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Last example of Part |

Elliptic Poisson algebras
Examples of Feigin-Odesskii-Sklyanin algebras

Heisenberg invariancy, Poisson structures on Moduli spaces,
Odesskii-Feigin-Polishchuk

Symplectic foliations
Cremona transformations and Poisson morphisms of CP*

n =7, perspectives...



Generalised
Sklyanin-Painlevé-Dubrovin-Ugaglia-Nelson-Regge Poisson

algebra
Poisson algebra Ay = (C[x1, x2, x3], {—, —}4) where

{F,G}y = % is the Jacobian Poisson-Nambu structure on

C3 for F, G € C[x1, x2, x3].
Mgy — zero locus of
¢ = X1X2X3+3Xf+bX23+CX§?—€1X12—€2X22—63X§+W1X1+W2X2+w3X3+w4,
¢, ={0,1},a,b,c,w; € C
{x1,x2}p = x1x2 + 333X§ — 2e3x3 + ws,
and cyclic in (1,2,3),
{6,x}=0,¥=12,3.

For generic set of constants it is nowhere vanishing on M.



Artin-Tate-Sklyanin elliptic Poisson algebra g3 1(Y)

» Y C CP? normal elliptic curve
» L line bundle degree 3
>

Y = P(X1,X2,X3) = 1/3(X§ +X§ +X3?) + kxixoxz = 0, (1)

» then
{x1,x} = kxixa + x§
{x2,x3} = kxoxz + 7
{x3,x1} = kxax1 + x3

> Symplectic leaves:
1. X1:X22X3:0;
2. {Y\0}
3. {Y = A, A€ C,\#£0.
4. Brackets are H3— invariant (x; — xj11,% — €'x;,i € Z3).



A wide class of the polynomial Poisson algebras arises as a
quasi-classical limit g, (YY) of the associative quadratic algebras
Qnk(Y,n). Here Y is an elliptic curve and n, k are integer
numbers without common divisors ,such that 1 < k < n while n is
a complex number and Q, «(Y,0) = C[xq, ..., Xp].



Feigin-Odesskii-Sklyanin algebras

Let Y = C/I be an elliptic curve defined by a lattice
Fr=Z&7Z,7€C,31 > 0. The algebra Q, «(Y,n) has generators
Xi, I € Z/nZ subjected to the relations

Z 0j—itr(k—1)(0) N —0 (2)

T — G—rXi+r
rezint HJ—I—I’( )0k (1)

and have the following properties:



Basic properties

> Qui(Y.n)=C® Q1 ® Q@ ... such that Qu * Q3 = Qu3,
here * denotes the algebra multiplication. The algebras

Qnk(Y,n) are Z - graded;
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Basic properties

» Qui(Y,n)=C® Q& Q@ ... such that Q * Qs = Qu+3,
here * denotes the algebra multiplication. The algebras
Qnk(Y,n) are Z - graded;

» The Hilbert function of Q, «(Y,n) is
> a0 dim Qut® = ﬁ

> Qui(Y,n) =~ Qui(Y,n),if ki =1 (mod n);

» The maps x; — Xxj41 et x; — &'x;, where " = 1, define
automorphisms of the algebra Q, «(Y,7);

» We can consider the algebra Q, «(Y,n) for fixed Y as a flat
deformation of the polynomial ring C[xq, ..., Xs].



elliptic Poisson Feigin-Odesskii-Sklyanin algebras

The linear —in n— term of this deformation gives rise to a quadratic
Poisson algebra g, «(Y).

The limit as 7 — 0, we obtain a Poisson polynomial algebra

C[x1, ..., xn] and the semi-classical limit of Qp «(Y,n), denoted by
gnk(Y), is this polynomial algebra equipped with the Poisson
bracket {x;, x;} := lim; o [X”XJ]
that for i # J,

It follows from the relations (2)

_l’_

0;_;(0)  Bi;—i(0)
~\0-i(0) Oy )()

- 2wrn> xixi+  (3)

3 0; it r(k—1)(0)0'(0)

Xj—rXit+r (4)
2 o)



Let gn «(Y') be the correspondent Poisson algebra. The algebra
gnk(Y) has | = gcd(n, k 4+ 1) Casimirs. Let us denote them by
Py, € Z/IZ. Their degrees deg P, are equal to n/I.



Qm1(Y,n) as an ACIS

A. Odesskii and V.R prove in 2004 the following

Theorem

The elliptic algebra Qm 1(Y,n) has m commuting elements of
degree m.



Qm1(Y,n) as an ACIS

A. Odesskii and V.R prove in 2004 the following

Theorem
The elliptic algebra Qm 1(Y,n) has m commuting elements of
degree m.

As a corollary, g251(Y’) should have n—Poisson commuting

elements of degree n. It would be interesting to find a precise
example of the corresponding "integrable system.



Why n =57

We concentrate our attention on the 5 dimensional case.

» |t is the first case when there are two different Poisson tensors
generated by the Odesskii-Feigin construction;

» The underlying elliptic curves are only local complete
intersections;

» The bihamiltonian properties of g5 2(Y') are still obscure, while
the algebra g5 1(Y) is in fact tri-hamiltonian (Odesskii)

» We do not know how to relate to these algebras (as well as to
all other odd-dimensional algebras for n > 3) an integrable
system.

» The algebras with n = 5 generators ( together with n =7)
give a good hint how to treat the general algebras with prime
number p of generators, associated with normal elliptic curves
given by pfaffians .



Quintic elliptic Poisson algebra

Let us consider the algebra g5 1(Y) :

Example

We have the polynomial ring with 5 generators x;,i € Z /57
enabled with the following Poisson bracket:

3 1 Xi+4Xi Xit3°
{Xi’Xi+1}5,1 = <_ k2 5/(3) XiXi+1 — 2 l+4kl+2 + l;23
{xis Xiya}s1 = (—5 K - 5k3> Xit2Xi + 2 Xi13Xira — Kk Xip1°

Here i € Z/5Z and k € C is a parameter of the curve Y, = C/T,
i.e. some function of 7.



Casimir of degree 5

The center Z(gs51(Y')) is generated by the polynomial
Psi=x5+x + X5+ x5+ x5+
(1/k4 + 3k) (X8X1X4 + xf’XOXQ + x23X1X3 + X§X2X4 + x23XOX3) +
+ (—k* +3/k) (g x2x3 + xgxaxa + X3 x0xa + X3x1%0 + Xzx1%2) +
+(2k% — 1/k%) (Xoxlzxf + X1XEXE + xox3X3 + x3XEXG + X4X12X22) +
+(K3 +2/K?) (x0x3x3 + x1X3x5 + X353 + xaxixg + xaxix3) +

+(k5 —16 — 1/k5)X0X1X2X3X4.



Second elliptic Poisson structure for n =5

It follows from the description of Odesskii-Feigin that there are two
essentially different elliptic algebras with 5 generators: Qs 1(Y,7)
and @s2(Y,n"). The corresponding Poisson counter-part of the
latter is q5’2(Y) :

Example
2., 1 yit3®
{yisyivits2 = | £ A+ o3 | YiYitr + Aivayit2 —
5 5\ A (6)
1 2 Yi+3Yita
{is Yitots2 = (—5 A2+ 5)\3> Yit2Yi — 7’+)\2'+ + yip1?

where i € Zs. The center Z(gs52(Y)) = C[Ps ).’



Heisenberg group

Consider an n—dimensional vector space V and fixe a base

VO, ...y Vn—1 of V then the

Heisenberg group of level n in the Schrédinger representaion is the
subgroup H, C GL(V') generated by the operators

o:(vi) = vi_1; Tivi—ev, (6)"=1,0<i<n-1.
This group has order n® and is a central extension
1->U,—>H, > Zy X Zp— 1,

where U, is the group of n—th roots of unity.



The Heisenberg group action provides the automorphisms of the
Sklyanin algebra which are compatible with the grading and defines
also an action on the quasiclassical limit of the Sklyanin algebras
gn,k(Y)- the elliptic quadratic Poisson structures on CP" ! which
are identified with Poisson structures on some moduli spaces of the
degree n and rank k + 1 vector bundles with parabolic structure (=
the flag 0 C V € C**1 on the elliptic curve Y)



Odesskii-Feigin description-1

Odesskii-Feigin(1995-2000):
Let My «(Y) = M(&o0,1,€nk) be the moduli space of
k 4 1-dimensional bundles on the elliptic curve Y with
1-dimensional sub-bundle. {1 = Oy, &,k - indecomposable bundle
of degree n and rank k. This moduli space is a space of exact
sequences:

0—=&1—F—=&k—0

up to an isomorphism.



Odesskii-Feigin description-2

Theorem

M i(Y) =2 PExt! (p ki 01) = CP™ L

The Poisson structure qn (YY) in the "classical limit" (n — 0) of
Qnk(Y,n) is a homogeneous quadratic on C" and defines a Poisson
structure on CP"~! which coincides with the intrinsic Poisson
structure on the moduli space of parabolic bundles M, ;(Y).



Polishchuk description-1

A. Polishchuk(1999-2000):

There exists a natural Poisson structure on the moduli space of
triples (E1, Ez, ®) of stable vector bundles over Y with fixed ranks
and degrees, where ® : E; — E; a homomorphism. For E; = Oy

and E; = E this structure is exactly the Odesskii-Feigin structure
on PExt}(E,Oy).



Polishchuk description-2

Theorem

Let M, k(Y) 2 PExt!(E,Oy) where E is a stable bundle with
fixed determinant O(nxg) of rank k, (n, k) = 1. Suppose in
addition that (n+ 1, k) = 1. Then there is a birational
transformation (compatible with Poisson structures)

M ic(Y) = Mo gky=—(ks1)-1(Y) = PHO(F),

where F is a stable vector bundle of degree n and rank k + 1.
Moreover, for n =5 the isomorphism

P(HO(Y, F)) ~ P(Ext'(E’,Oy) with E' to be a stable rank

r' = —%mod 5 = 2 gives the birational transformation

q5’1(Y) c————> q572(Y).



Odesskii-Feigin "quantum" homomorphisms for 5-generator
algebras

Let Q51(Y,n) and Qs2(Y,n) be "quantum" elliptic Sklyanin
algebras corresponded to g5 1(Y') and to gs52(Y).

Example

» The algebra Qs52(Y,n) is a subalgebra in Qs1(Y,7n) generated
by 5 elements with 10 quadratic relations.
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Odesskii-Feigin "quantum" homomorphisms for 5-generator
algebras

Let Q51(Y,n) and Qs2(Y,n) be "quantum" elliptic Sklyanin
algebras corresponded to g5 1(Y') and to gs52(Y).

Example

» The algebra Qs52(Y,n) is a subalgebra in Qs1(Y,7n) generated
by 5 elements with 10 quadratic relations.

> In its turn, the algebra Qs 1(Y,n) is a subalgebra in
Q572( Y7 77)
» The compositions of embeddings

Qs5.1(Y,n) = Qs2(Y,n) = @s,1(Y,n) transforms the
generators x; — Ps 1x; and

Qs2(Y,n) = Qs1(Y,n) = Qs2(Y,n) transforms the
generators y; — Ps oy



Symplectic leaves for g5 1(Y)

Symplectic leaves M(¥) of g5 1(Y') have dimension k = 0;2 and 4.
Feigin - Odesskii 1987:

» A two-dimensional symplectic leaf M! (in the notations is the
cone C(Y) of the curve Y. (The elliptic curve Y can be
identified with the 1-st secant variety Ci(Y') of Y).

» The four-dimensional leaves M2 are the cones over the
unification of all chords of Y (= over the 2-nd secant variety
G(Y) = Sec(Y))

» These are the level hypersurfaces of the unique Casimir
K(G(Y)) (the center Z(gs1(Y)) = C[K(C(Y))]) which is a
polynomial of degree 5,

M? = {K(Cy(Y)) =0} C C°.



Symplectic leaves for gso(Y)

Feigin - Odesskii 1987:

» The union of two-dimensional leaves for gs.2(Y) is the cone
C(X) in C° over two-dimensional surface X := S?(Y) which
is embedded in CP*.

» The description of four-dimensional leaves is based on the
notion of a trisecant variety Trisec(X) for the elliptic scroll
X = S2(Y). (This variety is a union of all lines in
X = S2(Y) =Y x Y/Z, passing through pairs (; £1) and
(& &) in X.If Yo C X is a curve formed (for fixed £ € Y') by
of points (&; 1) then it can be embed in the projective plane
CPE2 c CP*)

» The variety Trisec(X) is a quintic hypersurface in CP*. There
is a quintic polynomial Ks»( Trisec(X)) whose level
hypersurfaces are symplectic leaves (similarly to g5 1).



General (naive) definitions

Consider n + 1 homogeneous polynomial functions ¢; in
C[xo, - ,%n] of the same degree which are non identically zero.
One can associated the rational map:

@ZCP”—)CP”,[X():---:Xn]H[QOO([XO7"',Xn):"':gpn([Xo,“-,Xn):

The family of polynomial ¢; or ¢ is called a birational
transformation of CP" if there exists a rational map

1) : CP™ — P" such that v o ¢ is the identity. A birational
transformation is also called a Cremona transformation.



& = (dg,...,dq): CP* = CP*

Let (X : u) € CP! such that k = A\/p and Y, , is given by the set
of the quadrics

Y = {®i(x) = )\Mx,-z—)\2x,-+2x,-+3+u2x,-+1x,-+4 =0}, i € Zs,

(7)
(These quadrics are 4x4 Pfaffians of the Klein syzygy 5x5
skew-symmetric matrix of linear forms.) They form fibers of the
elliptic fibration

T Su-m — CPL T Y (N p) = Yo



o= (dyt,..., 01 CP* — CP*

The elliptic quintic scroll Qy ,(z) is given by the set of cubics

& H(2) = NP4 N (2R 1 23t 202l 4) M (212 0+ 2] 521 a) —
. . _ (8)
—N'ZiZi11Ziva — | ZiZi4 2743, I € Zs.
The direct and inverse Cremona transformations ®, ®~1 transform
the Sec(Y) C CP*(x) to the scroll X = S2Y C CP*(z) and vice
versa.



Theorem

» The quadro-cubic Cremona transformations (7) and (8) are
birational Poisson morphisms of P* which transform qs 1(Yx )
to gs,2(Y,,—x) and vice versa.



Theorem
» The quadro-cubic Cremona transformations (7) and (8) are
birational Poisson morphisms of P* which transform qs 1(Yx )
to gs,2(Y,,—x) and vice versa.
» These Cremona transformations are "quasi-classical limits" of
Odesskii-Feigin "quantum" homomorphisms
Rs51(Y,n) = Qs2(Y,n) and vice versa.



Theorem
» The Casimir quintic polynomial Ks1(Co(Y')) defining the
4-dimensional symplectic leaf M? is the determinant of the
Jacobi matrix

A O(dg, 1, dr, P3,
Ks(GolY))(x,2 = ) = det (®o, D1, B3, D3, bs)

8(x0, X1, X27X37X4)



Theorem
» The Casimir quintic polynomial Ks1(Co(Y')) defining the
4-dimensional symplectic leaf M? is the determinant of the

Jacobi matrix
\ O(®g, P1, Dy, P3, Dy)
51(G(Y))(x,a H) © O(x0, X1, X2, X3, X4)

» The Jacobian of the inverse transformations (8) defines the
family of 4-dimensional symplectic leaves of the algebra

g52(Y):
Ho\q2 a(¢817¢1—17¢2—1’¢,;17¢zl)
[Ks,2(C(X))(z, /\)] € Nz0, 21, 22, 23, 4)




Cremona transformations in P*

~
Ps2y
~ PT
— Oy =T
—

Y < P« Sec Trisec(S%Y) —P* < S?Y

>
\ Ogay =Ty — ~
_
—
[ —

Trlsec _ >
-
Os2y -~
Sy

SZY



The conditions under which a general Cremona transformation (7)
on CP* gives the Poisson morphism from g5 1(Y) to some
H—invariant quadratic Poisson algebra read like the following
algebraic system:

—ak +4k*a+2k%22 +2k3 - 222+ %Kk =0 9)
—1+22%k%> - a%k3+2ak =0
The system has two classes of solutions: ak = —1 and a = %
for each k satisfies to the equation k¥ + 11k% — 1 = 0.



Klein lcosahedron-1
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Klein lcosahedron-2

These exceptional solutions correspond to the vertexes of the Klein
icosahedron inside S?> = CP! and the associated singular curves
forms pentagons (the following figures belong to K. Hulek):

(a=0) (a==)

€,
e, Se
e’ %ﬁe’@% )
N
e, e, e, e, €, €

Each pentagon corresponds to a degeneration of the
Odesskii-Feigin-Sklyanin algebra g5 2(Y) which are (presumably)
new examples of H—invariant quadratic Poisson structures on C°.



If n =7 there are three non-isomorphic Sklyanin-Odesskii-Feigin
Elliptic Algebras - Q7,1(Y), Q72(Y) and Q7 3(Y') with their
Poisson counterparts - g7,1(Y), q72(Y) and g73(Y). The
corresponding algebro-geometric objects are:

» three H;—invariant elliptic curves Y; in CP® parametrizing by
points a of Klein quartic K : A3 — v — 3\ = 0;
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symmetric products S2(Y,) or the secant of Yj);



If n =7 there are three non-isomorphic Sklyanin-Odesskii-Feigin
Elliptic Algebras - Q7,1(Y), Q72(Y) and Q7 3(Y') with their
Poisson counterparts - g7,1(Y), q72(Y) and g73(Y). The
corresponding algebro-geometric objects are:
» three H;—invariant elliptic curves Y; in CP® parametrizing by
points a of Klein quartic K : A3 — v — 3\ = 0;
» if a=(\, p,v) is a cusp - the curves degenerate to a
configuration of lines;
» three H;—invariant elliptic ruled surfaces S, (second
symmetric products S2(Y,) or the secant of Yj);
> seven quadrics containing this surfaces define a Cremona
transformations (which are birational Poisson morphisms
between the quadratic Poisson algebras g7,1(Y), g72(Y) and

q73(Y))-



FIN

THANK YOU FOR YOUR ATTENTION!
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