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Today’s talk is based partly on my joint paper with

Sasha Odesskii (Brock Univ. Canada) :
I "Polynomial Poisson algebras with a regular lstructure of

symplectic leaves", Theoret. and Math. Phys. 133 (2002), no.
1, 1321-1337

I highly recommend for all inerested in the subject recent lectures of
Brent Pym(Univ. McGill, Canada) during "Poisson 2016"in Geneva
("Constructions and classifications of projective Poisson varieties.
Lett. Math. Phys., 108(3):573–632, 2018.) like a beautiful and
pedagogical introduction.
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Poisson brackets

Let M be a (smooth, algebraic, complex, real analytic...) manifold
and Fun(M)− algebra of (...) functions on M. Take
f , g ∈ Fun(M) and a C−bilinear operation
{, } : Fun(M)× Fun(M)→ Fun(M) such that for f , g ∈ Fun(M) :

I {f , g} = −{g , f }

I {f , gh} = {f , g}h + {f , h}g , f - Leibniz rule
I {f , {g , h}}+ 	f ,g ,h= 0 - a C− Lie algebra structure on

Fun(M).
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A Poisson structure on a manifold M (...) : - a bivector, or an
antisymmetric tensor field π ∈ Λ2(TM) defining on the
corresponded algebra of functions on M the structure of (infinite
dimensional) Lie algebra by means of the Poisson brackets

{f , g} = 〈π, df ∧ dg〉.

The Jacobi identity for this brackets is equivalent to the "Poisson
Master Equation": [π, π] = 0, where the brackets
[, ] : Λp(TM)× Λq(TM) 7→ Λp+q−1(TM) are Schouten-Nijenhuis(=
the Lie super-algebra structure on Λ.(TM)).



Casimirs

A function F ∈ Fun(M) is a Casimir of the Poisson structure π if
{F ,G} = 0 for all functions G ∈ Fun(M).
If the rank of the structure is constant in a neighborhood of m (m
is called a regular point) then the Casimirs in the neighborhood are
the functions depending only on x1, . . . , xk and Poisson manifold
admits a foliation by symplectic leaves, i.e. is a unification of
submanifolds

x1 = c1, . . . , xk = ck

and ci are constants such that π is non- degenerate on each of
them. In general the dimension of the leaves is constant only on
the open dense



complex Poisson manifold

I π =
∑
πij ∂∂zi ∧

∂
∂zj
∈ H0(M,Λ2T )

I [π, π] = 0 ∈ H0(M,Λ3T )

I f , g local holomorphic functions, then {f , g} = 〈π, df ∧ dg〉.
I Examples: M = C2, {z ,w} = f (z ,w), f− a holomorphic,
π = f ∂

∂z ∧ ∂
∂w , Jacobi –trivial, Ω = dz∧dw

f = dp ∧ dq away
from f = 0 and π = ∂

∂q ∧ ∂
∂p

The following illustration belongs to B. Pym:

dim X = 2: Poisson surfaces (Goto) 6

⇡ 2 ^2TX = det TX = K�1
X anticanonical line bundle

@X := Zeros(⇡) ⇢ X curve X � = X \ @X symplectic

singular locus @2X ⇢ @X (assume quasi-homogeneous for simplicity)

⇡ = @q ^ @p

H0 = C

⇡ = y@y ^ @z

H0 ⇠= C
H1 ⇠= C · @z

⇡ = f (u, v)@u ^ @v

H0 ⇠= C, H1 ⇠= H1(B✏ \ X �)
H2 = H2(B✏ \ X �) + smoothings

(^•TX , d⇡) ⇠= Rj⇤CX� � i⇤K
�1
X |@2X [�2]

H•(^•TX , d⇡) ⇠= H•(X �; C)� H0(@2X , K�1
X |@2X )| {z }

degree 2

Obstructions vanish!

Here X ◦ := C2 \ {(u, v)|f = 0}− symplectic.
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complex Poisson manifold-2

I M = g∗, π ∈ Λ2g∗ ⊗ g such that (g, π)− Lie algebra,
symplectic leaves– O ⊂ g∗− coadjoint orbits of G = Lie(g).

I M = P2 and π ∈ H0(P2,Λ2T ), symplectic leaves: 0−dim
-points on cubic curve Y = π−1(0) and 2−dim - M \ Y .
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Two-dimensional

complex Poisson manifold:
I π ∈ H0(M,Λ2T ) = H0(M,K−1

M ), where
KM = detT ∗M = Λ2T ∗M.
The line bundle K−1

M = detTM− the anticanonical bundle

I anticanonical divisor: zero locus of a section of the line bundle
K−1
M

I vanishes on an elliptic (possibly degenerate) curve
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case of M = P2

I M = P2,K−1
P2 = O(3).

I π vanishes on a cubic curve:

Y = {[x1 : x2 : x3] ∈ P2|f (x1, x2, x3) = 0}

I ∂
∂x ∧ ∂

∂y vanishes to order 3 on the line at infinity.
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Various cubic curves in P2 (after B.Pym)
If ⇡ is suitably generic, the curve D will be smooth. We recall that, in this

case, it must be an elliptic curve—a Riemann surface that is topologically a
torus. (More correctly, it is a smooth curve of genus one; typically one says that
an elliptic curve is a genus one curve with a chosen base point, but we shall be
loose about the distinction.)

More degenerate scenarios are possible, in which the curve becomes singular.
The full classification of all possible cubic curves is classical: up to projective
equivalence, there are only nine possible behaviours, as illustrated in Figure 2.

(a) smooth (elliptic) (b) node (c) cusp

(d) conic and line (e) conic and tangent line (f) triangle

(g) lines through a point (h) line and a double line (i) triple line

Figure 2: The various types of cubic curves in P2. Each curve determines a
Poisson structure on P2 up to rescaling by an overall constant.

2.3 Anticanonical divisors and adjunction

Before we continue our discussion of Poisson surfaces, it will be useful to re-
call some standard algebro-geometric terminology and conventions concerning
divisors. We shall be brief, so we refer the reader to [28, Chapter 1] for a
comprehensive treatment.

12



N Kodaira cycles Kodaira fibers

N = 1 I1 : x2
2x3 = x3

1 + x2
1x3 II : x2

2x3 = x3
1

N = 2 I2 : x3
3 = x1x2x3 III : x2

2x3 = x2
1x2

N = 3 I3 : x1x2x3 = 0 IV : x1x
2
2 = x2

1x2

Table: Singular fibers of elliptic surface fibrations



Poisson threefolds

I π ∈ H0(M,Λ2TM), [π, π] = 0.

I Λ2TM ' T ∗M ⊗ K−1
M , π → θ

I [π, π] = 0⇔ θ ∧ dθ = 0.
I singular holomorphic foliation
I symplectic leaves: π 6= 0, θ = 0.
I Poisson surfaces intersection in π = 0.
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Jacobian structure in C3

I Let x1, x2, x3− coordinates on C3, f ∈ Fun(C3)− holomorphic
non-constant.

I πf := ıdf ( ∂
∂x1
∧ ∂
∂x2
∧ ∂
∂x3

), df ∧ d2f = [πf , πf ] = 0.

I {F ,G} = dF∧dG∧df
dx1∧dx2∧dx3 = Jac(F ,G , f )− Jacobian Poisson

structure.
I {f ,G} ≡ 0− f - Casimir function of the Jacobian structure πf .
I The symplectic leaves are two types: 0− dim -critical points of

f : df = 0 and 2−dim-form preimage surfaces f −1(c) ⊂ C3
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linear Jacobian structure in C3 associated with the Lie
algebra sl2(C)

I Let x1, x2, x3− coordinates on g∗ = (sl2(C))∗ and the
corresponding Poisson brackets are:

I {x1, x2} = 2x2; {x2, x3} = x1; {x3, x1} = 2x3

I 1
2x

2
1 + 2x2x3− Casimir: {F ,G} = 〈πf , dF ∧ dG 〉

I Symplectic leaves:

Introduction Character Formulas Positivity

Coadjoint Orbits are Symplectic Manifolds

Figure: Coadjoint Orbits for the Heisenberg Group

Figure: Integral Coadjoint orbits for the group SU(2)

Figure: Coadjoint orbits for the group SL(2, R)
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Artin-Tate-Sklyanin elliptic Poisson algebra

I Y ⊂ CP2 normal elliptic curve
I L line bundle degree 3
I

Y := P(x1, x2, x3) = 1/3(x3
1 + x3

2 + x3
3 ) + kx1x2x3 = 0, (1)

I then
{x1, x2} = kx1x2 + x2

3
{x2, x3} = kx2x3 + x2

1
{x3, x1} = kx3x1 + x2

2



case of M = P3

I M = P3,K−1
P3 = O(4).

I s1, s2 ∈ H0(P3,O(2))

I θs1,s2 = s1ds2 − s2ds1 ∈ H0(P3,Ω1O(4))

I si = 0 : quadric surfaces Qi ⊂ P3.

Question 1. Does � vanish on the elliptic curve E?

Question 2. Where does � drop rank?

= �(df, dg)

Q1 Q2 = elliptic curve
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Jacobi-Nambu-Poisson

Let us consider n − 2 polynomials Qi in Cn with coordinates
xi , i = 1, ..., n . For any polynomial λ ∈ C[x1, ..., xn] we can define
a bilinear differential operation

{, } : C[x1, ..., xn]⊗ C[x1, ..., xn] 7→ C[x1, ..., xn]

by the formula

{f , g} = λ
df ∧ dg ∧ dQ1 ∧ ... ∧ dQn−2

dxl ∧ dx2 ∧ ... ∧ dxn
, f , g ∈ C[x1, ..., xn]. (2)



Sklyanin algebra

The case n = 4 in (2) corresponds to the classical (generalized)
Sklyanin quadratic Poisson algebra. The very Sklyanin algebra is
associated with the following two quadrics in C4:

Q1 = x2
1 + x2

2 + x2
3 , (3)

Q2 = x2
4 + J1x

2
1 + J2x

2
2 + J3x

2
3 . (4)



The Poisson brackets (2) with λ = 1 between the affine coordinates
looks as follows

{xi , xj} = (−1)i+jdet

(
∂Qk

∂xl

)
, l 6= i , j , i > j . (5)

Question 1. Does � vanish on the elliptic curve E?
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Sklyanin algebra: history-1

E. Sklyanin, FAA, 16:4, 1982 The paradigm of Inverse Scattering
Method is reduced (in its classical version) to the following two
problems:
I Find a solution r(u − v) of CYBE

[r12(u − v), r13(u)] + [r12(u − v), r23(v)] + [r13(u), r23(v)] = 0

I Find a solution L(u) of the classical analog of
"RLL−"equation: {L1, L2} = [r , L1L2]

Sklyanin solution of CYBE (for the Landau–Lifshitz model):
r(u) =

∑3
k=1 wα(u)σα ⊗ σα, where σα, α = 1, 2, 3− 2× 2 Pauli

matrices and

w1(u) =
1

sn(u, q)
,w2(u) =

dn(u, q)

sn(u, q)
,w3(u) =

cn(u, q)

sn(u, q)
, q ∈ [0, 1]
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Sklyanin algebra: history-2

I The coefficients wα form quadrics: w2
α − w2

β = Jα − Jβ.

I The solution of the "rLL" can be found in the form

L(u) = x0 + i
3∑

α

wαxασα

I Using CBYE one can verify that the unknown variables xα
should satisfy the quadratic Poisson algebra:

{xα, x0} = 2(Jβ − Jγ)xβxγ , {xα, xβ} = −2x0xγ
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Poisson structures on Cn and Pn

A. Bondal, A. Polishchuk, ..."folklore"

Theorem
Given quadratic homogeneous Poisson structure on Cn

{zi , zj} =
∑

1≤k,l≤n r
kl
ij zkzl

defines a Poisson structure on Pn−1 with homogeneous coordinates
[z1 : . . . : zn]. Conversely, any holomorphic Poisson structure on
Pn−1 can be obtained in this way.
A. Odesskii, V.R.:

Proposition
Let X1, ...,Xn are coordinates on Cn considering as an affine part of
the corresponding projective space Pn then if {Xi ,Xj} extends to a
holomorphic Poisson structure on Pn then the maximal degree of
the structure is 3 and
Xk{Xi ,Xj}3 + Xi{Xj ,Xk}3 + Xj{Xk ,Xi}3 = 0, i 6= j 6= k, i.e.
{Xi ,Xj}3 = XiYj − XjYi , with degYi = 2



K3-surfaces and Jacobian Poisson structtures

Definition
A compact complex surface M is a K3-surface if:
I there existe a holomorphic 2-form ω ∈ H0(M,Ω2(M)) without

zeroes;
I b1(M) = 0

All K3 are isomorphic as C∞ varieties but there are many different
complex structures in this class. There are various projective
models for algebraic K3:
I zero locus of Fermat quartic F (x0, x1, x2, x3) in P3;
I transversal intersection of a quadric Q and a cubic C

hypersurfaces in P4;

I transversal intersection of three quadrics Q1 ∩ Q2 ∩ Q3 in P5.



Example: K3-surface-1

I S ⊂ P3 - a quartic F (X0,X1,X2,X3) = 0, degF = 4,
(X0 : X1 : X2 : X3) - homogeneous coordinates.

I S has a holomorphic symplectic form(S. Mukai)
I Let

X0 = t 6= 0,

f (x1, x2, x3) = t−4F (t, tx1, tx2, tx3).

g , h - locally defined holomorphic functions on
S\S ∩ {X0 = 0} extended to the functions in (x1, x2, x3)
defined in the neighborhood of f −1(0):

I

{g , h} =
dg ∧ dh ∧ df

dx1 ∧ dx2 ∧ dx3

evaluated at f = 0 is well-defined.



Generalised
Sklyanin-Painlevé-Dubrovin-Ugaglia-Nelson-Regge Poisson
algebra

Poisson algebra Aφ = (C[x1, x2, x3], {−,−}φ) where
{F ,G}φ = dF∧dG∧dφ

dx1∧dx2∧dx3 is the Jacobian Poisson-Nambu structure on
C3 for F ,G ∈ C[x1, x2, x3].
Mφ− zero locus of

φ = x1x2x3+ax3
1 +bx3

2 +cx3
3−εx2

1−εx2
2−εx2

3 +ω1x1+ω2x2+ω3x3+ω4,

{x1, x2}φ = x1x2 + 3a3x
2
3 − 2ε3x3 + ω3,

and cyclic,
{φ, xi} = 0,∀ = 1, 2, 3.

For generic set of constants it is nowhere vanishing on Mφ.
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