"Polynomial and Elliptic Poisson Algebras: Part I -examples

Volodya Roubtsov^{1,2,3}

¹LAREMA, U.M.R. 6093 du CNRS, Université d'Angers ²Theory Division, ITEP, Moscow ³IGAP, Trieste

July 13, 2020, Joseph Krasil'schshik Seminar, IMU, Moscow

Today's talk is based partly on my joint paper with

Sasha Odesskii (Brock Univ. Canada) :

 "Polynomial Poisson algebras with a regular lstructure of symplectic leaves", Theoret. and Math. Phys. 133 (2002), no. 1, 1321-1337

I highly recommend for all inerested in the subject recent lectures of Brent Pym(Univ. McGill, Canada) during "Poisson 2016"in Geneva ("Constructions and classifications of projective Poisson varieties. Lett. Math. Phys., 108(3):573–632, 2018.) like a beautiful and pedagogical introduction.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Plan

Introduction

Poisson brackets and structures per se Poisson structures on complex manifolds Polynomial Poisson structures Poisson algebras associated to elliptic curves. Non-elliptic Jacobian Poisson brackets

Let *M* be a (smooth, algebraic, complex, real analytic...) manifold and Fun(M)- algebra of (...) functions on *M*. Take $f, g \in Fun(M)$ and a \mathbb{C} -bilinear operation $\{,\}: Fun(M) \times Fun(M) \rightarrow Fun(M)$ such that for $f, g \in Fun(M)$: $\blacktriangleright \{f,g\} = -\{g,f\}$

Let *M* be a (smooth, algebraic, complex, real analytic...) manifold and Fun(M)- algebra of (...) functions on *M*. Take $f, g \in Fun(M)$ and a \mathbb{C} -bilinear operation $\{, \} : Fun(M) \times Fun(M) \rightarrow Fun(M)$ such that for $f, g \in Fun(M)$:

▶
$${f,g} = -{g,f}$$

•
$$\{f,gh\} = \{f,g\}h + \{f,h\}g, f$$
 - Leibniz rule

Let *M* be a (smooth, algebraic, complex, real analytic...) manifold and Fun(M)- algebra of (...) functions on *M*. Take $f, g \in Fun(M)$ and a \mathbb{C} -bilinear operation $\{,\}: Fun(M) \times Fun(M) \rightarrow Fun(M)$ such that for $f, g \in Fun(M)$:

- ▶ ${f,g} = -{g,f}$
- $\{f,gh\} = \{f,g\}h + \{f,h\}g, f$ Leibniz rule
- ▶ $\{f, \{g, h\}\} + \bigcirc_{f,g,h} = 0$ a \mathbb{C} Lie algebra structure on Fun(M).

A Poisson structure on a manifold M(...): - a bivector, or an antisymmetric tensor field $\pi \in \Lambda^2(TM)$ defining on the corresponded algebra of functions on M the structure of (infinite dimensional) Lie algebra by means of the Poisson brackets

 $\{f,g\} = \langle \pi, df \wedge dg \rangle.$

The Jacobi identity for this brackets is equivalent to the "Poisson Master Equation": $[\pi, \pi] = 0$, where the brackets $[,] : \Lambda^{p}(TM) \times \Lambda^{q}(TM) \mapsto \Lambda^{p+q-1}(TM)$ are Schouten-Nijenhuis(= the Lie super-algebra structure on $\Lambda^{\cdot}(TM)$).

Casimirs

A function $F \in Fun(M)$ is a Casimir of the Poisson structure π if $\{F, G\} = 0$ for all functions $G \in Fun(M)$. If the rank of the structure is constant in a neighborhood of m (m is called a regular point) then the Casimirs in the neighborhood are the functions depending only on x_1, \ldots, x_k and Poisson manifold admits a foliation by symplectic leaves, i.e. is a unification of submanifolds

 $x_1 = c_1, \ldots, x_k = c_k$

and c_i are constants such that π is non- degenerate on each of them. In general the dimension of the leaves is constant only on the open dense

$$\blacktriangleright \ \pi = \sum \pi^{ij} \frac{\partial}{\partial z_i} \wedge \frac{\partial}{\partial z_j} \in H^0(M, \Lambda^2 T)$$

•
$$\pi = \sum \pi^{ij} \frac{\partial}{\partial z_i} \wedge \frac{\partial}{\partial z_j} \in H^0(M, \Lambda^2 T)$$

• $[\pi, \pi] = 0 \in H^0(M, \Lambda^3 T)$

<□ > < @ > < E > < E > E のQ @

$$\blacktriangleright \ \pi = \sum \pi^{ij} \frac{\partial}{\partial z_i} \wedge \frac{\partial}{\partial z_j} \in H^0(M, \Lambda^2 T)$$

$$\blacktriangleright \ [\pi,\pi]=0\in H^0(M,\Lambda^3 T)$$

• f, g local holomorphic functions, then $\{f, g\} = \langle \pi, df \wedge dg \rangle$.

► $M = \mathfrak{g}^*, \pi \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$ such that (\mathfrak{g}, π) - Lie algebra, symplectic leaves- $\mathcal{O} \subset \mathfrak{g}^*$ - coadjoint orbits of $G = Lie(\mathfrak{g})$.

- ► $M = \mathfrak{g}^*, \pi \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$ such that (\mathfrak{g}, π) Lie algebra, symplectic leaves- $\mathcal{O} \subset \mathfrak{g}^*$ - coadjoint orbits of $G = Lie(\mathfrak{g})$.
- $M = \mathbb{P}^2$ and $\pi \in H^0(\mathbb{P}^2, \Lambda^2 T)$, symplectic leaves: 0-dim -points on cubic curve $Y = \pi^{-1}(0)$ and 2-dim $M \setminus Y$.

•
$$\pi \in H^0(M, \Lambda^2 T) = H^0(M, K_M^{-1})$$
, where
 $K_M = \det T^*M = \Lambda^2 T^*M$.
The line bundle $K_M^{-1} = \det TM$ - the anticanonical bundle

 π ∈ H⁰(M, Λ²T) = H⁰(M, K⁻¹_M), where K_M = det T*M = Λ²T*M. The line bundle K⁻¹_M = det TM− the anticanonical bundle
 anticanonical divisor: zero locus of a section of the line bundle K⁻¹_M

•
$$\pi \in H^0(M, \Lambda^2 T) = H^0(M, K_M^{-1})$$
, where
 $K_M = \det T^* M = \Lambda^2 T^* M$.
The line bundle $K_M^{-1} = \det TM$ the anticanonical bundle

• anticanonical divisor: zero locus of a section of the line bundle K_M^{-1}

vanishes on an elliptic (possibly degenerate) curve

$$\blacktriangleright M = \mathbb{P}^2, K_{\mathbb{P}^2}^{-1} = \mathcal{O}(3).$$

$$Y = \{ [x_1 : x_2 : x_3] \in \mathbb{P}^2 | f(x_1, x_2, x_3) = 0 \}$$

◆□ ▶ ◆□ ▶ ▲目 ▶ ▲目 ▶ ◆□ ▶

$$Y = \{ [x_1 : x_2 : x_3] \in \mathbb{P}^2 | f(x_1, x_2, x_3) = 0 \}$$

• $\frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}$ vanishes to order 3 on the line at infinity.

Various cubic curves in \mathbb{P}^2 (after B.Pym)

(g) lines through a point (h) line and a double line

(i) triple line

N	Kodaira cycles	Kodaira fibers
N = 1	$I_1: x_2^2 x_3 = x_1^3 + x_1^2 x_3$	II: $x_2^2 x_3 = x_1^3$
N = 2	$I_2: x_3^3 = x_1 x_2 x_3$	III : $x_2^2 x_3 = x_1^2 x_2$
	X	
N = 3	$I_3: x_1x_2x_3 = 0$	IV : $x_1 x_2^2 = x_1^2 x_2$

Table: Singular fibers of elliptic surface fibrations

$\blacktriangleright \ \pi \in H^0(M, \Lambda^2 TM), [\pi, \pi] = 0.$

$$\ \, \hbar \in H^0(M, \Lambda^2 TM), [\pi, \pi] = 0.$$
$$\ \, \hbar^2 TM \simeq T^*M \otimes K_M^{-1}, \pi \to \theta$$

<□ > < @ > < E > < E > E のQ @

•
$$\pi \in H^0(M, \Lambda^2 TM), [\pi, \pi] = 0.$$

• $\Lambda^2 TM \simeq T^*M \otimes K_M^{-1}, \pi \to \theta$
• $[\pi, \pi] = 0 \Leftrightarrow \theta \land d\theta = 0.$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

 $\blacktriangleright \Lambda^2 TM \simeq T^*M \otimes K_M^{-1}, \pi \to \theta$

$$\blacktriangleright \ [\pi,\pi] = \mathbf{0} \Leftrightarrow \theta \land d\theta = \mathbf{0}.$$

singular holomorphic foliation

 $\blacktriangleright \Lambda^2 TM \simeq T^*M \otimes K_M^{-1}, \pi \to \theta$

$$\blacktriangleright \ [\pi,\pi] = \mathbf{0} \Leftrightarrow \theta \land d\theta = \mathbf{0}.$$

- singular holomorphic foliation
- ▶ symplectic leaves: $\pi \neq 0, \theta = 0.$

・ロト・日本・ヨト・ヨト・日・ つへぐ

 $\blacktriangleright \Lambda^2 TM \simeq T^*M \otimes K_M^{-1}, \pi \to \theta$

$$\blacktriangleright \ [\pi,\pi] = 0 \Leftrightarrow \theta \land d\theta = 0.$$

- singular holomorphic foliation
- symplectic leaves: $\pi \neq 0, \theta = 0.$
- Poisson surfaces intersection in $\pi = 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let x₁, x₂, x₃− coordinates on C³, f ∈ Fun(C³)− holomorphic non-constant.

$$\ \, \bullet \ \, \pi_f := \imath_{df} \big(\frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_2} \wedge \frac{\partial}{\partial x_3} \big), \ \, df \wedge d^2 f = [\pi_f, \pi_f] = 0.$$

Let x₁, x₂, x₃− coordinates on C³, f ∈ Fun(C³)− holomorphic non-constant.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

π_f := *i_{df}*(∂/∂x₁ ∧ ∂/∂x₂ ∧ ∂/∂x₃), *df* ∧ *d²f* = [*π_f*, *π_f*] = 0.

 {*F*, *G*} = d*F*∧d*G*∧d*f*/dx₂ ∧ dx₃ = Jac(*F*, *G*, *f*) − Jacobian Poisson structure.

- Let x₁, x₂, x₃− coordinates on C³, f ∈ Fun(C³)− holomorphic non-constant.
- π_f := i_{df}(∂/∂x₁ ∧ ∂/∂x₂ ∧ ∂/∂x₃), df ∧ d²f = [π_f, π_f] = 0.
 {F, G} = dF ∧ dG ∧ df/dx₂ ∧ dx₃ = Jac(F, G, f) − Jacobian Poisson structure.
- $\{f, G\} \equiv 0 f$ Casimir function of the Jacobian structure π_f .

- Let x₁, x₂, x₃− coordinates on C³, f ∈ Fun(C³)− holomorphic non-constant.
- *π_f* := *i_{df}*(∂/∂x₁ ∧ ∂/∂x₂ ∧ ∂/∂x₃), *df* ∧ *d²f* = [*π_f*, *π_f*] = 0.

 {*F*, *G*} = d*F*∧d*G*∧d*f*/dx₂ ∧ dx₃ = Jac(*F*, *G*, *f*) − Jacobian Poisson structure.
- $\{f, G\} \equiv 0 f$ Casimir function of the Jacobian structure π_f .
- The symplectic leaves are two types: 0− dim -critical points of f : df = 0 and 2−dim-form preimage surfaces f⁻¹(c) ⊂ C³

Let x₁, x₂, x₃− coordinates on g^{*} = (sl₂(C))^{*} and the corresponding Poisson brackets are:

Let x₁, x₂, x₃− coordinates on g^{*} = (sl₂(C))^{*} and the corresponding Poisson brackets are:

•
$$\{x_1, x_2\} = 2x_2; \{x_2, x_3\} = x_1; \{x_3, x_1\} = 2x_3$$

Let x₁, x₂, x₃− coordinates on g^{*} = (sl₂(C))^{*} and the corresponding Poisson brackets are:

•
$$\{x_1, x_2\} = 2x_2; \{x_2, x_3\} = x_1; \{x_3, x_1\} = 2x_3$$

•
$$\frac{1}{2}x_1^2 + 2x_2x_3 - \text{Casimir:} \{F, G\} = \langle \pi_f, dF \land dG \rangle$$

Let x₁, x₂, x₃− coordinates on g^{*} = (sl₂(C))^{*} and the corresponding Poisson brackets are:

•
$$\{x_1, x_2\} = 2x_2; \{x_2, x_3\} = x_1; \{x_3, x_1\} = 2x_3$$

•
$$\frac{1}{2}x_1^2 + 2x_2x_3 - \text{Casimir:} \{F, G\} = \langle \pi_f, dF \land dG \rangle$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Artin-Tate-Sklyanin elliptic Poisson algebra

•
$$Y \subset \mathbb{C}P^2$$
 normal elliptic curve

L line bundle degree 3

$$Y := P(x_1, x_2, x_3) = 1/3(x_1^3 + x_2^3 + x_3^3) + kx_1x_2x_3 = 0, \quad (1)$$

then

$$\{x_1, x_2\} = kx_1x_2 + x_3^2 \\ \{x_2, x_3\} = kx_2x_3 + x_1^2 \\ \{x_3, x_1\} = kx_3x_1 + x_2^2$$

•
$$M = \mathbb{P}^3, K_{\mathbb{P}^3}^{-1} = \mathcal{O}(4).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$M = \mathbb{P}^3, K_{\mathbb{P}^3}^{-1} = \mathcal{O}(4).$$

$$s_1, s_2 \in H^0(\mathbb{P}^3, \mathcal{O}(2))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

•
$$M = \mathbb{P}^3, K_{\mathbb{P}^3}^{-1} = \mathcal{O}(4).$$

• $s_1, s_2 \in H^0(\mathbb{P}^3, \mathcal{O}(2))$
• $\theta_{s_1, s_2} = s_1 ds_2 - s_2 ds_1 \in H^0(\mathbb{P}^3, \Omega^1 \mathcal{O}(4))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Jacobi-Nambu-Poisson

Let us consider n-2 polynomials Q_i in \mathbb{C}^n with coordinates $x_i, i = 1, ..., n$. For any polynomial $\lambda \in \mathbb{C}[x_1, ..., x_n]$ we can define a bilinear differential operation

$$\{,\}:\mathbb{C}[x_1,...,x_n]\otimes\mathbb{C}[x_1,...,x_n]\mapsto\mathbb{C}[x_1,...,x_n]$$

by the formula

$$\{f,g\} = \lambda \frac{df \wedge dg \wedge dQ_1 \wedge \dots \wedge dQ_{n-2}}{dx_1 \wedge dx_2 \wedge \dots \wedge dx_n}, \ f,g \in \mathbb{C}[x_1,...,x_n].$$
(2)

Sklyanin algebra

The case n = 4 in (2) corresponds to the classical (generalized) Sklyanin quadratic Poisson algebra. The very Sklyanin algebra is associated with the following two quadrics in \mathbb{C}^4 :

$$Q_1 = x_1^2 + x_2^2 + x_3^2, \tag{3}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$Q_2 = x_4^2 + J_1 x_1^2 + J_2 x_2^2 + J_3 x_3^2.$$
(4)

The Poisson brackets (2) with $\lambda = 1$ between the affine coordinates looks as follows

$$\{x_i, x_j\} = (-1)^{i+j} det\left(\frac{\partial Q_k}{\partial x_l}\right), l \neq i, j, i > j.$$
(5)

E. Sklyanin, FAA, 16:4, 1982 The paradigm of Inverse Scattering Method is reduced (in its classical version) to the following two problems:

Find a solution
$$r(u - v)$$
 of CYBE
 $[r_{12}(u - v), r_{13}(u)] + [r_{12}(u - v), r_{23}(v)] + [r_{13}(u), r_{23}(v)] = 0$

Sklyanin solution of CYBE (for the Landau–Lifshitz model): $r(u) = \sum_{k=1}^{3} w_{\alpha}(u) \sigma_{\alpha} \otimes \sigma_{\alpha}$, where $\sigma_{\alpha}, \alpha = 1, 2, 3 - 2 \times 2$ Pauli matrices and

$$w_1(u) = rac{1}{sn(u,q)}, w_2(u) = rac{dn(u,q)}{sn(u,q)}, w_3(u) = rac{cn(u,q)}{sn(u,q)}, q \in [0,1]$$

E. Sklyanin, FAA, 16:4, 1982 The paradigm of Inverse Scattering Method is reduced (in its classical version) to the following two problems:

Find a solution
$$r(u - v)$$
 of CYBE
 $[r_{12}(u - v), r_{13}(u)] + [r_{12}(u - v), r_{23}(v)] + [r_{13}(u), r_{23}(v)] = 0$

Find a solution L(u) of the classical analog of "RLL-"equation: {L₁, L₂} = [r, L₁L₂]

Sklyanin solution of CYBE (for the Landau–Lifshitz model): $r(u) = \sum_{k=1}^{3} w_{\alpha}(u) \sigma_{\alpha} \otimes \sigma_{\alpha}$, where $\sigma_{\alpha}, \alpha = 1, 2, 3 - 2 \times 2$ Pauli matrices and

$$w_1(u) = rac{1}{sn(u,q)}, w_2(u) = rac{dn(u,q)}{sn(u,q)}, w_3(u) = rac{cn(u,q)}{sn(u,q)}, q \in [0,1]$$

► The coefficients w_{α} form quadrics: $w_{\alpha}^2 - w_{\beta}^2 = J_{\alpha} - J_{\beta}$.

The coefficients w_α form quadrics: w_α² − w_β² = J_α − J_β.
 The solution of the "*rLL*" can be found in the form

$$L(u) = x_0 + i \sum_{\alpha}^{3} w_{\alpha} x_{\alpha} \sigma_{\alpha}$$

・ロト・日本・ヨト・ヨト・日・ つへぐ

• The coefficients w_{α} form quadrics: $w_{\alpha}^2 - w_{\beta}^2 = J_{\alpha} - J_{\beta}$.

The solution of the "rLL" can be found in the form

$$L(u) = x_0 + i \sum_{\alpha}^{3} w_{\alpha} x_{\alpha} \sigma_{\alpha}$$

Using CBYE one can verify that the unknown variables x_α should satisfy the quadratic Poisson algebra:

$$\{x_{\alpha}, x_{0}\} = 2(J_{\beta} - J_{\gamma})x_{\beta}x_{\gamma}, \{x_{\alpha}, x_{\beta}\} = -2x_{0}x_{\gamma}$$

Poisson structures on \mathbb{C}^n and \mathbb{P}^n

A. Bondal, A. Polishchuk, ... "folklore"

Theorem

Given quadratic homogeneous Poisson structure on \mathbb{C}^n $\{z_i, z_j\} = \sum_{1 \le k, l \le n} r_{ij}^{kl} z_k z_l$ defines a Poisson structure on \mathbb{P}^{n-1} with homogeneous coordinates $[z_1 : \ldots : z_n]$. Conversely, any holomorphic Poisson structure on \mathbb{P}^{n-1} can be obtained in this way.

A. Odesskii, V.R.:

Proposition

Let $X_1, ..., X_n$ are coordinates on \mathbb{C}^n considering as an affine part of the corresponding projective space \mathbb{P}^n then if $\{X_i, X_j\}$ extends to a holomorphic Poisson structure on \mathbb{P}^n then the maximal degree of the structure is 3 and

 $X_k \{X_i, X_j\}_3 + X_i \{X_j, X_k\}_3 + X_j \{X_k, X_i\}_3 = 0, i \neq j \neq k, i.e.$ $\{X_i, X_j\}_3 = X_i Y_j - X_j Y_i$, with $degY_i = 2$

K3-surfaces and Jacobian Poisson structtures

Definition

A compact complex surface M is a K3-surface if:

- there existe a holomorphic 2-form ω ∈ H⁰(M, Ω²(M)) without zeroes;
- ▶ $b_1(M) = 0$

All K3 are isomorphic as C^{∞} varieties but there are many different complex structures in this class. There are various projective models for algebraic K3:

- > zero locus of Fermat quartic $F(x_0, x_1, x_2, x_3)$ in \mathbb{P}^3 ;
- transversal intersection of a quadric Q and a cubic C hypersurfaces in P⁴;
- ▶ transversal intersection of three quadrics $Q_1 \cap Q_2 \cap Q_3$ in \mathbb{P}^5 .

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Example: K3-surface-1

- ► $S \subset \mathbb{P}^3$ a quartic $F(X_0, X_1, X_2, X_3) = 0$, deg F = 4, $(X_0 : X_1 : X_2 : X_3)$ - homogeneous coordinates.
- S has a holomorphic symplectic form(S. Mukai)
 Let

$$X_0=t\neq 0,$$

$$f(x_1, x_2, x_3) = t^{-4}F(t, tx_1, tx_2, tx_3).$$

g, h - locally defined holomorphic functions on $S \setminus S \cap \{X_0 = 0\}$ extended to the functions in (x_1, x_2, x_3) defined in the neighborhood of $f^{-1}(0)$:

$$\{g,h\} = rac{dg \wedge dh \wedge df}{dx_1 \wedge dx_2 \wedge dx_3}$$

evaluated at f = 0 is well-defined.

Generalised Sklyanin-Painlevé-Dubrovin-Ugaglia-Nelson-Regge Poisson algebra

Poisson algebra $A_{\phi} = (\mathbb{C}[x_1, x_2, x_3], \{-, -\}_{\phi})$ where $\{F, G\}_{\phi} = \frac{dF \wedge dG \wedge d\phi}{dx_1 \wedge dx_2 \wedge dx_3}$ is the Jacobian Poisson-Nambu structure on \mathbb{C}^3 for $F, G \in \mathbb{C}[x_1, x_2, x_3]$. M_{ϕ} - zero locus of

$$\phi = x_1 x_2 x_3 + a x_1^3 + b x_2^3 + c x_3^3 - \epsilon x_1^2 - \epsilon x_2^2 - \epsilon x_3^2 + \omega_1 x_1 + \omega_2 x_2 + \omega_3 x_3 + \omega_4,$$

$$\{x_1, x_2\}_{\phi} = x_1 x_2 + 3 a_3 x_3^2 - 2 \epsilon_3 x_3 + \omega_3,$$

and cyclic,

$$\{\phi, x_i\} = 0, \forall = 1, 2, 3.$$

For generic set of constants it is nowhere vanishing on M_{ϕ} .