A unified approach to computation of integrable structures

Joseph Krasil'shchik (Independent Univ. of Moscow) in collaboration with
Alik Verbovetsky (IUM) \& Raf Vitolo (Univ. of Salento)

$$
\text { June 5-12, } 2011
$$

Integrable structures

- (bi-)Hamiltonian structures,
- symplectic structures,
- recursion operators,
and infinite hierarchies of symmetries and/or conservation laws as a consequence.

Outline

\star Equations and solutions (basic notation)

* Linearization and symmetries
* Conservation laws and cosymmetries
* Nonlocal extensions (coverings)
\star Tangent and cotangent coverings
* Recursion operators for symmetries
* Symplectic structures
* Hamiltonian structures
* Recursion operators for cosymmetries
* Computer support

Examples: the Korteweg-de Vries and Camassa-Holm equations.

References

Joseph Krasil'shchik \& Alexander Verbovetsky:
Geometry of jet spaces and integrable systems, J. of Geometry and Physics, 2011
http://arxiv.org/abs/1002.0077
and references therein

Equations and solutions

Independent variables x^{1}, \ldots, x^{n}, unknown functions u^{1}, \ldots, u^{m}, the jet space $J^{\infty}(n, m)$ with the coordinates $x^{i}, u_{\sigma}^{j}, \sigma=i_{1} \ldots i_{|\sigma|}$, $1 \leq i_{k} \leq n$. The projection $\pi_{\infty}: J^{\infty}(n, m) \rightarrow \mathbb{R}^{n}$ to the space of the independent variables.
The Cartan (higher contact) distribution \mathscr{C} spans

$$
D_{i}=\frac{\partial}{\partial x^{i}}+\sum_{j, \sigma} u_{\sigma i}^{j} \frac{\partial}{\partial u_{\sigma}^{j}},
$$

the total derivatives. Dually, \mathscr{C} annihilates

$$
\omega_{\sigma}^{j}=d u_{\sigma}^{j}-\sum_{i} u_{\sigma i} d x^{i}
$$

(the Cartan, or higher contact, forms).

Equations and solutions

A differential equation (system)

$$
F^{\prime}\left(\ldots, x^{i}, \ldots, \frac{\partial^{|\sigma|} u^{j}}{\partial x^{\sigma}}, \ldots\right)=0, \quad I=1, \ldots, r
$$

is identified with the hypersurface

$$
\mathscr{E}=\left\{D_{\sigma}\left(F^{\alpha}\right)=0|\alpha=1, \ldots, l,|\sigma| \geq 0\} \subset J^{\infty}(n . m)\right.
$$

where $D_{\sigma}=D_{i_{1}} \circ \cdots \circ D_{i_{\sigma \mid}}$ (the infinite prolongation). The total derivatives can be restricted to \mathscr{E} and define the Cartan distribution there. Solutions are n-dimensional integral manifolds of this restriction.

Equations and solutions

Example: KdV
For the KdV equation

$$
u_{t}=u u_{x}+u_{x x x}
$$

coordinates on \mathscr{E} (internal coordinates) can be chosen as x, t, and $u_{i}=u_{i \text { times }} \ldots \ldots$. The restricted total derivatives in these coordinates
are

$$
D_{x}=\frac{\partial}{\partial x}+\sum_{i} u_{i+1} \frac{\partial}{\partial u_{i}}, \quad D_{t}=\frac{\partial}{\partial t}+\sum_{i} D_{x}^{i}\left(u u_{1}+u_{3}\right) \frac{\partial}{\partial u_{i}} .
$$

The Cartan forms on \mathscr{E} are given by

$$
\omega_{i}=d u_{i}-u_{i+1} d x-D_{x}^{i}\left(u u_{1}+u_{3}\right) d t, \quad i=0,1,2, \ldots
$$

Equations and solutions

Example: CH

For the Camassa-Holm equation

$$
u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}
$$

the functions $u_{l}=\frac{\partial^{\prime} u}{\partial x^{\prime}}, u_{I, k}=\frac{\partial^{k+l} u}{\partial x^{\prime} \partial t^{k}}, I=0,1,2, k \geq 1$, are taken as internal coordinates. Then
$D_{x}=\frac{\partial}{\partial x}+\sum_{l=0}^{2} u_{l+1} \frac{\partial}{\partial u_{l}}+\sum_{k \geq 1}\left(u_{1, k} \frac{\partial}{\partial u_{0, k}}+u_{2, k} \frac{\partial}{\partial u_{1, k}}+D_{t}^{k}\left(u_{3}\right) \frac{\partial}{\partial u_{2, k}}\right)$,
$D_{t}=\frac{\partial}{\partial t}+\sum_{l=0}^{2} u_{l, 1} \frac{\partial}{\partial u_{l}}+\sum_{l=0}^{2} \sum_{k \geq 1} u_{l, k+1} \frac{\partial}{\partial u_{l, k}}$
with $u_{3}=\left(u_{0,1}-u_{2,1}+3 u u_{1}-2 u_{1} u_{2}\right) / u$.

Symmetries and linearizations

A symmetry of the Cartan distribution is a π_{∞}-vertical vector field X that preserves \mathscr{C}. This amounts to

$$
\left[X, D_{i}\right]=0, \quad i=, 1, \ldots, n .
$$

On $J^{\infty}(n, m)$ all symmetries are

$$
Э_{\varphi}=\sum_{\sigma, j} D_{\sigma}\left(\varphi^{j}\right) \frac{\partial}{\partial u_{\sigma}^{j}},
$$

where $\varphi=\left(\varphi^{1}, \ldots, \varphi^{m}\right)$ is a smooth function (the generating function, or characteristic). We identify $Э_{\varphi}$ with φ, and the commutator induces the bracket

$$
\left\{\varphi_{1}, \varphi_{2}\right\}=Э_{\varphi_{1}}\left(\varphi_{2}\right)-Э_{\varphi_{2}}\left(\varphi_{1}\right)
$$

(the Jacobi bracket).

Symmetries and linearizations

Given an equation \mathscr{E}, define its linearization as follows. For a vector function $F=\left(F^{1}, \ldots, F^{r}\right)$ set

Being an operator in total derivatives (a \mathscr{C}-differential operator), ℓ_{F} can be restricted to any \mathscr{E}. If $\mathscr{E}=\{F=0\}$ we set $\ell_{\mathscr{E}}=\left.\ell_{F}\right|_{\mathscr{E}}$. Then φ is a symmetry iff

$$
\ell_{\mathscr{E}}(\varphi)=0, \quad \varphi=\left(\varphi^{1}, \ldots, \varphi^{m}\right), \quad \varphi^{j} \in C^{\infty}(\mathscr{E})
$$

The Lie algebra of symmetries is denoted by sym (\mathscr{E}).

Symmetries and linearizations

Example: KdV

In the case of the KdV equation, symmetries are defined by

$$
D_{t}(\varphi)=u_{1} \varphi+u D_{x}(\varphi)+D_{x}^{3}(\varphi)
$$

where $\varphi=\varphi\left(x, t, u, u_{1}, \ldots, u_{k}\right)$.
Example: CH
For the Camassa-Holm equation, the linearization is

$$
\begin{aligned}
D_{t}(\varphi)-D_{x}^{2} D_{t}(\varphi)-u D_{x}^{3} & (\varphi)-2 u_{1} D_{x}^{2}(\varphi) \\
+ & \left(3 u-2 u_{2}\right) D_{x}(\varphi)+\left(3 u_{1}-u_{3}\right) \varphi=0 .
\end{aligned}
$$

Conservation laws and cosymmetries

Horizontal q-forms are

$$
\Lambda_{h}^{q}(\mathscr{E})=\left\{a d x^{i_{1}} \wedge \cdots \wedge d x^{i_{q}} \mid a \in C^{\infty}(\mathscr{E})\right\}
$$

the horizontal de Rham differential $d_{h}: \Lambda_{h}^{q} \rightarrow \Lambda_{h}^{q+1}$

$$
d_{h}\left(a d x^{i_{1}} \wedge \cdots \wedge d x^{i_{q}}\right)=\sum_{i} D_{i}(a) d x^{i} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{q}} .
$$

Conservation laws

$$
\mathrm{CL}(\mathscr{E})=\frac{\left\{\omega \in \Lambda_{h}^{n-1} \mid d_{h} \omega=0\right\}}{\left\{\omega \in \Lambda_{h}^{n-1} \mid \omega=d_{h} \theta, \theta \in \Lambda_{h}^{n-2}\right\}} .
$$

How to compute?

Conservation laws and cosymmetries

Cosymmetries of \mathscr{E} are vector functions $\psi=\left(\psi^{1}, \ldots, \psi^{r}\right)$ satisfying $\ell_{\mathscr{E}}^{*}(\psi)=0$, where for a \mathscr{C}-differential operator $\Delta: V \rightarrow W$

$$
\Delta^{*}: \hat{W}=\operatorname{hom}\left(W, \Lambda_{h}^{n}\right) \rightarrow \hat{V}=\operatorname{hom}\left(V, \Lambda_{h}^{n}\right)
$$

is its formally adjoint defined by

$$
\left(\begin{array}{ccc}
& \vdots & \\
\cdots & \sum_{\sigma} a_{i j}^{\sigma} D_{\sigma} & \cdots \\
\vdots & &
\end{array}\right)^{*}=\left(\begin{array}{ccc}
& \vdots & \\
\cdots & \sum_{\sigma}(-1)^{|\sigma|} D_{\sigma} \circ a_{j i}^{\sigma} & \cdots \\
\vdots & \vdots &
\end{array}\right)
$$

and satisfying the Green formula

$$
\langle\Delta(v), \hat{w}\rangle-\left\langle v, \Delta^{*}(\hat{w})\right\rangle=d_{h} \omega, \quad \omega \in \Lambda_{h}^{n-1}
$$

The group of cosymmetries is denoted by cosym (\mathscr{E}).

Conservation laws and cosymmetries

From now on assume $\mathscr{E}=\{F=0\}$ to satisfy regularity conditions:

- $\pi_{\infty}: \mathscr{E} \rightarrow \mathbb{R}^{n}\left(x^{1}, \ldots, x^{n}, u^{1}, \ldots, u^{m}\right)$ is a surjection (no functional relation);
- $F \in V$ is such that $\left.G\right|_{\mathscr{E}}=0, G \in W$, implies $G=\Delta(F)$ for some $\Delta: V \rightarrow W$.
Let $d_{h} \omega=0, \omega \in \Lambda^{n-1}(\mathscr{E})$, and $\tilde{\omega} \in \Lambda^{n-1}\left(J^{\infty}\right),\left.\tilde{\omega}\right|_{\mathscr{E}}=\omega$:

$$
d_{h} \omega=\Delta(F), \quad \Delta: V \rightarrow \Lambda^{n} .
$$

Then

$$
\delta(\omega)=\left.\Delta^{*}(1)\right|_{\mathscr{E}} \in \operatorname{cosym}(\mathscr{E})
$$

is the generating section (characteristic) of ω. When

$$
\nabla \circ \ell_{\mathscr{E}}=0 \quad \text { implies } \quad \nabla=0
$$

(no compatibility condition) the operator $\delta: \operatorname{CL}(\mathscr{E}) \rightarrow \operatorname{cosym}(\mathscr{E})$ is monomorphic and is the Euler operator in the evolutionary case.

Conservation laws and cosymmetries

Example: KdV
In this case, the defining equation for cosymmetries is

$$
D_{t}(\psi)=u D_{x}(\psi)+D_{x}^{3}(\psi), \quad \psi \in C^{\infty}(\mathscr{E})
$$

If $\omega=X d x+T d t$ is a c.I. then

$$
\delta(\omega)=\sum_{i \geq 0}\left(-D_{x}\right)^{i}\left(\frac{\partial X}{\partial u_{i}}\right) .
$$

Example: CH

The defining equation for cosymmetries is

$$
D_{t}(\psi)=D_{x}^{2} D_{t}(\psi)+u D_{x}^{3}(\psi)+u_{1} D_{x}^{2}(\psi)+\left(u_{2}-3 u\right) D_{x}(\psi)
$$

Nonlocal extensions (coverings)

A way to extend \mathscr{E} with a set of (finite or infinite) nonlocal variables w^{1}, w^{2}, \ldots by introducing

$$
\tilde{D}_{i}=D_{i}+X_{i}, \quad X_{i}=\sum_{\alpha} X_{i}^{\alpha} \frac{\partial}{\partial w^{\alpha}}, \quad i=1, \ldots, n
$$

with the conditions

$$
D_{i}\left(X_{j}\right)-D_{j}\left(X_{i}\right)+\left[X_{i}, X_{j}\right]=0, \quad 1 \leq i \leq j \leq n
$$

The variables w^{α} satisfy the covering equation \tilde{E}.
Any \mathscr{C}-differential operator can be lifted from \mathscr{E} to $\tilde{\mathscr{E}}$.
To any conservation law there corresponds a covering.

Nonlocal extensions (coverings)

Example: KdV
The covering

$$
\tilde{D}_{x}=D_{x}+u \frac{\partial}{\partial w}, \quad \tilde{D}_{t}=D_{t}+\left(\frac{u^{2}}{2}+u_{2}\right) \frac{\partial}{\partial w}
$$

is associated to the conservation law $u d x+\left(u^{2} / 2+u_{2}\right) d t$. The covering equation is the $\mathrm{pKdV} w_{t}=w_{x}^{2} / 2+w_{x x x}$.

Example: CH

The covering

$$
\tilde{D}_{x}=D_{x}+\left(u-u_{2}\right) \frac{\partial}{\partial w}, \quad \tilde{D}_{t}=D_{t}+\left(u u_{2}+\frac{1}{2} u_{1}^{2}-\frac{3}{2} u^{2}\right) \frac{\partial}{\partial w}
$$

corresponds to the c.I. $\left(u-u_{2}\right) d x+\left(u u_{2}+u_{1}^{2} / 2-3 u^{2}\right) / 2 d t$.

Nonlocal extensions (coverings)

Example: Δ-coverings
Consider \mathscr{C}-differential operators $\Delta: V \rightarrow W, \Delta^{\prime}: V^{\prime} \rightarrow W^{\prime}$ and look for $A: V \rightarrow V^{\prime}$ such that

for some B (i.e., $A: \operatorname{ker} \Delta \rightarrow \operatorname{ker} \Delta^{\prime}$).
Extend \mathscr{E} with

$$
\Delta(w)=0
$$

and solve

$$
\tilde{\Delta}^{\prime}(\Phi)=0 .
$$

Then. . .

Nonlocal extensions (coverings)

...solutions linear w.r.t. w_{σ}^{α} are in one-to-one correspondence with

$$
\frac{\left\{A \mid B \circ \Delta=\Delta^{\prime} \circ A\right\}}{\left\{A \mid A=A^{\prime} \circ \Delta\right\}} .
$$

To

$$
\Phi=\left(\ldots, \sum_{\sigma \beta} a_{\alpha \beta}^{\sigma} w_{\sigma}^{\beta}, \ldots\right)
$$

there corresponds

$$
A_{\Phi}=\left(\begin{array}{ccc}
& \vdots & \\
\cdots & \sum_{\sigma} a_{\alpha \beta}^{\sigma} D_{\sigma} & \cdots \\
& \vdots &
\end{array}\right)
$$

Two important particular cases:

Tangent and cotangent coverings

$\Delta=\ell_{\mathscr{E}}$: the tangent covering. Holonomic sections $\varphi: \mathscr{E} \rightarrow \mathscr{T} \mathscr{E}$ are symmetries.

Example: KdV

$$
\mathscr{T} \mathscr{E}:\left\{\begin{array}{l}
u_{t}=u u_{x}+u_{x x x}, \\
q_{t}=u_{x} q+u q_{x}+q_{x x x} .
\end{array}\right.
$$

$\Delta=\ell_{\mathscr{E}}^{*}$: the tangent covering. Holonomic sections $\psi: \mathscr{E} \rightarrow \mathscr{T}^{*} \mathscr{E}$ are cosymmetries. $\mathscr{T}^{*} \mathscr{E}$ is always an Euler-Lagrange equation with $\mathscr{L}=p^{1} F^{1}+\cdots+p^{r} F^{r}$.
Example: KdV

$$
\mathscr{T}^{*} \mathscr{E}:\left\{\begin{array}{l}
u_{t}=u u_{x}+u_{x x x}, \\
p_{t}=u p_{x}+p_{x x x} .
\end{array}\right.
$$

Tangent and cotangent coverings

Example: CH

This is how the tangent and cotangent coverings look for the Camassa-Holm equation:
$\mathscr{T} \mathscr{E}:\left\{\begin{array}{l}u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}, \\ q_{t}=q_{x x t}+u q_{x x x}+2 u_{x} q_{x x}-\left(3 u-2 u_{x x}\right) q_{x}-\left(3 u_{x}-u_{x x x}\right) q\end{array}\right.$
and

$$
\mathscr{T}^{*} \mathscr{E}:\left\{\begin{array}{l}
u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}, \\
p_{t}=p_{x x t}+u p_{x x x}+u_{x} p_{x x}+\left(u_{x x}-3 u\right) p_{x}
\end{array}\right.
$$

Nonlocal forms and vectors

Let $\varphi \in \operatorname{sym}(\mathscr{E})$ and $\tilde{\varphi}$ be a vector function on J^{∞} such that $\left.\tilde{\varphi}\right|_{\mathscr{E}}=\varphi$. Then

$$
\left\langle\ell_{F}(\tilde{\varphi}), p\right\rangle-\left\langle\tilde{\varphi}, \ell_{F}^{*}(p)\right\rangle=d_{h}\left(\omega_{\tilde{\varphi}}\right), \quad \omega_{\tilde{\varphi}} \in \Lambda_{h}^{n-1}
$$

Then a canonical correspondence arises

$$
v: \operatorname{sym}(\mathscr{E}) \rightarrow \operatorname{CL}\left(\mathscr{T}^{*} \mathscr{E}\right),\left.\quad \varphi \mapsto \omega_{\tilde{\varphi}}\right|_{\mathscr{T}^{*} \mathscr{E}}
$$

In a similar way, one has

$$
v^{*}: \operatorname{cosym}(\mathscr{E}) \rightarrow \mathrm{CL}(\mathscr{T} \mathscr{E})
$$

Elements $v(\varphi), v^{*}(\psi)$ are called nonlocal vectors and forms, resp.

Nonlocal forms and vectors

Example: KdV

$$
\begin{aligned}
v(\varphi) & =p \varphi d x+\left(u p \varphi-3 p_{x} D_{x}(\varphi)+D_{x}^{2}(p \varphi)\right) d t, \\
v^{*}(\psi) & =p \psi d x+\left(u p \psi-3 p_{x} D_{x}(\psi)+D_{x}^{2}(p \psi)\right) d t .
\end{aligned}
$$

Example: CH

$$
\begin{aligned}
v(\varphi) & =\left(\varphi-D_{x}^{2}(\varphi)\right) p d x \\
& +\left(\left(\left(u_{2}-3 u\right) \varphi+u_{1} D_{x}(\varphi)+u D_{x}^{2}(\varphi)\right) p-u D_{\times}(\varphi) p_{1}\right. \\
& \left.+u \varphi p_{2}-D_{x}(\varphi) p_{0,1}+\varphi p_{1,1}\right) d t, \\
v^{*}(\psi) & =\left(\psi-D_{x}^{2}(\psi)\right) q d x \\
& +\left(\left(\left(u_{2}-3 u\right) \psi+u D_{x}^{2}(\psi)\right) q+\left(u_{1} \psi-u D_{x}(\psi)\right) q_{1}\right. \\
& \left.+u \psi q_{2}-D_{x}(\psi) q_{0,1}+\psi q_{1,1}\right) d t .
\end{aligned}
$$

On $\mathscr{T} \mathscr{E}$

Due to the general properties of Δ-coverings, solutions of $\tilde{\ell}_{\mathscr{E}}(\Phi)=0$ lead to the operators \mathscr{R} :

while solving $\tilde{\ell}_{\mathscr{E}}^{*}(\Psi)=0$ we obtain the operators \mathscr{S} satisfying

Recursion operators for symmetries

Solving equation

$$
\tilde{\ell}_{\mathscr{E}}(\Phi)=0
$$

in the tangent covering for Φ linear in q_{σ}^{j} we obtain operators $\mathscr{R}_{\Phi}: \operatorname{sym}(\mathscr{E}) \rightarrow \operatorname{sym}(\mathscr{E})$.
Example: The heat eq.
For the heat equation the tangent covering is

$$
u_{t}=u_{x x}, \quad q_{t}=q_{x x}
$$

with

$$
\begin{aligned}
& \tilde{D}_{x}=\frac{\partial}{\partial x}+\sum_{i \geq 0}\left(u_{i+1} \frac{\partial}{\partial u_{i}}+q_{i+1} \frac{\partial}{\partial q_{i}}\right) \\
& \tilde{D}_{t}=\frac{\partial}{\partial t}+\sum_{i \geq 0}\left(u_{i+2} \frac{\partial}{\partial u_{i}}+q_{i+2} \frac{\partial}{\partial q_{i}}\right) .
\end{aligned}
$$

Recursion operators for symmetries

Example: The heat eq. (continuation)
Solving

$$
\tilde{D}_{t}(\Phi)=\tilde{D}_{x}^{2}(\Phi)
$$

for

$$
\Phi=a^{0} q+a^{1} q_{1}
$$

we get

$$
\Phi_{00}=q, \quad \Phi_{10}=q_{1}, \quad \Phi_{11}=t q_{1}+\frac{x}{2} .
$$

The corresponding operators are

$$
\mathscr{R}_{00}=\mathrm{id}, \quad \mathscr{R}_{10}=D_{x}, \quad \mathscr{R}_{11}=t D_{x}+\frac{x}{2},
$$

and they generate the entire algebra of recursion operators (which is isomorphic to the universal enveloping of the 3-dim Heisenberg algebra).

Recursion operators for symmetries

The next two examples need to extend $\mathscr{T} \mathscr{E}$ by nonlocal forms.
Example: KdV
Consider the cosymmetry $1 \in \operatorname{cosym}(\mathscr{E})$ and the conservation law

$$
v^{*}(1)=q d x+\left(u q+q_{2}\right) d t
$$

on $\mathscr{T} \mathscr{E}$ with the corresponding nonlocal variable

$$
\frac{\partial Q^{1}}{\partial x}=q, \quad \frac{\partial Q^{1}}{\partial t}=u q+q_{2}
$$

Then the equation $\tilde{\ell}_{\mathscr{E}}(\Phi)$ has two nontrivial solutions of the form $\Phi=A_{1} Q^{1}+a^{0} q+a^{1} q_{1}+\cdots+a^{k} q_{k}:$

$$
\Phi_{0}=q, \quad \Phi_{2}=q_{2}+\frac{2}{3} u q+u_{1} \frac{1}{3} Q^{1} .
$$

Recursion operators for symmetries

Example: KdV (continuation)
The Lenard recursion operator

$$
\mathscr{R}=D_{x}^{2}+\frac{2}{3} u+\frac{1}{3} u_{1} D_{x}^{-1}
$$

corresponds to the second solution. Adding another nonlocal form

$$
v^{*}(u)=q u d x+\left(q u^{2}+q_{2} u-q_{1} u_{1}+q u_{2}\right) d t
$$

leads to the operator
$D_{x}^{4}+\frac{4}{3} u D_{x}^{2}+2 u_{1} D_{x}+\frac{4}{9}\left(u^{2}+3 u_{2}\right)+\frac{1}{3}\left(u u_{1}+u_{3}\right) D_{x}^{-1}+\frac{1}{9} u_{1} D_{x}^{-1} \circ u$
which is \mathscr{R}^{2}.

Recursion operators for symmetries

Example: CH

Let us extend $\mathscr{T} \mathscr{E}$ with the nonlocal form Q^{1} associated with $\psi=1$. Then $\tilde{\ell}_{\mathscr{E}}(\Phi)=0$ has a solution

$$
\Phi=q_{1,1}+q_{2} u+q_{1} u_{1}+q\left(u_{2}-2 u\right)-Q^{1} u_{1}
$$

with the corresponding recursion operator

$$
\mathscr{R}=D_{x} D_{t}+u D_{x}^{2}+u_{1} D_{x}+\left(u_{2}-2 u\right)-u_{1} D_{x}^{-1} .
$$

Recursion operators for symmetries

Given two recursion operators $\mathscr{R}_{1}, \mathscr{R}_{2}: \operatorname{sym} \mathscr{E} \rightarrow \mathscr{E}$, their Nijenhuis bracket

$$
\llbracket \mathscr{R}_{1}, \mathscr{R}_{2} \rrbracket!\operatorname{sym} \mathscr{E} \times \operatorname{sym} \mathscr{E} \rightarrow \operatorname{sym} \mathscr{E}
$$

is defined by

$$
\begin{aligned}
\llbracket \mathscr{R}_{1}, \mathscr{R}_{2} \rrbracket\left(\varphi_{1},\right. & \left.\varphi_{2}\right)=\left\{\mathscr{R}_{1}\left(\varphi_{1}\right), \mathscr{R}_{2}\left(\varphi_{2}\right)\right\}+\left\{\mathscr{R}_{2}\left(\varphi_{1}\right), \mathscr{R}_{1}\left(\varphi_{2}\right)\right\} \\
-\mathscr{R}_{1}\left(\left\{\mathscr{R}_{2}\left(\varphi_{1}\right), \varphi_{2}\right\}\right. & \left.+\left\{\varphi_{1}, \mathscr{R}_{2}\left(\varphi_{2}\right)\right\}\right) \\
-\mathscr{R}_{2}\left(\left\{\mathscr{R}_{1}\left(\varphi_{1}\right), \varphi_{2}\right\}\right. & \left.+\left\{\varphi_{1}, \mathscr{R}_{1}\left(\varphi_{2}\right)\right\}\right) \\
& +\left(\mathscr{R}_{1} \circ \mathscr{R}_{2}+\mathscr{R}_{2} \circ \mathscr{R}_{1}\right)\left\{\varphi_{1}, \varphi_{2}\right\} .
\end{aligned}
$$

When \mathscr{R} is hereditary, i.e., $\llbracket \mathscr{R}, \mathscr{R} \rrbracket=0$ and \mathscr{R} is invariant w.r.t. a symmetry φ, the symmetries $\varphi_{i}=\mathscr{R}^{i}(\varphi)$ form a commuting hierarchy.

Symplectic structures

Solving the equation $\tilde{\ell}_{\delta}^{*}(\Psi)=0$ on the tangent covering for Ψ linear in q_{σ}^{j} leads to operators

$$
\mathscr{S}: \operatorname{sym}(\mathscr{E}) \rightarrow \operatorname{cosym}(\mathscr{E}) .
$$

Let $\omega_{1}, \omega_{2} \in \mathrm{CL}(\mathscr{E})$ be such that

$$
\delta \omega_{i}=\mathscr{S} \varphi_{i}, \quad \varphi_{i} \in \operatorname{sym}(\mathscr{E}) .
$$

Define

$$
\left\{\omega_{1}, \omega_{2}\right\}_{\mathscr{S}}=L_{\vartheta_{\varphi_{1}}}\left(\omega_{2}\right)
$$

This bracket is skew-symmetric if $\ell_{\mathscr{E}}^{*} \circ \mathscr{S}$ is self-adjoint, i.e.,

$$
\mathscr{S}^{*} \circ \ell_{\mathscr{E}}=\ell_{\mathscr{E}}^{*} \circ \mathscr{S}
$$

(in the evolutionary case this leads to $\mathscr{S}^{*}=-\mathscr{S}$). Then...

Symplectic structures

\ldots for any $\varphi=\left(\varphi^{1}, \ldots, \varphi^{m}\right)$ on the ambient J^{∞}

$$
\mathscr{S}^{*} \ell_{F}(\varphi)-\ell_{F}^{*} \mathscr{S}(\varphi)=\bar{\Delta}_{\varphi}(F)
$$

for some $\bar{\Delta}_{\varphi}: W \rightarrow \hat{V}$. Set $\Delta_{\varphi}=\left.\bar{\Delta}_{\varphi}\right|_{\mathscr{E}}$ and define

$$
\delta \mathscr{S}: \operatorname{sym}(\mathscr{E}) \times \operatorname{sym}(\mathscr{E}) \rightarrow \operatorname{cosym}(\mathscr{E})
$$

by

$$
(\delta \mathscr{S})\left(\varphi_{1}, \varphi_{2}\right)=\left(Э_{\varphi_{1}} \mathscr{S}\right)\left(\varphi_{2}\right)-\left(乌_{\varphi_{2}} \mathscr{S}\right)\left(\varphi_{1}\right)+\Delta_{\varphi_{2}}^{*}\left(\varphi_{1}\right)
$$

Then

$$
\delta \mathscr{S}=0
$$

guarantees that $\{\cdot, \cdot\}_{\mathscr{S}}$ satisfies the Jacobi identity. The \mathscr{S} is called a symplectic structure.

Symplectic structures

Example: KdV
Solving $\tilde{\ell}_{\mathscr{E}}^{*}(\Psi)=0$ for

$$
\Psi=A_{3} Q^{3}+A_{1} Q^{1}+a^{0} q+a^{1} q_{1}+\cdots+a^{k} q_{k}
$$

in $\mathscr{T} \mathscr{E}$ extended by nonlocal forms Q^{1}, Q^{3}, we get two solutions

$$
\Psi_{1}=Q^{1}, \quad \Psi_{3}=q_{1}+\frac{1}{3} u Q^{1}+\frac{1}{3} Q^{3},
$$

to which the symplectic operators

$$
\mathscr{S}_{1}=D_{x}^{-1}, \quad \mathscr{S}_{3}=D_{x}+\frac{1}{3} u D_{x}^{-1}+\frac{1}{3} D_{x}^{-1} \circ u
$$

correspond.

Symplectic structures

Example: CH
Solving $\tilde{\ell}_{\mathscr{E}}^{*}(\Psi)=0$ in $\mathscr{T} \mathscr{E}$ extended by Q^{1}, we get

$$
\Psi=Q^{1},
$$

i.e.,

$$
\mathscr{S}_{1}=D_{x}^{-1} .
$$

After adding Q^{3} (that corresponds to $\psi=u$) to the extension a new solution

$$
\psi=q_{0,1}+q_{1} u-Q^{3}-Q^{1} u
$$

arises with the corresponding symplectic structure

$$
\mathscr{S}_{3}=D_{t}+u D_{x}-D_{x}^{-1} \circ\left(u-u_{2}\right)-u D_{x}^{-1} .
$$

We pass now to $\mathscr{T}^{*} \mathscr{E}$:

By the general properties of Δ-coverings, solutions of $\tilde{\ell}_{\mathscr{E}}(\Phi)=0$ lead to the operators \mathscr{H} :
while solving $\tilde{\ell}_{\mathscr{E}}^{*}(\Psi)=0$ we obtain the operators $\overline{\mathscr{R}}$ satisfying

Hamiltonian structures

Consider solutions of $\tilde{\ell}_{\mathscr{E}}(\Phi)=0$ linear in p_{σ}^{j}. They lead to operators

$$
\mathscr{H}: \operatorname{cosym}(\mathscr{E}) \rightarrow \operatorname{sym}(\mathscr{E})
$$

With such an operator, define the bracket

$$
\left\{\omega_{1}, \omega_{2}\right\}_{\mathscr{H}}=L_{\mathscr{H}\left(\delta \omega_{1}\right)}\left(\omega_{2}\right)
$$

on $\mathrm{CL}(\mathscr{E})$. The bracket is skew-symmetric if

$$
\mathscr{H}^{*} \circ \ell_{\mathscr{E}}^{*}=\ell_{\mathscr{E}} \circ \mathscr{H}
$$

(for an evolutionary \mathscr{E} this implies to $\mathscr{H}^{*}=-\mathscr{H}$).
For any two operators $\mathscr{H}_{1}, \mathscr{H}_{2}: \operatorname{cosym}(\mathscr{E}) \rightarrow \operatorname{sym}(\mathscr{E})$ satisfying the above condition define their Schouten bracket

$$
\llbracket \mathscr{H}_{1}, \mathscr{H}_{2} \rrbracket: \operatorname{cosym}(\mathscr{E}) \times \operatorname{cosym}(\mathscr{E}) \rightarrow \operatorname{sym}(\mathscr{E})
$$

Hamiltonian structures

by

$$
\begin{aligned}
\llbracket \mathscr{H}_{1}, \mathscr{H}_{2} \rrbracket\left(\psi_{1}, \psi_{2}\right)= & \mathscr{H}_{1}\left(L_{\mathscr{H}_{2} \psi_{1}}\left(\psi_{2}\right)\right)-\mathscr{H}_{2}\left(L_{\mathscr{H}_{1} \psi_{1}}\left(\psi_{2}\right)\right) \\
& +\left\{\mathscr{H}_{1}\left(\psi_{2}\right), \mathscr{H}_{2}\left(\psi_{1}\right)\right\}-\left\{\mathscr{H}_{1}\left(\psi_{1}\right), \mathscr{H}_{2}\left(\psi_{2}\right)\right\},
\end{aligned}
$$

where $\{\cdot, \cdot\}$ is the Jacobi bracket and

$$
L_{\varphi}(\psi)=Э_{\varphi}(\psi)+\ell_{\varphi}^{*}(\psi)
$$

The above bracket on $\mathrm{CL}(\mathscr{E})$ enjoys the Jacobi identity if

$$
\llbracket \mathscr{H}, \mathscr{H} \rrbracket \rrbracket=0
$$

\mathscr{H} is called a Hamiltonian operator in this case and two
Hamiltonian operators are compatible if $\llbracket \mathscr{H}_{1}, \mathscr{H}_{2} \rrbracket=0$. Then the Magri scheme can be applied to generate commutative hierarchies.

Hamiltonian structures

Example: KdV

Solve the equation

$$
\tilde{D}(\Phi)=u_{1} \Phi+u \tilde{D}_{x}(\Phi)+\tilde{D}_{x}^{3}(\Phi), \quad \Phi=a^{0} p+a^{1} p_{1}+\cdots+a^{k} p_{k}
$$

leads to two nontrivial solutions

$$
\Phi_{1}=p_{1}, \quad \Phi_{3}=p_{3}+\frac{2}{3} u p_{1}+\frac{1}{3} u_{1} p_{0}
$$

with the corresponding (and well known) Hamiltonian operators

$$
\mathscr{H}_{1}=D_{x}, \quad \mathscr{H}_{3}=D_{x}^{3}+\frac{2}{3} u D_{x}+\frac{1}{3} u_{1}
$$

Consider the x-translation u_{x} of the KdV and the corresponding nonlocal vector P^{1} defined by

Hamiltonian structures

Example: KdV (continuation)

$$
\frac{\partial P^{1}}{\partial x}=p u_{x}, \quad \frac{\partial P^{1}}{\partial t}=p\left(u u_{1}+u_{3}\right)+p_{2} u_{1}-p_{1} u_{2} .
$$

Then one obtains a new solution
$\Phi_{5}=p_{5}+\frac{4}{3} u p_{3}+2 u_{1} p_{2}+\frac{4}{9}\left(u^{2}+3 u_{2}\right) p_{1}+\left(\frac{4}{9} u u_{1}+\frac{1}{3} u_{3}\right) p-\frac{1}{9} u_{1} P_{1}$
in the extended setting to which the nonlocal Hamiltonian structure

$$
\begin{aligned}
\mathscr{H}_{5}=D_{x}^{5}+\frac{4}{3} u D_{x}^{3}+2 u_{1} D_{x}^{2}+ & \frac{4}{9}\left(u^{2}+3 u_{2}\right) D_{x} \\
& +\left(\frac{4}{9} u u_{1}+\frac{1}{3} u_{3}\right)-\frac{1}{9} u_{1} D_{x}^{-1} \circ u_{1}
\end{aligned}
$$

corresponds.

Hamiltonian structures

Example: CH

In $\mathscr{T}^{*} \mathscr{E}$, the equation $\tilde{\ell}_{\mathscr{E}}(\Phi)=0$ has two solutions

$$
\Phi_{1}=p_{1}, \quad \Phi_{3}=p_{0,1}+p_{1} u-p u_{1},
$$

to which there correspond two compatible Hamiltonian operators

$$
\mathscr{H}_{1}=D_{x}, \quad \mathscr{H}_{3}=D_{t}+u D_{x}-u_{1} .
$$

Extending $\mathscr{T}^{*} \mathscr{E}$ by the nonlocal form $P^{1}=v\left(u_{1}\right)$, we obtain the third, nonlocal operator

$$
\begin{aligned}
& \mathscr{H}_{5}=u_{1} D_{x}^{-1} \circ \frac{2 u_{1} u_{2}+u_{2,1}-2 u u_{1}-u_{0,1}}{u}-u D_{x}^{2} D_{t}-D_{x} D_{t}^{2} \\
& \quad+u D_{t}-u_{0,1} D_{x}^{2}+u\left(-u+u_{2}\right) D_{x}-4 u u_{1}+u u_{3}+3 u_{1} u_{2}+u_{2,1}
\end{aligned}
$$

Recursion operators for cosymmetries

Finally, solving the equation $\tilde{\ell}_{\mathscr{E}}^{*}(\Psi)=0$ in the cotangent covering, one gets operators that take cosym (\mathscr{E}) to itself, i.e., recursion operators for cosymmetries.

Example: KdV

The equation

$$
\tilde{D}_{t}(\Psi)=u \tilde{D}_{x}(\Psi)+\tilde{D}_{x}^{3}(\psi)
$$

in $\mathscr{T}^{*} \mathscr{E}$ extended by P^{1} gives

$$
\Psi=p_{2}+\frac{2}{3} u p-\frac{1}{3} P^{1}
$$

to which the recursion operator

$$
\overline{\mathscr{R}}=D_{x}^{2}+\frac{2}{3} u-\frac{1}{3} D_{x}^{-1} \circ u_{1}
$$

corresponds.

Recursion operators for cosymmetries

Example: CH

In $\mathscr{T}^{*} \mathscr{E}$ extended by P^{1} the equation $\tilde{\ell}_{\mathscr{E}}^{*}(\Psi)=0$ leads to the operator

$$
\overline{\mathscr{R}}=D_{\times} D_{t}+u D_{x}^{2}-2 u+u_{2}+D_{x}^{-1} \circ \frac{2 u_{1} u_{2}+u_{2,1}-2 u u_{1}-u_{0,1}}{u} .
$$

Computer support

All computations were done using CDIFF, a REDUCE package for computations in geometry of differential equations initially developed at the University of Twente (Paul Kersten, Peter Gragert, Marcel Roelofs) and upgraded later by Raffaele Vitolo, University of Salento. See http://gdeq.org.

