . . . , uk ↔ ∂ku
∂xk

Total derivatives

Dx =
∂

∂x
+u1

∂

∂u
+ · · ·+uk+1

∂

∂uk
+ . . . ,

Dt =
∂

∂ t
+(uu1 +u3)

∂

∂u
+ · · ·+Dk(uu1 +u3)

∂

∂uk
+ . . .

Linearization: `E = Dt −u1−uDx −D3
x

Adjoint: `∗E =−Dt +uDx +D3
x

(x , t)-independent symmetries: ϕ1 = u1, ϕ2 = u3 +uu1, . . .
(x , t)-independent cosymmetries: ψ1 = 1, ψ2 = u, . . .



Korteweg-de Vries equation (the T -covering)

Consider T E

ut = uux +uxxx ,

qt = qxu +qux +qxxx .

This is an ∞-dimensional covering with nonlocal variables qk and

D̃x = Dx +∑
k

qk+1
∂

∂qk
,

D̃t = Dt +∑
k

D̃k(q1u +qu1 +q3)
∂

∂qk
.

⇒ we can consider
˜̀
E (Φ) = 0; (1)

no nontrivial solution. . .



Korteweg-de Vries equation (the T -covering)

But since `E q = 0, for any cosymmetry ψ (recall that `∗E ψ = 0) the
quantity qψ is the x-component of a conservation law. In
particular,

ψ1 7→ ω1 = q dx +(qu +q2)dt,

ψ2 7→ ω2 = qu dx +(qu2 +qu−q1u1 +qu2)dt

and we introduce Q1, Q2:

∂Q1

∂x
= q,

∂Q2

∂x
= qu.

In the corresponding covering, (1) is nontrivially solvable:



Korteweg-de Vries equation (the T -covering)

Φ1 = q2 +
2
3
uq +

1
3
u1Q1,

Φ2 = q4 +
4
3
uq2 +2uq1 +

4
9
(u2 +3u2)q +

1
3
(uu1 +u3)Q1 +

1
9
u1Q2.

Assign to qi , Qj the operators

qi 7→ D i
x , Q1 7→ D−1

x , Q2 7→ D−1
x ◦u.

Then the obtained solutions can be rewritten:

R1 = D2
x +

2
3
u +

1
3
u1D−1

x ◦1,

R2 = D4
x +

4
3
uD2

x +2uDx +
4
9
(u2 +3u2)

+
1
3
(uu1 +u3)D−1

x ◦1+
1
9
u1D−1

x ◦u,

in one easily recognizes the Lenard recursion operator and its
square.



Korteweg-de Vries equation (the T -covering)

Consider the equation
˜̀∗
E (Ψ) = 0 (2)

in the same setting. Solving it provides

Ψ1 = Q1,

Ψ2 = q1 +
1
3
uQ1 +

1
3
Q3

with the corresponding C -DOs

S1 = D−1
x ◦1,

S2 = Dx +
1
3
uD−1

x ◦1+
1
3
D−1

x ◦u.

These are nonlocal symplectic structures for the KdV equation.



Korteweg-de Vries equation (the T ∗-covering)

Consider T ∗E

ut = uux +uxxx ,

pt = upx +uxxx .

Similar to T E , this is also an ∞-dimensional covering with nonlocal
variables pk and

D̃x = Dx +∑
k

pk+1
∂

∂pk
,

D̃t = Dt ++∑
k

D̃k
x (up1 +p3)

∂

∂pk
.

We can again consider
˜̀
E (Φ) = 0; (3)



Korteweg-de Vries equation (the T ∗-covering)

it has two solutions:

Φ1 = p1,

Φ2 = p3 +
2
3
up1 +

1
3
u1p.

Again, with the correspondence pi 7→ D i
x we obtain

H1 = Dx ,

H2 = D3
x +

2
3
uD1

x +
1
3
u1;

these are the first two Hamiltonian operators for the KdV.



Korteweg-de Vries equation (the T ∗-covering)
Moreover, since `E (p) = 0, for any symmetry ϕ of the KdV the
quantity pϕ is the x-component of a conservation law. In particular,

ϕ1 7→ ω1 = pu1 dx +
(
p(uu1 +u3)+p2u1−p1u2

)
.

The corresponding nonlocal variable satisfies

∂P1

∂x
= pu1

and in the extended setting a new solution arises:

Φ3 = p5 +
4
3
up3 +2u1p2 +

4
9
(u2 +3u2)p1 +

(
4
9
uu1 +

1
3
u3

)
p− 1

9
P1

with the corresponding operator

H3 = D5
x +

4
3
uD3

x +2u1D2
x +

4
9
(u2+3u2)Dx +

(
4
9
uu1 +

1
3
u3

)
− 1

9
D−1

x ◦u1.



Korteweg-de Vries equation (the T ∗-covering)

In the same setting the equation

˜̀∗
E (Ψ) = 0

is solvable with the only nontrivial solution

Ψ1 = p2 +
2
3
up− 1

3
P1

and the corresponding operator

R̄1 = D2
x +

2
3
u− 1

3
D−1

x ◦u1.

It is easily checked that R̄1 takes cosymmetries of the KdV
equation to cosymmetries.



A technical explanation (∆-coverings)

Solving equations ˜̀
E (Φ) = 0 and ˜̀∗

E (Φ) = 0 in T E and T ∗E
provides

T E T ∗E

˜̀
E (Φ) = 0 R : symE → symE H : cosymE → symE

˜̀∗
E (Ψ) = 0 S : cosymE → symE R̄ : cosymE → cosymE

The operators R, H , S , and R̄ lie in the commutative diagrams



A technical explanation (∆-coverings)

κ `E−−−−→ P

R

y yA

κ `E−−−−→ P

P̂
`∗E−−−−→ κ̂

H

y yB

κ `E−−−−→ P

κ `E−−−−→ P

S

y yC

P̂
`∗E−−−−→ κ̂

P̂
`∗E−−−−→ κ̂

R̄

y yD

P̂
`∗E−−−−→ κ̂

This is a part of a general construction.



A technical explanation (∆-coverings)

Let E be an equation and ∆: P → Q be a C -DO, where P = Γ(ξ )
and Q = Γ(ζ ). Let J∞

h (P) denote the space of horizontal jets and
Φ∆ : J∞

h (P)→ J∞

h (Q) be the corresponding morphism of vector
bundles. Then Ẽ∆ = kerΦ∆ is a subbundle in ξ∞ : J∞

h (P)→ E that
carries a natural structure of a covering, ∆-covering.
If the operator ∆ is locally given by ∆ = ‖∑σ dσ

αβ
Dσ‖ then the

subspace Ẽ∆ ⊂ J∞

h (ξ ) is described by

∑
α,σ

dσ

αβ
vα

σ = 0

and their prolongations.



A technical explanation (∆-coverings)

Let ∆′ : P ′ → Q ′ be another C -differential operator; how to find all
operators A : P → P ′ such that

∆′ ◦A = B ◦∆, (4)

i.e., such that the diagram

P ∆−−−−→ Q

A

y yB

P ′ −−−−→
∆′

Q ′

is commutative? Note that any operator A of the form A = B ′ ◦∆,
where B ′ : Q → P ′ is an arbitrary C -differential operator, is a
solution to (4). Such solutions will be called trivial.



A technical explanation (∆-coverings)

Note that since ∆′ is a C -DO it can be lifted to the covering. Let
us put into correspondence to any operator A = ‖∑σ aσ

αβ
Dσ‖ the

vector-function

Φ̃A =

(
∑
α,σ

aσ
α,1v

α
σ , . . . , ∑

α,σ

aσ

α,r ′v
α
σ

)∣∣∣∣∣
Ẽ∆

, r ′ = dimP ′.

Proposition
Classes of solutions of Equation (4) modulo trivial ones are in
one-to-one correspondence with solutions of the equation

∆̃′(Φ̃A) = 0.

Operators satisfying (4) take elements of ker∆ to those of ker∆′.



Scheme of computations (Paul Kersten)
Let an equation E be given.

Step 1: Construction of convenient internal coordinates.
Step 2: Presentation of `E and `∗E in these coordinates.
Step 3: Solution of `∗E (ψ) = 0 to find cosymmetries and

conservation laws of low order. They are needed
I as seeding elements of hierarchies;
I to construct coverings over T E associated with

cosymmetries;
I to extend the initial equation with nonlocal

variables if needed.
Step 4: Solution of `E (ϕ) = 0 to find symmetries of low

order. They are needed
I as seeding elements of hierarchies;
I to construct coverings over T ∗E associated with

symmetries.
In some cases “deeper nonlocalities” are needed.



Scheme of computations
Step 5: Construction of T E , i.e., adding `E (q) = 0 to E and

extension of T E with nonlocal variables associated
to cosymmetries.

Step 6: Solution of ˜̀
E (Φ) = 0 to construct recursion operators

for symmetries. In the “canonical setting” (for
evolutionary equations) the operators are of the form

R = Local part+∑
i

ϕiD−1
x ◦ψi , ϕi ∈ symE ,ψi ∈ cosymE .

Check of the Nijenhuis condition (Slide 23).
Step 7: Solution of ˜̀∗

E (Ψ) = 0 to construct symplectic
structures. In the “canonical setting” (for evolutionary
equations) the operators are of the form

S = Local part+∑
i

ψ̄iD−1
x ◦ψi , ψi , ψ̄i ∈ cosymE .

Check of the symplectic condition (Slide 23).



Scheme of computations
Step 8: Construction of T ∗E , i.e., adding `∗E (p) = 0 to E

and extension of T ∗E with nonlocal variables
associated to symmetries.

Step 9: Solution of ˜̀
E (Φ) = 0 to construct Hamiltonian

operators. In the “canonical setting” (for evolutionary
equations) the operators are of the form

H = Local part+∑
i

ϕ̄iD−1
x ◦ϕi , ϕi , ϕ̄i ∈ symE .

Check of the Hamiltonian condition (Slide 23).
Step 10: Solution of ˜̀∗

E (Ψ) = 0 to construct recursion
operators for cosymmetries. In the “canonical setting”
(for evolutionary equations) the operators are of the
form

R̄ = Local part+∑
i

ψiD−1
x ◦ϕi , ϕi ∈ symE ,ψi ∈ cosymE .



Nijenhuis, Hamiltonian, and symplectic properties

NP: For R : κ → κ, ϕ1, ϕ2 ∈ symE ,

{R(ϕ1),R(ϕ2)}−R{R(ϕ1),ϕ2}−R{ϕ1,R(ϕ2)}+R2{ϕ1,ϕ2}= 0

HP: For H : P̂ → κ, Φ = ΦH ,

(`E ◦H )∗ = `E ◦H (H ∗ =−H for ev. eqs.),

[[Φ,Φ]] = 0 (δ ∑
j

(
δΦ

δuj
δΦ

δpj

)
= 0 for ev. eqs.).

SP: For S : κ → P̂ , Ψ = ΨS ,

(`∗E ◦S )∗ = `∗E ◦S (S ∗ =−S for ev. eqs.),

δΨ = 0 (δ ∑
j

(
δΨ

δuj q
j
)

= 0 for ev. eqs.).



Dispersionless Boussinesq equation

The system is

wt = ux ,

ut = wwx + vx ,

vt =−uwx −3wux

with the internal coordinates

uk ↔
∂ ku
∂xk , vk ↔

∂ kv
∂xk , wk ↔

∂ kw
∂xk .



Dispersionless Boussinesq equation

Symmetries ϕ1, ϕ2, ϕ3:

ϕ
w
1 = w1, ϕ

w
2 = u1, ϕ

w
3 = 2w1w + v1,

ϕ
u
1 = u1, ϕ

u
2 = w1w + v1, ϕ

u
3 =−w1u−u1w ,

ϕ
v
1 = v1, ϕ

v
2 =−w1u−3u1w , ϕ

v
3 =−3w1w2−u1u−2v1w .

Cosymmetries ψ2, ψ3, ψ4:

ψ
w
2 = 1, ψ

w
3 = 0, ψ

w
4 = w ,

ψ
u
2 = 0, ψ

u
3 = 1, ψ

u
4 = 0,

ψ
v
2 = 0, ψ

v
3 = 0, ψ

v
4 = 1/2,

ψ
w
6 = v +3w2, ψ

w
7 = uw , ψ

w
8 = (−3u2 +12vw +14w3)/14

ψ
u
6 = u, ψ

u
7 = (2v +w2)/2, ψ

u
8 =−3uw/7,

ψ
v
6 = w , ψ

v
7 = u, ψ

v
8 = 3(v +w2)/7.



Dispersionless Boussinesq equation

Notation:

〈a1, . . . ,ar | D−1
x | b1, . . . ,br 〉=

r

∑
s=1

aj
sD

−1
x ◦bl

s ,

where as = (a1
s ,a

2
s ,a

3
s ), bs = (b1

s ,b
2
s ,b

3
s ) are symmetries and/or

cosymmetries.



Dispersionless Boussinesq equation
The T E -covering:

qw
t = qu

x ,

qu
t = wqw

x +wxqw +qv
x ,

qv
t =−uqw

x −wxqu−3wqu
x −3uxqw .

Solving ˜̀
E (Φ) = 0 we obtain the following ROs for symmetries:

R1 =
1
2
〈2ϕ1,ϕ2,ϕ3 | D−1

x | ψ4,ψ3,ψ2〉

and

R2 =−1
8
〈4ϕ1,ϕ2 | D−1

x | ψ4,ψ3〉

+
1
8

 4(v +2w2) 3u 2w
uw 2(2v +w2) 3u

−3(u2 +2w3) −11uw 4v





Dispersionless Boussinesq equation

They enjoy the commutator relation

[R2,R1] = R2
1 .

Neither of them satisfies the Nijenhuis condition, the the operator

R = 3R1 +4R2

does.



Dispersionless Boussinesq equation

Solving ˜̀∗
E (Ψ) = 0 we get

S1 = 〈ψ4,
1
2

ψ3,ψ2 | D−1
x | ψ2,ψ3,ψ4〉,

S2,1 = 〈ψ7,4ψ6,−8ψ4,−5ψ3,−14ψ2 | D−1
x | ψ3,ψ4,ψ6,ψ7,ψ8〉,

S2,2 = 〈ψ8,−
6
7

ψ6,
18
7

ψ4,
12
7

ψ3,5ψ2 | D−1
x | ψ2,ψ4,ψ6,ψ7,ψ8〉.

The operator S1 is skew-adjoint and hence is symplectic; S2,1,
S2,2 are not but the operator

S2 = 2S4,1 +7S4,2

is a symplectic structure.



Dispersionless Boussinesq equation

The T ∗E -covering is given by

pw
t = wpu

x −upv
x +2uxpv ,

pu
t = pw

x −3wpv
x −2wxpv ,

pv
t = pu

x .

Solving ˜̀
E (Φ) = 0 we get the following local operators

H1 = H1 =

 0 0 Dx
0 Dx 0

Dx 0 −4Dxw −2w1


and



Dispersionless Boussinesq equation

H2,1 =
1
2

2wDx 3uDx +u1 2(2vDx + v1)
3uDx 2(w2 +2v)Dx +ww1 + v1 −11wuDx −2(wu1 +4uw1)
4vDx −11wuDx −3wu1−uw1 h1

2,2Dx +h0
2,2

 ,

H2,2 =

w1 u1 v1
u1 ww1 + v1 −3wu1−uw1
v1 −3wu1−uw1 −3w2w1−4wv1−uu1

 ,

where

h1
2,2 =−(6w3+16wv +3u2), h0

2,2 =−2(3w2w1+2wv1+uu1+4vw1).

The operator H1 is skew-adjoint and is a Hamiltonian structure,
but neither of the last two operators is Hamiltonian. Nevertheless,
their linear combination

H2 = H2,1 +
1
2
H2,2

is skew-adjoint and consequently Hamiltonian; the structures H1
and H2 are compatible.



Dispersionless Boussinesq equation

Finally, solving ˜̀∗
E (Ψ) = 0 we get the recursion operator for

cosymmetries

R̄1 =
1
2
〈2ψ4,ψ3,ψ2 | D−1

x | ϕ1,ϕ2,ϕ3〉.



Camassa-Holm equation
Consider

αut −utxx +3αuux = 2uxuxx +uuxxx , α 6= 0 is formal parameter.

Three options:
1. Attack directly.
2. Transform to the evolutionary form

ux = v ,

vx = w ,

wx =
αut −wt +3αuv −2vw

u
,

3. Consider a “pseudo-evolutionary form”

wt =−2uxw −uwx ,

w = αu−uxx .



Camassa-Holm equation

Internal coordinates

ul ,k =
∂ l+ku
∂x l∂ tk , l = 0,1,2, k ≥ 0.

Total derivatives

Dx =
∂

∂x
+∑

k

(
u1,k

∂

∂u0,k
+u2,k

∂

∂u1,k
+Dk

t (U)
∂

∂u0,k

)
,

Dt =
∂

∂ t
+∑

l ,k
ul ,k+1

∂

∂ul ,k
,

where
U =

αu0,1−u2,1 +3αuu1,0−2u1,0u2,0

u
.



Camassa-Holm equation
In the T -covering

αqt −qtxx +3αuxq +3αuqx = 2qxuxx +2uxqxx +uxxxq +uqxxx

with the simplest nonlocalities we have

R = uD2
x +DxDt +u1,0Dx −αu +u2,0−αu1,0D−1

x

and

S1 = D−1
x , S2 = uDx +Dt −αuD−1

x +D−1
x ◦ (u2,0−αu).

In the T ∗-covering

αpt +ptxx +3αuqx = uxxqx +uxqxx +uqxxx

one has two local compatible Hamiltonian operators

H1 = Dx , H2 = uDx +Dt −u1,0

and a recursion operator for cosymmetries

R̄ = DxDt +uD2
x −2αu +u2,0−D−1

x ◦U.



2D Associativity equation

Consider
uyyy −u2

xxy +uxxxuxyy = 0

and internal coordinates

uk,i =
∂ k+iu

∂xk∂y i , i = 0,1,2, k = 0,1, . . .

The total derivatives

Dx =
∂

∂x
+ ∑

k≥0

(
uk+1,0

∂

∂uk,0
+uk+1,1

∂

∂uk,1
+uk+1,1

∂

∂uk,1

)
,

Dy =
∂

∂y
+ ∑

k≥0

(
uk,1

∂

∂uk,0
+uk,2

∂

∂uk,1
+Dk

x (u2
2,1−u3,0u1,2)

∂

∂uk,2

)
.



2D Associativity equation
The T -covering is defined by

qyyy −2uxxyqxxy +uxyyqxxx +uxxxqxyy = 0.

If ψ is a cosymmetry the corresponding nonlocal variable on T E is

∂Qψ

∂x
= ψq0,2 +a0,1q0,1 +a0,0q

∂Qψ

∂y
= b0,2q0,2 +b1,1q1,1 +b2,0q2,0 +b0,1q0,1 +b1,0q1,0 +b0,0q,

where

b0,2 =−u3,0ψ, b1,1 = 2u2,1ψ, b2,0 =−u1,2ψ,

b0,1 =−Dx(b1,1), b1,0 =−Dx(b2,0),

b0,0 =−Dx(b1,0),

a0,1 = Dx(b0,2)−Dy (ψ), a0,0 = Dx(b0,1)−Dy (a0,1).



2D Associativity equation

There exists a solution

Φ = Q3
−3−Q2

−2x +4Q1
1,2y +2Q1

1,1y +3Q1
−1x

2

−2Q1
−4u1,0−2Q0

5y2−2Q0
2xy +Q0

0 (2u1,0y − x3)

of ˜̀
E (Φ) = 0, where Qk

i , Qk
i ,j correspond to

ψ
0
0 = 1, ψ

0
2 = u2,0, ψ

0
5 = u1,1,

ψ
1
−4 = y , ψ

1
−1 = x , ψ

1
1,1 = xu2,0−3u1,0,

ψ
2
−2 = 3x2−2yu2,0,

ψ
3
−3 = 2u1,0y −2u1,1y2−2u2,0xy + x3.



2D Associativity equation

The corresponding recursion operator is

R = Dψ3
−3
− xDψ2

−1
+4yDψ1

1,2
+2yDψ1

1,1
+3Dψ1

−1x2

−2u1,0Dψ1
−4
−2y2Dψ0

5
−2xyDψ0

2
+(2u1,0y − x3)Dψ0

0
,

where
Dψ = D−1

x ◦ (ψD2
y +a0,1Dy +a0,0)

and a0,1, a0,0 are given on Slide 37.



2D Associativity equation

Solving the equation ˜̀∗
E (Ψ) = 0 we obtain one local solution

Ψ1 = Q1,0

and a nonlocal one

Ψ2 =−Q2
−1 +6Q1

−1x−2Q1
−4u2,0−2Q0

2y +Q0
0 (2u2,0y −3x2).

The corresponding symplectic operators are

S1 = Dx

and

S2 =−Dψ2
−1

+6xDψ1
−1
−2u2,0Dψ1

−4
−2yDψ0

2
+(2u2,0y −3x2)Dψ0

0
.



2D Associativity equation
The T ∗-covering:

uxxyypxx −2uxxxypxy +uxxxxpyy

+uxyypxxx −2uxxypxxy +uxxxpxyy +pyyy = 0.

If ϕ is a symmetry the corresponding nonlocal variable on T ∗E is

∂Pϕ

∂x
= ϕp0,2 +a0,1p0,1 +a0,0p,

∂Pϕ

∂y
= b0,2p0,2 +b1,1p1,1 +b2,0p2,0 +b0,1p0,1 +b1,0p1,0 +b0,0p,

where

b0,2 =−u3,0ϕ, b1,1 = 2u2,1ϕ, b2,0 =−u1,2ϕ,

b0,1 =−Dx(b1,1)+2u3,1ϕ, b1,0 =−Dx(b2,0)−u2,2ϕ,

b0,0 =−Dx(b1,0);

a0,1 = Dx(b0,2)−Dy (ϕ)+u4,0ϕ, a0,0 = Dx(b0,1)−Dy (a0,1).



2D Associativity equation

Solving ˜̀
E (Φ) = 0 we get

Φ = P2
−8−2P1

−4y +P0
0y2,

where P j
i correspond to

ϕ
0
0 = 1, ϕ

1
−4 = y , ϕ

2
−8 = y2.

This provides the Hamiltonian operator

H = Dϕ2
−8
−2yDϕ1

−4
+ y2Dϕ0

0
,

where
Dϕ = D−1

x ◦ (ϕD2
y +a0,1Dy +a0,0).



2D Associativity equation
The simplest recursion operator for cosymmetries is given by the
solution

Ψ =−P3
−3 +3P2

−2x

−2P2
−5u2,0−2P2

−8u1,1−2P1
−4(u1,0−2u1,1y −u2,0x)

+P1
−1(2u2,0y −3x2)−2P0

1y

+P0
0 (2u1,0y −2u1,1y2−2u2,0xy + x3)

of ˜̀∗
E (Ψ) = 0 and is of the form

R̄ =−Dϕ3
−3

+3xDϕ2
−2

−2u2,0D
2
ϕ−5

−2u1,1Dϕ2
−8
−2(u1,0−2u1,1y −u2,0x)Dϕ1

−4

+(2u2,0y −3x2)Dϕ1
−1
−2yDϕ0

1

+(2u1,0y −2u1,1y2−2u2,0xy + x3)Dϕ0
0



2D Associativity equation

Here

ϕ
3
−3 = x3−2yu1,0,

ϕ
2
−8 = y2, ϕ

2
−5 = xy ,

ϕ−11 = x ,

ϕ
0
1 = u1,0.



Hirota equation

Is obtained from the KdV

EK : ut −6uux +uxxx = 0

by

EH
v=(lnm)x−−−−−−→ EpK

u=−2vx−−−−−→ EK.

The right arrow is a 1-dimensional covering, the left one is an
∞-dimensional, the intermediate equation being the pKdV:

EpK : vt +6v2
x + vxxx = 0.

The resulting equation is

EH : mmxt = mtmx −mxxxxm+4mxxxmx −3m2
xx = 0.



Hirota equation

In the T -covering we obtain the following recursion operator for
symmetries

R = m
(
D2

x +8
(mx

m

)
x
−12D−1

x ◦
(mx

m

)
xx

+4D−2
x ◦

(mx

m

)
xxx

)
◦ 1

m
.

Two local symplectic operators also arise:

S1 = D2
x ◦

1
m

and
S2 =

(
D4

x +8
(mx

m

)
x
D2

x +4
(mx

m

)
xx

Dx

)
◦ 1

m
.



Hirota equation

In the T ∗-covering one finds two nonlocal Hamiltonian operators

H1 = mD−2
x

and

H2 = m
(
id+4D−2

x ◦
(mx

m

)
x
+4

mx

m
D−1

x −4D−1
x ◦ mx

m

)
,

as well as the following recursion operator for cosymmetries

R̄ =
1
m

(
D2

x +8
(mx

m

)
x
+12

(mx

m

)
xx

D−1
x +4

(mx

m

)
xxx

D−2
x

)
◦m.



Intermediate conclusions

Of course, T - and T ∗-coverings are analogs of tangent and
cotangent bundles.
But their definition relies, if not on coordinate presentation of E ,
but certainly on an embedding of E in a particular jet space (see,
e.g., Slide 33).
A natural question arises:

Are they invariant w.r.t. different embeddings?



The answer will be given in the talk by A. Verbovetsky

THANK YOU FOR YOUR
ATTENTION


