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Space of derivatives (jet space)

The jet space J∞ = RN with coordinates xi, ujσ.

Di = ∂xi +
∑

j,σ u
j
σi∂ujσ are total derivatives

Eϕ =
∑

j ϕ
j∂uj +

∑
jiDi(ϕ

j)∂
uji

+ . . . is an evolutionary field,

ϕ = (ϕ1, . . . , ϕm) is a vector function on J∞

`f =
(∑

σ ∂ujσ(fi)Dσ

)
is the linearization

of a vector function f = (f1, . . . , fp)

∆∗ =
(∑

σ(−1)σDσa
ji
σ

)
, if ∆ =

(∑
σ a

ij
σDσ

)
,

the adjoint differential operator in total derivatives



Differential equations: notation

Let Fk(x
i, ujσ) = 0, k = 1, . . . , p, be a system of equations

The equations F = 0, Dσ(F ) = 0 are the differential
consequences E ⊂ J∞

`E = `F |E is the linearization of the equation E
Eϕ is a symmetry of E if `E(ϕ) = 0, ϕ is its generating function

A vector function R = (R1, . . . , Rn) on E is a conserved current
if
∑

iDi(R
i) = 0 on E

Conservation laws of E are conserved currents mod. trivial ones
Generating function of a conservation law:
(ψk) = (−1)|σ|Dσ(aσk), where

∑
iDi(R

i) = aσkDσF
k on J∞

`∗E(ψ) = 0, CL(E) ⊂ ker `∗E



Integrability-related structures I

κ = {ϕ | ϕ = (ϕ1, . . . , ϕm)} (vector-valued functions)
κ∗ = {ψ | ψ = (ψ1, . . . , ψp)} (vector-valued densities)

sym(E) = ker `E ⊂ κ, sym∗(E) = ker `∗E ⊂ κ∗

Integrability is usually understood by the existence of an infinite
sequence of commuting symmetries (or conservation laws):

ϕ1, ϕ2, . . . , ϕn, . . . , [ϕi, ϕj ] = 0.

Integrability is achieved through differential operators in total
derivatives that produce new generating functions of
symmetries/conservation laws from old ones.



Integrability-related structures II

and we are looking for differential operators in total derivatives
such that

R : κ → κ, such that R(sym(E)) ⊂ sym(E) (1)

H : κ∗ → κ, such that H(sym∗(E)) ⊂ sym(E) (2)

S : κ → κ∗, such that S(sym(E)) ⊂ sym∗(E) (3)

R∗ : κ∗ → κ∗, such that R∗(sym∗(E)) ⊂ sym∗(E) (4)



Integrability-related structures III

Integrability operators are characterized by:

recursion operators fulfill `E ◦ R = AR ◦ `E (5)

Hamiltonian operators fulfill `E ◦ H = AH ◦ `∗E (6)

symplectic operators fulfill `∗E ◦ S = AS ◦ `E (7)

co-recursion operators fulfill `∗E ◦ R∗ = AR∗ ◦ `∗E (8)

They fulfill additional properties:

[R,R] = 0 hereditariety, [H,H] = 0 Hamiltonianity, . . .



Extension of the equation: covering

We can extend the given equation F = 0 in two canonical ways:

Tangent covering Cotangent covering{
F = 0
`E(q) = 0

{
F = 0
`∗E(p) = 0

in coordinates:{
F k(xi, ujσ) = 0

∂
ujσ

(F k)qjσ = 0

{
F k(xi, ujσ) = 0

(−1)|σ|Dσ(∂
ujσ

(F k)pk) = 0



From operators to generalized symmetries I

The operator equation

`E ◦ R = AR ◦ `E

becomes the equation
˜̀E(R) = 0

in the tangent covering. Its holonomic q-linear solutions are
recursion operators for symmetries. Note that the above
equation is one component of the equation of symmetries of the
tangent covering:{

F = 0
`E(q) = 0

symmetries:

{
˜̀E(R) = 0
˜̀̀
E(q)(R) + ˜̀E(P) = 0



From operators to generalized symmetries II

Analogously, up to the verification of extra conditions:

I Recursion operators for cosymmetries are p-linear solutions
of the equation

˜̀∗
E(R∗) = 0

in the cotangent covering.

I Hamiltonian operators are p-linear solutions of the equation

˜̀E(H) = 0 (9)

in the cotangent covering.

I Symplectic operators are q-linear solutions of the equation

˜̀∗
E(S) = 0 (10)

in the tangent covering.



Example: KdV

The tangent and cotangent covering for the KdV equation are{
ut = uux + uxxx,
qt = uxq + uqx + qxxx

{
ut = uux + uxxx,
pt = upx + pxxx.

The equation on the cotangent covering

D̃t(Φ) = uxΦ+uD̃x(Φ)+D̃xxx(Φ), Φ = a0p+a1px+· · ·+akpx···x,

admits the two well-known nontrivial solutions

Φ1 = px, Φ2 = pxxx +
2

3
upx +

1

3
uxp

with the corresponding (and well known!) Hamiltonian
operators

H1 = Dx, H2 = Dxxx +
2

3
uDx +

1

3
ux.



Example - more details

Note that D̃t, D̃x are total derivatives on the covering:

D̃t = ∂t + ut∂u + utx∂ux + · · ·+ pt∂p + ptx∂px + · · ·
D̃x = ∂x + ux∂u + uxx∂ux + · · ·+ px∂p + pxx∂px + · · ·

ut = uux + uxxx, utx = Dx(ut), . . .

pt = upx + pxxx, ptx = D̃x(pt), . . .



Examples - nonlocalities

Most equations admit no local integrability related differential
operator.
Introduction of nonlocal variables is done through conservation
laws on the tangent and cotangent coverings. This works
perfectly in 2 independent variables:

I Camassa-Holm equation (Golovko, Kersten, Krasil’shchik,
Verbovetsky, ACAP);

I Boussinesq equation (Kersten, Krasil’shchik, Verbovetsky,
JPA)

I WDVV equation (associativity equation) (Kersten,
Krasil’shchik, Verbovetsky, V., TMP);

Open problem: nonlocal variables in n > 3 indep. variables!



Examples - change of coordinates

Our approach is manifestly coordinate-free:

I it allowed us to find many integrable systems the family of
Kupershmidt deformations (Kersten, Krasil’shchik,
Verbovetsky, V. ACAP): for any bi-Hamiltonian equation
F = 0 with Hamiltonian operators H1 and H2 we proved
that the system {

F −A∗1(w) = 0
A∗2(w) = 0

is bi-Hamiltonian even when it is not evolutionary;

I it allowed to find a formula for changes of variables which
we applied to Plebanski equation (F. Neyzi, Y. Nutku,
M.B. Sheftel, Multi-Hamiltonian structure of Plebanski’s
second heavenly equation arxiv:nlin/0505030)



Symbolic computations

We use a set of packages for Reduce developed by P. Kersten et
al. at the Twente University (Holland) for differential equations
with two independent variables and later extended by R.V. to
the general case.

This is available at the Geometry of Differential Equations
website

http://gdeq.org/

together with documentation, a tutorial (by R.V.) and
examples.
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Hamiltonian operators and Magri scheme

Definition
A generalized symmetry of the above type is called Hamiltonian
if [[A,A]] = 0

S1, S2 ∈ CL(E), ψ1, ψ2 are the generating functions

{S1, S2}A = EA(ψ1)(S2)

Definition
The Magri hierarchy on a bihamiltonian equation E is the
infinite sequence S1, S2, . . . of conservation laws of E such that
A1(ψi) = A2(ψi+1).

Proposition

For Magri hierarchy we have
{Si, Sj}A1 = {Si, Sj}A2 = {Eϕi , Eϕj} = 0, where
ϕi = A1(ψi) = A2(ψi+1).


