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Generalised
Sklyanin-Painlevé-Dubrovin-Ugaglia-Nelson-Regge Poisson
algebra

Poisson algebra Aφ = (C[x1, x2, x3], {−,−}φ) where
{F ,G}φ = dF∧dG∧dφ

dx1∧dx2∧dx3 is the Jacobian Poisson-Nambu structure on
C3 for F ,G ∈ C[x1, x2, x3].
Mφ− zero locus of

φ = x1x2x3+ax3
1 +bx3

2 +cx3
3−ε1x2

1−ε2x2
2−ε3x2

3 +ω1x1+ω2x2+ω3x3+ω4,

εi = {0, 1}, a, b, c , ωi ∈ C

{x1, x2}φ = x1x2 + 3a3x
2
3 − 2ε3x3 + ω3,

and cyclic in (1, 2, 3),

{φ, xi} = 0,∀ = 1, 2, 3.

For generic set of constants it is nowhere vanishing on Mφ.



Artin-Tate-Sklyanin elliptic Poisson algebra q3,1(Y )

I Y ⊂ CP2 normal elliptic curve
I L line bundle degree 3
I

Y := P(x1, x2, x3) = 1/3(x3
1 + x3

2 + x3
3 ) + kx1x2x3 = 0, (1)

I then
{x1, x2} = kx1x2 + x2

3
{x2, x3} = kx2x3 + x2

1
{x3, x1} = kx3x1 + x2

2

I Symplectic leaves:
1. x1 = x2 = x3 = 0;
2. {Y \ 0}
3. {Y = λ|, λ ∈ C, λ 6= 0.
4. Brackets are H3− invariant (xi → xi+1, xi → εixi , i ∈ Z3).



A wide class of the polynomial Poisson algebras arises as a
quasi-classical limit qn,k(Y ) of the associative quadratic algebras
Qn,k(Y , η). Here Y is an elliptic curve and n, k are integer
numbers without common divisors ,such that 1 ≤ k < n while η is
a complex number and Qn,k(Y , 0) = C[x1, ..., xn].



Feigin-Odesskii-Sklyanin algebras

Let Y = C/Γ be an elliptic curve defined by a lattice
Γ = Z⊕ τZ, τ ∈ C,=τ > 0. The algebra Qn,k(Y , η) has generators
xi , i ∈ Z/nZ subjected to the relations

∑

r∈Z/nZ

θj−i+r(k−1)(0)

θj−i−r (−η)θkr (η)
xj−rxi+r = 0 (2)

and have the following properties:



Basic properties

I Qn,k(Y , η) = C⊕ Q1 ⊕ Q2 ⊕ ... such that Qα ∗ Qβ = Qα+β ,
here ∗ denotes the algebra multiplication. The algebras
Qn,k(Y , η) are Z - graded;

I The Hilbert function of Qn,k(Y , η) is∑
α≥0 dimQαt

α = 1
(1−t)n .

I Qn,k(Y , η) ' Qn,k ′(Y , η), if kk ′ ≡ 1 (mod n);
I The maps xi 7→ xi+1 et xi 7→ εixi , where εn = 1, define

automorphisms of the algebra Qn,k(Y , η);

I We can consider the algebra Qn,k(Y , η) for fixed Y as a flat
deformation of the polynomial ring C[x1, ..., xn].
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elliptic Poisson Feigin-Odesskii-Sklyanin algebras

The linear –in η– term of this deformation gives rise to a quadratic
Poisson algebra qn,k(Y ).
The limit as η → 0, we obtain a Poisson polynomial algebra
C[x1, . . . , xn] and the semi-classical limit of Qn,k(Y , η), denoted by
qn,k(Y ), is this polynomial algebra equipped with the Poisson
bracket {xi , xj} := limη→0

[xi ,xj ]
η . It follows from the relations (2)

that for i 6= j ,

{xi , xj} =

(
θ′j−i (0)

θj−i (0)
+
θ′k(j−i)(0)

θk(j−i)(0)
− 2π

√
−1n

)
xixj+ (3)

∑

r 6=0,j−i

θj−i+r(k−1)(0)θ′(0)

θkr (0)θj−i−r (0)
xj−rxi+r (4)



Let qn,k(Y ) be the correspondent Poisson algebra. The algebra
qn,k(Y ) has l = gcd(n, k + 1) Casimirs. Let us denote them by
Pα, α ∈ Z/lZ. Their degrees degPα are equal to n/l .



Q2m,1(Y , η) as an ACIS

A. Odesskii and V.R prove in 2004 the following

Theorem
The elliptic algebra Q2m,1(Y , η) has m commuting elements of
degree m.

As a corollary, q2n,1(Y ) should have n−Poisson commuting
elements of degree n. It would be interesting to find a precise
example of the corresponding "integrable system.
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Why n = 5?

We concentrate our attention on the 5 dimensional case.
I It is the first case when there are two different Poisson tensors

generated by the Odesskii-Feigin construction;
I The underlying elliptic curves are only local complete

intersections;
I The bihamiltonian properties of q5,2(Y ) are still obscure, while

the algebra q5,1(Y ) is in fact tri-hamiltonian (Odesskii)
I We do not know how to relate to these algebras (as well as to

all other odd-dimensional algebras for n > 3) an integrable
system.

I The algebras with n = 5 generators ( together with n = 7)
give a good hint how to treat the general algebras with prime
number p of generators, associated with normal elliptic curves
given by pfaffians .



Quintic elliptic Poisson algebra

Let us consider the algebra q5,1(Y ) :

Example
We have the polynomial ring with 5 generators xi , i ∈ Z/5Z
enabled with the following Poisson bracket:

{xi , xi+1}5,1 =

(
−3
5
k2 +

1
5k3

)
xixi+1 − 2

xi+4xi+2

k
+

xi+3
2

k2

{xi , xi+2}5,1 =

(
−1
5
k2 − 3

5k3

)
xi+2xi + 2 xi+3xi+4 − k xi+1

2
(5)

Here i ∈ Z/5Z and k ∈ C is a parameter of the curve Yτ = C/Γ,
i.e. some function of τ .



Casimir of degree 5

The center Z (q5,1(Y )) is generated by the polynomial

P5,1 = x5
0 + x5

1 + x5
2 + x5

3 + x5
4 +

(1/k4 + 3k)
(
x3
0x1x4 + x3

1x0x2 + x3
2x1x3 + x3

3x2x4 + x3
2x0x3

)
+

+
(
−k4 + 3/k)(x3

0x2x3 + x3
1x3x4 + x3

2x0x4 + x3
3x1x0 + x3

4x1x2
)

+

+(2k2 − 1/k3)
(
x0x

2
1x

2
4 + x1x

2
2x

2
0 + x2x

2
0x

2
4 + x3x

2
1x

2
0 + x4x

2
1x

2
2
)

+

+(k3 + 2/k2)
(
x0x

2
2x

2
3 + x1x

2
3x

2
4 + x2x

2
0x

2
4 + x3x

2
1x

2
0 + x4x

2
1x

2
2
)

+

+(k5 − 16− 1/k5)x0x1x2x3x4.



Second elliptic Poisson structure for n = 5

It follows from the description of Odesskii-Feigin that there are two
essentially different elliptic algebras with 5 generators: Q5,1(Y , η)
and Q5,2(Y , η′). The corresponding Poisson counter-part of the
latter is q5,2(Y ) :

Example

{yi , yi+1}5,2 =

(
2
5
λ2 +

1
5λ3

)
yiyi+1 + λyi+4yi+2 −

yi+3
2

λ

{yi , yi+2}5,2 =

(
−1
5
λ2 +

2
5λ3

)
yi+2yi −

yi+3yi+4

λ2 + yi+1
2

(6)

where i ∈ Z5. The center Z (q5,2(Y )) = C[P5,2].’



Heisenberg group

Consider an n−dimensional vector space V and fixe a base
v0, . . . , vn−1 of V then the
Heisenberg group of level n in the Schrödinger representaion is the
subgroup Hn ⊂ GL(V ) generated by the operators

σ : (vi )→ vi−1; τ : vi → εivi , (εi )
n = 1, 0 ≤ i ≤ n − 1.

This group has order n3 and is a central extension

1→ Un → Hn → Zn × Zn → 1,

where Un is the group of n−th roots of unity.



The Heisenberg group action provides the automorphisms of the
Sklyanin algebra which are compatible with the grading and defines
also an action on the quasiclassical limit of the Sklyanin algebras
qn,k(Y )- the elliptic quadratic Poisson structures on CPn−1 which
are identified with Poisson structures on some moduli spaces of the
degree n and rank k + 1 vector bundles with parabolic structure (=
the flag 0 ⊂ V ⊂ Ck+1 on the elliptic curve Y )



Odesskii-Feigin description-1

Odesskii-Feigin(1995-2000):
LetMn,k(Y ) =M(ξ0,1, ξn,k) be the moduli space of
k + 1-dimensional bundles on the elliptic curve Y with
1-dimensional sub-bundle. ξ0,1 = OY , ξn,k - indecomposable bundle
of degree n and rank k . This moduli space is a space of exact
sequences:

0→ ξ0,1 → F → ξn,k → 0

up to an isomorphism.



Odesskii-Feigin description-2

Theorem

Mn,k(Y ) ∼= PExt1(ξn,k ; ξ0,1) ∼= CPn−1.

The Poisson structure qn,k(Y ) in the "classical limit" (η → 0) of
Qn,k(Y , η) is a homogeneous quadratic on Cn and defines a Poisson
structure on CPn−1 which coincides with the intrinsic Poisson
structure on the moduli space of parabolic bundlesMn,k(Y ).



Polishchuk description-1

A. Polishchuk(1999-2000):
There exists a natural Poisson structure on the moduli space of
triples (E1,E2,Φ) of stable vector bundles over Y with fixed ranks
and degrees, where Φ : E2 → E1 a homomorphism. For E2 = OY

and E1 = E this structure is exactly the Odesskii-Feigin structure
on PExt1(E ,OY ).



Polishchuk description-2

Theorem
LetMn,k(Y ) ∼= PExt1(E ,OY ) where E is a stable bundle with
fixed determinant O(nx0) of rank k, (n, k) = 1. Suppose in
addition that (n + 1, k) = 1. Then there is a birational
transformation (compatible with Poisson structures)

Mn,k(Y )→Mn,φ(k):=−(k+1)−1(Y ) ∼= PH0(F ),

where F is a stable vector bundle of degree n and rank k + 1.
Moreover, for n = 5 the isomorphism
P(H0(Y ,F )) ' P(Ext1(E ′,OY ) with E ′ to be a stable rank
r ′ = −1

2mod 5 = 2 gives the birational transformation
q5,1(Y ) L9999K q5,2(Y ).



Odesskii-Feigin "quantum" homomorphisms for 5-generator
algebras

Let Q5,1(Y , η) and Q5,2(Y , η) be "quantum" elliptic Sklyanin
algebras corresponded to q5,1(Y ) and to q5,2(Y ).

Example
I The algebra Q5,2(Y , η) is a subalgebra in Q5,1(Y , η) generated

by 5 elements with 10 quadratic relations.

I In its turn, the algebra Q5,1(Y , η) is a subalgebra in
Q5,2(Y , η).

I The compositions of embeddings
Q5,1(Y , η)→ Q5,2(Y , η)→ Q5,1(Y , η) transforms the
generators xi → P5,1xi and
Q5,2(Y , η)→ Q5,1(Y , η)→ Q5,2(Y , η) transforms the
generators yi → P5,2yi .
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Symplectic leaves for q5,1(Y )

Symplectic leaves M(k) of q5,1(Y ) have dimension k = 0; 2 and 4.
Feigin - Odesskii 1987:
I A two-dimensional symplectic leaf M1 (in the notations is the

cone C (Y ) of the curve Y . (The elliptic curve Y can be
identified with the 1-st secant variety C1(Y ) of Y ).

I The four-dimensional leaves M2
λ are the cones over the

unification of all chords of Y (= over the 2-nd secant variety
C2(Y ) := Sec(Y ))

I These are the level hypersurfaces of the unique Casimir
K (C2(Y )) (the center Z (q5,1(Y )) = C[K (C2(Y ))]) which is a
polynomial of degree 5,

M2 = {K (C2(Y )) = 0} ⊂ C5.



Symplectic leaves for q5,2(Y )

Feigin - Odesskii 1987:
I The union of two-dimensional leaves for q5;2(Y ) is the cone

C (X ) in C5 over two-dimensional surface X := S2(Y ) which
is embedded in CP4.

I The description of four-dimensional leaves is based on the
notion of a trisecant variety Trisec(X ) for the elliptic scroll
X = S2(Y ). (This variety is a union of all lines in
X = S2(Y ) = Y × Y /Z2 passing through pairs (ξ; ξ1) and
(ξ; ξ2) in X . If Yξ ⊂ X is a curve formed (for fixed ξ ∈ Y ) by
of points (ξ; ξ1) then it can be embed in the projective plane
CP2

ξ ⊂ CP4.)

I The variety Trisec(X ) is a quintic hypersurface in CP4. There
is a quintic polynomial K5,2(Trisec(X )) whose level
hypersurfaces are symplectic leaves (similarly to q5,1).



General (naive) definitions

Consider n + 1 homogeneous polynomial functions ϕi in
C[x0, · · · , xn] of the same degree which are non identically zero.
One can associated the rational map:

ϕ : CPn −→ CPn, [x0 : · · · : xn] 7→ [ϕ0([x0, · · · , xn) : · · · : ϕn([x0, · · · , xn)].

The family of polynomial ϕi or ϕ is called a birational
transformation of CPn if there exists a rational map
ψ : CPn −→ Pn such that ψ ◦ ϕ is the identity. A birational
transformation is also called a Cremona transformation.



Φ = (Φ0, . . . ,Φ4) : CP4 → CP4

Let (λ : µ) ∈ CP1 such that k = λ/µ and Yλ,µ is given by the set
of the quadrics

Yλ,µ := {Φi (x) = λµx2
i −λ2xi+2xi+3+µ2xi+1xi+4 = 0}, i ∈ Z5,

(7)
(These quadrics are 4x4 Pfaffians of the Klein syzygy 5x5
skew-symmetric matrix of linear forms.) They form fibers of the
elliptic fibration

π : SH−M → CP1, π−1(λ : µ) = Yλ,µ.



Φ−1 = (Φ−1
0 , . . . ,Φ−1

4 ) : CP4 → CP4

The elliptic quintic scroll Qλ,µ(z) is given by the set of cubics

Φ−1
i (z) = λ2µ2z3

i +λ3µ(z2
i+1zi+3+zi+2z

2
i+4)−λµ3(zi+1z

2
i+2+z2

i+3zi+4)−
(8)

−λ4zizi+1zi+4 − µ4zizi+2zi+3, i ∈ Z5.

The direct and inverse Cremona transformations Φ,Φ−1 transform
the Sec(Y ) ⊂ CP4(x) to the scroll X = S2Y ⊂ CP4(z) and vice
versa.



Theorem
I The quadro-cubic Cremona transformations (7) and (8) are

birational Poisson morphisms of P4 which transform q5,1(Yλ,µ)
to q5,2(Yµ,−λ) and vice versa.

I These Cremona transformations are "quasi-classical limits" of
Odesskii-Feigin "quantum" homomorphisms
Q5,1(Y , η)→ Q5,2(Y , η) and vice versa.
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Theorem
I The Casimir quintic polynomial K5,1(C2(Y )) defining the

4-dimensional symplectic leaf M2 is the determinant of the
Jacobi matrix

K5,1(C2(Y ))(x , a =
λ

µ
) = det

∂(Φ0,Φ1,Φ2,Φ3,Φ4)

∂(x0, x1, x2, x3, x4)

I The Jacobian of the inverse transformations (8) defines the
family of 4-dimensional symplectic leaves of the algebra
q5,2(Y ):

[K5,2(C (X ))(z , k =
µ

−λ)]2 = det
∂(Φ−1

0 ,Φ−1
1 ,Φ−1

2 ,Φ−1
3 ,Φ−1

4 )

∂(z0, z1, z2, z3, z4)
.
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Cremona transformations in P4

Quadro-cubic Cremona transformations and
Feigin-Odesskii-Sklyanin algebras with 5 generators
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Abstract

Quadro-cubic Cremona transformations
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Here Y is a smooth elliptic curve and E ! Y is a rank 2 vector bundle. We denote
by X = P(E) and then there is the unique non-trivial extension

0! OY (�e)! E ! OY ! 0, (1)

where e 2 Y is a fixed point on the curve. The direct image via the structure morphism
p : X ! Y provides E⇤ = p⇤(OX(1))

⇤Laboratoire Angevin de Recherche en Mathématiques Université D’Angers, Département de Mathé-
matiques 2, boulevard Lavoisier, 49045 Angers, France E-mail address: Volodya.Roubtsov@univ-angers.fr
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The conditions under which a general Cremona transformation (7)
on CP4 gives the Poisson morphism from q5,1(Y ) to some
H−invariant quadratic Poisson algebra read like the following
algebraic system:

{
−a3k + 4 k4a + 2 k5a2 + 2 k3 − 2 a2 + a6k4 = 0
−1 + 2 a2k2 − a3k3 + 2 ak = 0

(9)

The system has two classes of solutions: ak = −1 and a = 3±
√

5
2k

for each k satisfies to the equation k10 + 11k5 − 1 = 0.



Klein Icosahedron-1





Klein Icosahedron-2

These exceptional solutions correspond to the vertexes of the Klein
icosahedron inside S2 = CP1 and the associated singular curves
forms pentagons (the following figures belong to K. Hulek):

Each pentagon corresponds to a degeneration of the
Odesskii-Feigin-Sklyanin algebra q5,2(Y ) which are (presumably)
new examples of H−invariant quadratic Poisson structures on C5.



If n = 7 there are three non-isomorphic Sklyanin-Odesskii-Feigin
Elliptic Algebras - Q7,1(Y ),Q7,2(Y ) and Q7,3(Y ) with their
Poisson counterparts - q7,1(Y ), q7,2(Y ) and q7,3(Y ). The
corresponding algebro-geometric objects are:
I three H7−invariant elliptic curves Ya in CP6 parametrizing by

points a of Klein quartic K : λ3µ− µ3ν − ν3λ = 0;

I if a = (λ, µ, ν) is a cusp - the curves degenerate to a
configuration of lines;

I three H7−invariant elliptic ruled surfaces Sa (second
symmetric products S2(Ya) or the secant of Ya);

I seven quadrics containing this surfaces define a Cremona
transformations (which are birational Poisson morphisms
between the quadratic Poisson algebras q7,1(Y ), q7,2(Y ) and
q7,3(Y )).
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configuration of lines;
I three H7−invariant elliptic ruled surfaces Sa (second

symmetric products S2(Ya) or the secant of Ya);
I seven quadrics containing this surfaces define a Cremona

transformations (which are birational Poisson morphisms
between the quadratic Poisson algebras q7,1(Y ), q7,2(Y ) and
q7,3(Y )).



FIN

THANK YOU FOR YOUR ATTENTION!
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