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Notation

Jet spaces: J=(n,m), ué
Total derivatives D J —1—2 J
rivatives: == Ugi—
1 Bx’ jjc O'Iaujo
¢-DOs: Zang
o
Space of evolutionary fields: ¢
Differential equations: &={F=0,...,.DcF=0,...}, FeP
internal coordinates
. dF*
Linearization: Lo = Z—.D(y , le:nx— P
5 duk

Symmetries: sym& = kerle



Notation

Horizontal complex:

Conservation laws:

Cosymmetries:

Gen. functions:

Coverings:

Nonlocal variables:

Abelian coverings:

;'7 = {Zafh.-.a; dx® A A ani}
dp: N— AL d, :dei/\D,

el dyo=0, CL(&)
cosym& = ker(,
0. P— 3, &=Hom(e,A})

0: CL(&) — cosym &
:E=ExRY(.. W, )= &
By =

‘L'*(D,') = D,‘, [D,', ] O, ©-DO A — A

1
owl

peN, dp=0—1°
d

p :ZXidXiH {D: = Di+Xi87W

|



A toy example: Korteweg-de Vries equation

Consider
U = UUx + Uxxx-
Internal coordinates: x,t,u = ug,U1,...,U,..., Ug < %
Total derivatives
D=2yl oy o .
X u u
ox ' ‘ou o
0 0 0
Dy = — + (uug + u3) — +---—|—Dk(uu1+U3)——|—...

Jat du duy

Linearization: {g = D; — uy — uD, — D3

Adjoint: £ = — D+ uDy + D3

(x,t)-independent symmetries: @1 = u1, @2 = uz+ uuy,. ..
(x, t)-independent cosymmetries: Y3 =1, yo = u, ...



Korteweg-de Vries equation (the 7 -covering)

Consider &

Ut = UlUx + Uxxx,

gt = qx U+ qUx + Gxxx-
This is an co-dimensional covering with nonlocal variables g, and
b.=D +Zq J
= k4+153 >
X X p + 3CI/<
. - d
D¢ =Dt + ) D*(qru+ qui + g3)5—-
Jqx
k
= we can consider
le(®) =0; (1)

no nontrivial solution. ..



Korteweg-de Vries equation (the 7 -covering)

But since {sq =0, for any cosymmetry y (recall that £y = 0) the
quantity qy is the x-component of a conservation law. In
particular,

Y1 — o1 = gdx+ (qu+ qo) dt,

Vo — @y = qudx + (qu 4 qu — qruy + quo) dt

and we introduce @1, @o:

00 0o
ox =9 8x_q'

In the corresponding covering, (1) is nontrivially solvable:



Korteweg-de Vries equation (the 7 -covering)

2 1
b = q2+§uq+ §U1Q1,

4 4 1 1
®2 = qa+ guqe+2uq + §(u2 +3u2)q + §(UU1 + 13) @1 + gu1 Q2.
Assign to g;, Q; the operators

q;»—>D)’;, Q1'—>D;1, QQHD;lou.

Then the obtained solutions can be rewritten:

2 1
P = D2+ Zu+ ~u Dy tol,

33
4 4
P> = D2 + guD§+2uDX+ §(u2 +3up)

1 1
+§(UU1+U3)DX_101+§U1DX_1OU,

in one easily recognizes the Lenard recursion operator and its
square.



Korteweg-de Vries equation (the 7 -covering)

Consider the equation )
e(V)=0

in the same setting. Solving it provides
V) =@,
v i+ 10
= —Uu —_
2=0q1 3UN1T 343
with the corresponding ¥-DOs
S = Dx_1017

1 1
Sy = DX+§UD;101+§ “Lou.

These are nonlocal symplectic structures for the KdV equation.



Korteweg-de Vries equation (the .7 *-covering)

Consider *&

Ut = Ulx + Uxxx,

Pt = UPx + Uxxx-

Similar to .7 &, this is also an eo-dimensional covering with nonlocal
variables p, and

~ d
Dx:Dx+ Pk+15—>
; +lapk
De = D;++Y Df(ups +p3)i.
k apk

We can again consider
ls(®) =0; (3)



Korteweg-de Vries equation (the .7 *-covering)

it has two solutions:

¢1:P17

0} + +
3 1 3 !

Again, with the correspondence p; — D) we obtain

%:Dxa
2

1
3uDi+*U1;

My =D} + 3

these are the first two Hamiltonian operators for the KdV.



Korteweg-de Vries equation (the .7 *-covering)

Moreover, since £g(p) = 0, for any symmetry @ of the KdV the
quantity p@ is the x-component of a conservation law. In particular,

01— 1 = pup dx + ( (uug + u3) + poug — p1u2).
The corresponding nonlocal variable satisfies

o _
aX _pl

and in the extended setting a new solution arises:

4 4 4 1 1
&3 = ps + 3uPs +2u1pp+ §(u2+3U2)P1 + <9UU1 + 3U3> p— §P1

with the corresponding operator

4 4 4 1 1
M= D§+§UD§’+2U1D§+§(u2+3uz)DX+ (9uu1 + 3U3> —§DX



Korteweg-de Vries equation (the .7 *-covering)

In the same setting the equation
F(W)=0
is solvable with the only nontrivial solution

2 1
Vi =po+-up— =P
1 P2+3UP 3

and the corresponding operator

— 2 1
%1 = D3+§U—§D;1OU]_.
It is easily checked that #; takes cosymmetries of the KdV

equation to cosymmetries.



A technical explanation (A-coverings)

Solving equations /() =0 and 7%(®) =0 in F& and T*&
provides

TE T*E

le(®)=0| Z:sym& —symé& A cosym& — symé&

E}(W) =0 |.7: cosym& —symé& | #: cosym& — cosym &

The operators %, ¢, .7, and % lie in the commutative diagrams



A technical explanation (A-coverings)

%

Le

8
—
PA—

>

X
«—

T N
®

X
N

o

X

1 A £ ~

w —— P P —
A e s e
N P
P —< . x P —< 5 5

This is a part of a general construction.



A technical explanation (A-coverings)

Let & be an equation and A: P — Q be a ¢-DO, where P =T(&)
and Q =T({). Let Ji°(P) denote the space of horizontal jets and
da: JP(P) — J7(Q) be the corresponding morphism of vector
bundles. Then &a = ker® is a subbundle in &.: J°(P) — & that
carries a natural structure of a covering, /A-covering.

If the operator A is locally given by A = || ¥, dgﬁ Ds|| then the

subspace éa C J5°(€) is described by
o,c

and their prolongations.



A technical explanation (A-coverings)

Let A’: P" — @' be another ¢-differential operator; how to find all
operators A: P — P’ such that

AoA=BoA, (4)

i.e., such that the diagram

P20

Al |5
P/ Q/
A/
is commutative? Note that any operator A of the form A= B0 A,

where B': Q — P’ is an arbitrary ¢-differential operator, is a
solution to (4). Such solutions will be called trivial.



A technical explanation (A-coverings)

Note that since A’ is a ¢-DO it can be lifted to the covering. Let
us put into correspondence to any operator A= || Y. agg Ds|| the
vector-function

O o o c a
bp= Z’amlvo_,...,Z’amr,vcy
e o,c

, r=dimP’.

én

Proposition
Classes of solutions of Equation (4) modulo trivial ones are in
one-to-one correspondence with solutions of the equation

A'(®4)=0.

Operators satisfying (4) take elements of ker A to those of ker A'.



Scheme of computations (Paul Kersten)

Let an equation & be given.

Step 1:
Step 2:
Step 3:

Step 4:

Construction of convenient internal coordinates.
Presentation of /s and £% in these coordinates.

Solution of £ (y) =0 to find cosymmetries and
conservation laws of low order. They are needed
> as seeding elements of hierarchies;
> to construct coverings over .7 & associated with
cosymmetries;
» to extend the initial equation with nonlocal
variables if needed.

Solution of £g(¢) =0 to find symmetries of low
order. They are needed

» as seeding elements of hierarchies;
» to construct coverings over .7 *& associated with
symmetries.

In some cases “deeper nonlocalities” are needed.



Scheme of computations

Step 5:

Step 6:

Step 7:

Construction of .7 &, i.e., adding {s(q) =0 to & and
extension of .7 & with nonlocal variables associated
to cosymmetries.

Solution of f,¢(®) = 0 to construct recursion operators
for symmetries. In the “canonical setting” (for
evolutionary equations) the operators are of the form

Z = Local part+Z(p,~DX_loq/,-, Qi €Esymé&, Y € cosymé.
i

Check of the Nijenhuis condition (Slide 23).

Solution of 7% (W) = 0 to construct symplectic
structures. In the “canonical setting” (for evolutionary
equations) the operators are of the form

. = Local part+Zy7,-DX_1 oV, Vi, W € cosymé.

Check of the symplectic condition (Slide 23).



Scheme of computations

Step 8: Construction of .7*¢&, i.e., adding £%(p) =0to &
and extension of 7*& with nonlocal variables
associated to symmetries.

Step 9: Solution of /¢(®) =0 to construct Hamiltonian
operators. In the “canonical setting” (for evolutionary
equations) the operators are of the form

¢ = Local part—l—Z(/_),-DX_1 oQ;, Qj,Q; € symé&.
i

Check of the Hamiltonian condition (Slide 23).

Step 10: Solution of #%(W) = 0 to construct recursion
operators for cosymmetries. In the “canonical setting”
(for evolutionary equations) the operators are of the
form

%2 = Local part+2 u/;D;lo(p,-, Qi Esymé&, ¥ € cosymé.



Nijenhuis, Hamiltonian, and symplectic properties
NP: For Z: s — s, @1, @2 € symé&,

{R(91), R(92)} = R{R(¢1), P2} — R{¢1,R(92)} + R*{@1, 92} = 0
HP: For . P — 3, & =&,
(lgo ) =Llgot (I =—I for ev. egs.),

[©.9] =0 6y (222

: ﬁ@) =0 for ev. eqs.).

SP-For %: »x— P, W=V,

(ls0S) =Lp0S (S = —.7 for ev. egs.),

oV =0 (52(2:q’> =0 for ev. egs.).

J



Dispersionless Boussinesq equation

The system is

We = Uy,
Up = Wy + vy,

Vi = —UWy — 3wy

with the internal coordinates

oku okv dkw
Up < ——, Vj > ——, Wi > —.
KT axko KT gxke oxk



Dispersionless Boussinesq equation

Symmetries @1, @2, @3:

(P{VZWL (P;/:UL (p§V:2W1W+V17
u u u_
Q1 =u, Q) =wiw vy, Q3 = —wiu—unw,
o/ =wvi, @ =-—wu—3uw, Q5= —3wiw? — uju—2viw.

Cosymmetries ¥», Y3, Wy:

vy =1, vz’ =0, vy =w,

v; =0, v =1, vy =0,

v; =0, vz =0, vy =1/2,

W =v+3w?, oy =uw, vy = (-3 +12vw + 14w3) /14
Ve = u, v = (v+n?)/2, v = —3uw/7,

v =w, v =u, wg =3(v+w?)/T7.



Dispersionless Boussinesq equation

Notation:

(at,...,ar | Dyt by,... by =Y alD tobl,
s=1

where a; = (al,a2,a3), bs = (bL, b2, b3) are symmetries and/or
cosymmetries.



Dispersionless Boussinesq equation
The 7 &-covering:

q/ = ay,
q; = wagy +wxq"” +qy,
q; = —uqy — wxq" —3waq, —3uxq".

Solving f,¢(®) = 0 we obtain the following ROs for symmetries:

1 _
I =5 (201,92,03 | D; | ya, v, y0)

and

1 _
Ko =~ (401,02 D" | Y, ys)
1 4(v+2w?) 3u 2w
+ = uw 22v+w?) 3u
=3(?+2w3) —lluw  4v



Dispersionless Boussinesq equation

They enjoy the commutator relation
(%2, %1 = %3

Neither of them satisfies the Nijenhuis condition, the the operator
KX = 3% + 4%

does.



Dispersionless Boussinesq equation

Solving 7% (W) = 0 we get

1 _
S = <W4,§W3,II/2 | DY | wo, w3, ),
Fa1 = (W7,4%6, — 8y, —5y3,— 14y | D' | w3, Wi, e, W7, W),

6 18 12 B
S22 = (W8, == Vo, = Wa, = ¥3,5¥2 | Dy Y w2, v, e, W7, W),

The operator .77 is skew-adjoint and hence is symplectic; %% 1,
> are not but the operator

S =251+ 1542

is a symplectic structure.



Dispersionless Boussinesq equation

The 7*&-covering is given by

Py’ = wpy — upy +2uxp",
Py = Py —3wpy —2wxp”,
P{ = px-
Solving f,¢(®) = 0 we get the following ocal operators

0 0 D,
D, 0 —4Dyw—2w;

and



Dispersionless Boussinesq equation

1 2wD, 3uDy + 2(2vDy+ 1)
S = 5 3uD,  2(W?+2v)Dy+wwy +vi  —11lwuD, —2(wuy +4uwy) | |
4vD,  —11wuD, —3wuy — uwy h%yz D, + hg2
w1 uy Vi
o= | wwy + vp —3wu; — uwy ,
vi  —3wup—uwy  —3wlwy — 4wy — uuy
where

h%72 = —(6w>+16wv +3u?), hgg = —2(3w?wy +2wvy + uuy +4vwy).

The operator 77 is skew-adjoint and is a Hamiltonian structure,
but neither of the last two operators is Hamiltonian. Nevertheless,
their linear combination

1
% = ,%02’1 + 5%,2

is skew-adjoint and consequently Hamiltonian; the structures 74
and % are compatible.



Dispersionless Boussinesq equation

Finally, solving £ (W) = 0 we get the recursion operator for
cosymmetries

_ 1 B
%1 = §<2W41W37II/2 ’ Dx ! | (P17¢2a(P3>-



Camassa-Holm equation

Consider
OU; — Upyx + 30 ULy = 2UxUyy + Ullyyx, O 7 0 is formal parameter.

Three options:
1. Attack directly.
2. Transform to the evolutionary form

Uy = v,
Vx = W,
our — wi +30uv — 2vw

Wy = )
u

3. Consider a “pseudo-evolutionary form"

W = —2Ux W — UWy,

W = 0lU — Uyxy.



Camassa-Holm equation

Internal coordinates

al—i—ku
Ul,kzm, /=0,1,2, k> 0.

Total derivatives

)

9 P o
D= Ix +; <ul"k<9uo,k ik duy D (U)auo,k

d )
Di=++Y 7

where
U— oup 1 — U1+ 30uur o —2u1 ol o

u



Camassa-Holm equation
In the 7 -covering

0qt — Gxx +30Ux G+ 30UGx = 2GxUxx + 2Ux Gxx T Uxxx § + UGxxx
with the simplest nonlocalities we have
R = uD2 + Dy Dy + u1 oDx — au+ tp g — otug o Dy *
and
S =D;t,  S=uDy+ Dy —auDt + Dyt o (o — au).
In the 7 *-covering
0Pt + Prxx +30UGx = UxxGx + UxGxx + UGxxx
one has two /ocal compatible Hamiltonian operators
J4 =Dy, I =uDy+ Dy —u1p
and a recursion operator for cosymmetries

R = DXDt+uD3—2au+U2,0—D;loU.



2D Associativity equation

Consider
2
Uyyy — Ul F Usoox Uxyy = 0
and internal coordinates
ak—i-/u

Ui = Gk, i=0,1,2, k=0,1,...

The total derivatives

D 0J ‘Y dJ + J N P
X aX k>0 uk“rl Oa uk+1,1 auk?l Uk+11 aUkJ_ 9
0 0 d
D Dk
y = ay+/<2>o<u“a +uk’28uk +Df(u5, — U370u172)a

d

Uk,2>



2D Associativity equation
The 7 -covering is defined by

Qyyy — 2Uxxy Gxxy T Usyy Gxoxx + Usxx Gxyy = 0.

If v is a cosymmetry the corresponding nonlocal variable on .7 & is

2Q
Ox Y= Wqo,2+a0,190,1 + 30,09
X
9Qy
2y bo2q02 + b1,1G1,1 + b2,0G2,0 + bo,1G0,1 + b1,091,0 + bo,09,
where

boo=—uzoW, bi1=2w1Vy, brg=—uioV,
bo1 = —Dx(b11), b1o=—Dx(b2p),
boo = —Dx(b1,),
a0,1 = Dx(bo2) — Dy(¥), a0,0 = Dx(bo,1) — Dy(a0,1).



2D Associativity equation

There exists a solution

o= QE3 - Q32X+4Q1172y + 201171)/ + 3Q£1X2
—2Q14u1,0—2Q2y* — 2Q3xy + Q3 (2u1 0y — X°)

of lg(®) =0, where QF, Q,-"J correspond to
Wo=1, v=up, W5=u1,
‘lfi4 =Y, 11/11 =X, lI/11,1 = Xxup,0 — 3u1,0,

y2, = 3x% =2y,
Y23 =2u 0y —2u11y° — 2wz oxy + X°.



2D Associativity equation

The corresponding recursion operator is
X = 9"’33 - X@ll,gl +4y9w11,2 + 2)/@%{1 + 3‘@W11X2
— 2u170@l’,14 — 2y2.@wg — 2xy@w§ + (2u1,oy — X3)‘@V8’

where
Dy =D o(wD] +ag1Dy + a00)

and ag 1, ago are given on Slide 37.



2D Associativity equation

Solving the equation (W) = 0 we obtain one local solution
V1= Q0
and a nonlocal one
Wy =—Q% +6Qx—2Q1 4120 —2Q0y + Q) (2u20y — 3x°).
The corresponding symplectic operators are
1 =Dy
and

Sy = —@V@l + 6x.@q,}1 — 2U2709V,34 — 2y.@wg + (2u2 0y — 3X2)‘@‘V8'



2D Associativity equation
The 7 *-covering:

Usexyy Pxx — 2uxxxy Pxy + Usxxx Pyy
+ Usyy Proxx — 2Uxxypxxy + Usxx Pxyy + Pyyy = 0.

If @ is a symmetry the corresponding nonlocal variable on .7*& is

Py
Ox Ppo,2+ ao,1Po,1+ a0,0P;
X
%o _y, +b +b +h +b +b
dy = Dp,2P0,2 1,1P1,1 2,0P2,0 0,1P0,1 1,0P1,0 0,0P,
where

bo2=—u3p@, b11=2u1Q, bro=—u120,
bo1 = —Dx(b1,1) +2u31¢, b1o=—Dx(b20)— 220,
boo = —Dy(b1,0);
a0,1 = Dx(bo2) — Dy (@) + uapo®, a0 = Dx(bo1)— Dy(a0,1)-



2D Associativity equation

Solving f,¢(®) =0 we get
® = P2 —2PL,y+PQy?,

where Pf correspond to

pi=1, @ly=y, ¢’3=y>

This provides the Hamiltonian operator
_ 2
I = .@(PES — 2y.@(p}4 +y @¢8,

where
-@(p = D;l o ((pD)% + ao’lDy + ao,o).



2D Associativity equation
The simplest recursion operator for cosymmetries is given by the
solution
W =—P3;4+3P%,x
—2P2gup0—2P?gu1 1 — 2P (1.0 — 2u1 1y — U 0X)
+ Pl1(2u2,oy —3x2)—2P%
+ P8(2u1’oy - 2u171y2 —2up oxy +x3)

of 7% (W) =0 and is of the form
R=—Dgs,+3xDp2,
— 2u270.@(%_5 —2u11 9‘1’33 —2(u10—2u1 1y — u270x).@(p14

+ (2u2 0y — 3x2)9¢31 =2y Do
+(2ur0y —2u11y® — 2up 0xy + X3)%g



2D Associativity equation

Here

(Pig, — X3 - 2)’”1,0’



Hirota equation

Is obtained from the KdV
EK: Us —BUUy + Ugye = 0

by
@@H v=(Inm)y éapK u=—2vy éaK

The right arrow is a 1-dimensional covering, the left one is an
oo-dimensional, the intermediate equation being the pKdV:

EpK: Vi —|—6v3 4 Vixx = 0.
The resulting equation is

. _ 2
EH: MMy = MMy — MysoeM +4Myemy — 3my, = 0.



Hirota equation

In the 7 -covering we obtain the following recursion operator for
symmetries

X X —_ X 1
%:m<D3+8 (m—) —12D;lo <m—> +4DX20 (m—) )o—.
m / x m / xx m / xxx m
Two /ocal symplectic operators also arise:
1
A = D)% o—
m

and

A= (t0() 0+4(2) o)1,



Hirota equation

In the 7 *-covering one finds two nonlocal Hamiltonian operators
4 = mD_?
and
s =m (id+4D;%0 () +a™xptapito ™),
m /Jx m m
as well as the following recursion operator for cosymmetries

fed(orea() +ia() 0 va(), 0%)em



Intermediate conclusions

Of course, .7- and T *-coverings are analogs of tangent and
cotangent bundles.

But their definition relies, if not on coordinate presentation of &,
but certainly on an embedding of & in a particular jet space (see,
e.g., Slide 33).

A natural question arises:

Are they invariant w.r.t. different embeddings?



The answer will be given in the talk by A. Verbovetsky

THANK YOU FOR YOUR
ATTENTION



