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Today's talk is based partly on my joint paper with

Sasha Odesskii (Brock Univ. Canada) :

» "Polynomial Poisson algebras with a regular Istructure of

symplectic leaves", Theoret. and Math. Phys. 133 (2002), no.
1, 1321-1337

| highly recommend for all inerested in the subject recent lectures of

Brent Pym(Univ. McGill, Canada) during "Poisson 2016"in Geneva

("Constructions and classifications of projective Poisson varieties.

Lett. Math. Phys., 108(3):573-632, 2018.) like a beautiful and

pedagogical introduction.
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Poisson brackets

Let M be a (smooth, algebraic, complex, real analytic...) manifold
and Fun(M)— algebra of (...) functions on M. Take

f,g € Fun(M) and a C—bilinear operation

{, }: Fun(M) x Fun(M) — Fun(M) such that for f, g € Fun(M) :

> {f,g}:—{g,f}
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Poisson brackets

Let M be a (smooth, algebraic, complex, real analytic...) manifold
and Fun(M)— algebra of (...) functions on M. Take

f,g € Fun(M) and a C—bilinear operation

{, }: Fun(M) x Fun(M) — Fun(M) such that for f, g € Fun(M) :

> {f’g} = _{g7f}

> {f,gh} ={f,gth+ {f,h}g,f - Leibniz rule

> {f,{g,h}}+ Ofg.r=0-a C— Lie algebra structure on
Fun(M).



A Poisson structure on a manifold M (...) : - a bivector, or an
antisymmetric tensor field 7 € A2(TM) defining on the
corresponded algebra of functions on M the structure of (infinite
dimensional) Lie algebra by means of the Poisson brackets

{f,g} = (m,df Adg).

The Jacobi identity for this brackets is equivalent to the "Poisson
Master Equation": [, 7] = 0, where the brackets

[,]: AP(TM) x N9(TM) s APT9=1(TM) are Schouten-Nijenhuis(=
the Lie super-algebra structure on A-(TM)).



Casimirs

A function F € Fun(M) is a Casimir of the Poisson structure 7 if
{F, G} =0 for all functions G € Fun(M).
If the rank of the structure is constant in a neighborhood of m (m
is called a regular point) then the Casimirs in the neighborhood are
the functions depending only on x1, ..., xx and Poisson manifold
admits a foliation by symplectic leaves, i.e. is a unification of
submanifolds

X1 = Cly..., Xk = Ck

and ¢; are constants such that 7 is non- degenerate on each of
them. In general the dimension of the leaves is constant only on
the open dense



complex Poisson manifold

> 1=l A gL € HO(MAT)



complex Poisson manifold

> =il /\82 € HO(M,A2T)
> [W,w]:OeHO(I\/I,/\3T)



complex Poisson manifold

> r=Sal2 AL e HO(M,NT)
i ’j
> [r,7] =0¢€ HO(M,N3T)
» f, g local holomorphic functions, then {f, g} = (m, df A dg).



complex Poisson manifold

> =3l A a%, € HO(M,A2T)

> [r,7] =0¢€ HO(M,N3T)

» f, g local holomorphic functions, then {f, g} = (m, df A dg).

» Examples: M = C?,{z,w} = f(z,w), f— a holomorphic,
m="fy 8 A3 6 , Jacobi —trivial, Q = M = dp A dgq away
from f—Oand7r:a A 8

The following |||ustrat|on belongs to B. Pym:
T =0q A0

HO=C
HL=C. 0, H=c
m=f(u,v)dy A0y
HO > C,H = HY(B.N X°)

H? = H?(B. N X°) + smoothings

Here X° := C?\ {(u, v)|f = 0}— symplectic.



complex Poisson manifold-2

> M =g* 7 ANg*® g such that (g, 7)— Lie algebra,
symplectic leaves— O C g*— coadjoint orbits of G = Lie(g).



complex Poisson manifold-2

> M =g* 7 ANg*® g such that (g, 7)— Lie algebra,
symplectic leaves— O C g*— coadjoint orbits of G = Lie(g).

» M =P2and m € HO(P?,A2T), symplectic leaves: 0—dim
-points on cubic curve Y = 771(0) and 2—dim - M\ Y.



Two-dimensional

complex Poisson manifold:
> 1€ H(M,NT) = H(M, K,,'), where
Ky =det T*M = AN2T*M.
The line bundle K,\j,l = det TM— the anticanonical bundle



Two-dimensional

complex Poisson manifold:
> 1€ H(M,NT) = H(M, K,,'), where
Ky =det T*M = AN2T*M.
The line bundle K,\j,l = det TM— the anticanonical bundle

P anticanonical divisor: zero locus of a section of the line bundle
1
K



Two-dimensional

complex Poisson manifold:
> 1€ H(M,NT) = H(M, K,,'), where
Ky = det T*M = AN2T*M.
The line bundle K,\j,l = det TM— the anticanonical bundle
> antilcanonical divisor: zero locus of a section of the line bundle
K

» vanishes on an elliptic (possibly degenerate) curve



case of M = P?

> M=P2 K, =0(3).
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> M=P2 K, =0(3).

» 1 vanishes on a cubic curve:

Y={[x:x:x3]€ P2|f(x1,x2,X3) =0}



case of M = P?

> M=P2 K, =0(3).

» 1 vanishes on a cubic curve:
Y={[x:x:x3]€ P2|f(x1,x2,X3) =0}

> 6% A % vanishes to order 3 on the line at infinity.



Various cubic curves in P? (after B.Pym)

3

(a) smooth (elliptic) (b) node (c) cusp

Din
(GI{EN

(d) conic and line (e) conic and tangent line (f) triangle

(g) lines through a point (h) line and a double line (i) triple line



Kodaira cycles

Kodaira fibers

N=1]|I: x22X3:xi°’—|—x12X3

I X22X3 = xf’

>

N=2]|I: xg = X1X2X3

" X22X3 = x12x2

X

IV x1x3 = xZxo

%

Table: Singular fibers of elliptic surface fibrations




Poisson threefolds

> 7€ HY(M,AN>TM),[r, 7] = 0.
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Poisson threefolds

> 7€ HY(M,AN>TM),[r, 7] = 0.
> N2TM ~ T*M @ K,',m — 6
> [r,71]=0< 60 Ado=0.

» singular holomorphic foliation

>

symplectic leaves: w £ 0,0 = 0.



Poisson threefolds

7 € HY(M,AN>TM), [r, 7] = 0.
NTM ~ T*M @ Ky,', 7 — 0
[r, 7] =0< 6O AdO=0.
singular holomorphic foliation

symplectic leaves: w £ 0,0 = 0.

vVvVvYvyVvyVvyy

Poisson surfaces intersection in m = 0.



Jacobian structure in C3

» Let x1, X2, x3— coordinates on C3, f € Fun(C3)— holomorphic
non-constant.



Jacobian structure in C3

» Let x1, X2, x3— coordinates on C3, f € Fun(C3)— holomorphic
non-constant.

» 7= de(aixl/\ 6%(2/\ 8%(3)’ df A d?*f = [7Tf,7Tf] =0.



Jacobian structure in C3

» Let x1, X2, x3— coordinates on C3, f € Fun(C3)— holomorphic
non-constant.

> 1= 1gr(2 A 2 A L), df AdPf = =0
T =155 N 35 53 ) [77, 7] = 0.

> {F,G} = dFAdGAdf _ j,40(F G, f)— Jacobian Poisson

dxi Adxa Adx3
structure.



Jacobian structure in C3

» Let x1, X2, x3— coordinates on C3, f € Fun(C3)— holomorphic
non-constant.

P N R ) 26 _ _
T de(6X1A8X2A8X3)’ df Nd=<f [7Tf,7Tf] 0.

> {F,G} = % = Jac(F, G, f)— Jacobian Poisson
structure.

» {f,G} = 0— f - Casimir function of the Jacobian structure 7.



Jacobian structure in C3

» Let x1, X2, x3— coordinates on C3, f € Fun(C3)— holomorphic
non-constant.
T = de(aixl A 8%(2 A 8%(3)’ df A d?f = [7Tf,7Tf] =0.

dF AdGAdF : :
{F. G} = Girdandg = Jac(F, G, f)— Jacobian Poisson
structure.

\ A {

v

{f,G} = 0— f - Casimir function of the Jacobian structure 7.

v

The symplectic leaves are two types: 0— dim -critical points of
f : df =0 and 2—dim-form preimage surfaces f~!(c) c C3



linear Jacobian structure in C3 associated with the Lie

algebra sl,(C)

» Let x1, x2, x3— coordinates on g* = (sl2(C))* and the
corresponding Poisson brackets are:



linear Jacobian structure in C3 associated with the Lie

algebra sl,(C)

» Let x1, x2, x3— coordinates on g* = (sl2(C))* and the
corresponding Poisson brackets are:

> {x1,x0} = 2x0; {x0,x3} = x1; {x3,x1} = 2x3



linear Jacobian structure in C3 associated with the Lie

algebra sl,(C)

» Let x1, x2, x3— coordinates on g* = (sl2(C))* and the
corresponding Poisson brackets are:

> {x1, 0t =2 {x,x3} = x1; {x3,x1} = 2x3

> Ix% 4+ 2x0x3— Casimir: {F, G} = (n¢,dF A dG)



linear Jacobian structure in C3 associated with the Lie

algebra sl,(C)

» Let x1, x2, x3— coordinates on g* = (sl2(C))* and the
corresponding Poisson brackets are:

> {x1, e} = 2x; {2, xa} = x1i {x3, 3} = 2x3
> Ix% 4+ 2x0x3— Casimir: {F, G} = (n¢,dF A dG)

» Symplectic leaves:



Artin-Tate-Sklyanin elliptic Poisson algebra

» Y C CP? normal elliptic curve
» L line bundle degree 3
>

Y = P(xi,x2,x3) = 1/304 + 3 +x3) + kxaxexs =0, (1)

» then
{x1,x2} = kx1xo + ng

{x2,x3} = kxaxg + x¢
{x3,x1} = kxax1 + x3



case of M = P3

> M=DP3 Kt =0(4).
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case of M = P3

> M=DP3 Kt =0(4).
> 51,5 € HO(P3,0(2))
> 0,5, = s1dsy — s2ds; € HO(P3, Q1 O(4))

» s; = 0: quadric surfaces Q; C P3.
Q1

Q2

elliptic curve



Jacobi-Nambu-Poisson

Let us consider n — 2 polynomials @; in C"” with coordinates
xi,i =1,...,n . For any polynomial A € C|[xq, ..., x,| we can define
a bilinear differential operation

{,}:Clx1, ..., xa] @ C[x1, ..., Xn] = C[x1, ..., Xp]

by the formula

df Ndg Nd@Qi N ... NdQ,_»

f S I
d Adxa A Adx, ,& € Clxt, o, xn]. (2)

{fag} =A



Sklyanin algebra

The case n =4 in (2) corresponds to the classical (generalized)
Sklyanin quadratic Poisson algebra. The very Sklyanin algebra is
associated with the following two quadrics in C*:

Q1 =x7 +x3 +x3, (3)

Qo = X‘% + J1X12 + J2X22 + J3X§. (4)



The Poisson brackets (2) with A = 1 between the affine coordinates
looks as follows

Do) = (—1)7H det <8Qk> digis) ()
8X/

Q2

elliptic curve



Sklyanin algebra: history-1

E. Sklyanin, FAA, 16:4, 1982 The paradigm of Inverse Scattering
Method is reduced (in its classical version) to the following two
problems:
» Find a solution r(u — v) of CYBE
[r2(u = v), n3(u)] + [n2(u = v), r23(v)] + [n3(v), r23(v)] = 0

Sklyanin solution of CYBE (for the Landau-Lifshitz model):
r(u) = Y3 _; Wa(u)os ® 04, where 04,0 = 1,2,3 — 2 x 2 Pauli
matrices and

1 dn(u, q)

wi(u) = ——, wo(u) = en(u, q)
1( ) sn(u,q)’ 2( )

~ sn(u, q)

, g €10,1]



Sklyanin algebra: history-1

E. Sklyanin, FAA, 16:4, 1982 The paradigm of Inverse Scattering
Method is reduced (in its classical version) to the following two
problems:
» Find a solution r(u — v) of CYBE
[r2(u = v), n3(u)] + [n2(u = v), r23(v)] + [n3(v), r23(v)] = 0
» Find a solution L(u) of the classical analog of
"RLL—"equation: {Lj, Lo} = [r, L1L>]
Sklyanin solution of CYBE (for the Landau-Lifshitz model):
r(u) = Y3 _; Wa(u)os ® 04, where 04,0 = 1,2,3 — 2 x 2 Pauli
matrices and

1 (i) — dn(u, q) ) — en(u, q)
W1(U) = 2( ) sn(u, q)7 3( ) sn(u, q)a qc [07 1]



Sklyanin algebra: history-2

» The coefficients w, form quadrics: wg — WE = Jo — Jp.
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» The coefficients w, form quadrics: wg — WE = Jo — Jp.

» The solution of the "rLL" can be found in the form

3
L(u) =xp + iz WaXaOo
[0



Sklyanin algebra: history-2

» The coefficients w, form quadrics: w§ — Wé = Jo — Jp.

» The solution of the "rLL" can be found in the form

3
L(u) =xp + iz WaXaOo
[0

» Using CBYE one can verify that the unknown variables x,
should satisfy the quadratic Poisson algebra:

{xa,x0} = 2(Jp — Jy)xxy, {xa x5} = —2x0%,



Poisson structures on C" and P”

A. Bondal, A. Polishchuk, ..."folklore"

Theorem

Given quadratic homogeneous Poisson structure on C"

{zi,z} = Zl<k 1<n' Zkzl

defines a Poisson structure on P"~1 with homogeneous coordinates
[z1:...: z4]. Conversely, any holomorphic Poisson structure on
P"~1 can be obtained in this way.

A. Odesskii, V.R.:

Proposition

Let Xi, ..., X, are coordinates on C" considering as an affine part of
the corresponding projective space P" then if {X;, X;} extends to a
holomorphic Poisson structure on P" then the maximal degree of
the structure is 3 and

Xi{ Xi, Xi}3 + Xi{ Xj, X}z + Xi{Xi, Xi}3 = 0,i # j # k, i.e.

{Xi, X;}3 = X;Y; — X;Yi, with degY; =2



K3-surfaces and Jacobian Poisson structtures

Definition
A compact complex surface M is a K3-surface if:
> there existe a holomorphic 2-form w € HO(M, Q?(M)) without
zeroes;

> bl(M) =0
All K3 are isomorphic as C™ varieties but there are many different

complex structures in this class. There are various projective
models for algebraic K3:

» zero locus of Fermat quartic F(xg, x1, x2, x3) in P3;

> transversal intersection of a quadric @ and a cubic C
hypersurfaces in P*;

» transversal intersection of three quadrics Q1 N Q> N Q3 in P2,



Example: K3-surface-1

» S C P3- a quartic F(Xo, X1, X2, X3) =0, degF = 4,
(Xo : X1 : X2 : X3) - homogeneous coordinates.
» S has a holomorphic symplectic form(S. Mukai)
> Let
Xo=t#0,
f(Xl, X2, X3) = t_4F(t, txy, txo, tX3).

g, h - locally defined holomorphic functions on
S\S N {Xo = 0} extended to the functions in (x1, x2, x3)
defined in the neighborhood of £~1(0):

>
dg A dh A df

- dxy A dxo A dxs

{g, h}

evaluated at f = 0 is well-defined.



Generalised
Sklyanin-Painlevé-Dubrovin-Ugaglia-Nelson-Regge Poisson
algebra

Poisson algebra Ay = (C[x1, x2, x3], {—, —}4) where

{F,G}y = %}m is the Jacobian Poisson-Nambu structure on

C3 for F,.G e (C[Xl,XQ,Xg,].
My — zero locus of

2 2 2
¢ = X1X2X3+axf+bxg—l—cx§’—ex1 —€x5y —€xX3 +w1 X1 Fwaxp+w3x3+wa,

2
{Xl,X2}¢ = x1x2 + 3a3x3 — 2e3x3 + ws,

and cyclic,
{¢,xi} =0,v=1,2,3.

For generic set of constants it is nowhere vanishing on M.
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