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Quantum mechanics

o Hilbert space - L2(Q), where @ = R" is the classical
configuration space.
@ Observables - self-adjoint operators, e.g. the Hamiltonian:

A2

y_ P .
A= 4+v
2m+ (X)?

where:
Prp(x) = B4 4h(x) — momentum operator,

i dxk
k9h(x) 1= x¥4p(x) - position operator.
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where:
prtb(x) = ?ﬁw(x) — momentum operator,
k9h(x) 1= x¥4p(x) - position operator.

@ Evolution governed by the Schrédinger equation:

i

ih%w =AYy = ()= e 7 tHy(0).
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Quantum mechanics

o Hilbert space - L2(Q), where @ = R" is the classical
configuration space.

@ Observables - self-adjoint operators, e.g. the Hamiltonian:

A2

y_ P .
A= 4+v
2m+ (X)?

where:
prtb(x) = ?%w(x) — momentum operator,
k9h(x) 1= x¥4p(x) - position operator.

@ Evolution governed by the Schrédinger equation:

i

ih%w =AYy = ()= e 7 tHy(0).

@ Momentum representation: 9)(p) — Fourier transform of 1(x).
o Probability densities: |1)(x)[? and [{(p)]?.
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Geometric Quantization

How much of this structure can be reconstructed from the classical
phase space? (Souriau, Tulczyjew 1965-68)
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h_d
i dxk
curvilinear coordinates (x*) on the configuration space Q!

@ In particular:  pr(x) = (x) does not work in
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necessary in quantum mechanics?
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Geometric Quantization

How much of this structure can be reconstructed from the classical
phase space? (Souriau, Tulczyjew 1965-68)

@ In particular:  pr(x) = %ﬁ (x) does not work in

curvilinear coordinates (x*) on the configuration space Q!

@ Is the linear (affine) structure of the configuration space Q
necessary in quantum mechanics?

@ Is the Lebesque measure d"x carried by the linear structure of
Q necessary for the definition of the appropriate Hilbert space
structure:

(ol) = /Q Pudx.
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Classical mechanics

@ Phase space: P = T*Q = R?"; symplectic form w = dp; A dx’
@ Observables - functions on P.

@ Evolution - governed by the Hamiltonian vector field Xy,
uniquely assigned to any observable H according to:

W(XH7 ) =—dH .
@ Example:
p?
H="—+V(x).
o T V()

Its Hamiltonian vector field:

ov
P

i

-1
Xy = g - pid,
H gmp_]x
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Polarization

@ Position representation ¢ (x) versus momentum representation
¥ (p): different Lagrangian foliations of P.
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Polarization

@ Position representation ¢ (x) versus momentum representation
¥ (p): different Lagrangian foliations of P.

@ {x = const.} for the position representation.

o {p = const.} for the momentum representation.
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Polarization

@ Position representation ¢ (x) versus momentum representation
¥ (p): different Lagrangian foliations of P.

@ {x = const.} for the position representation.

o {p = const.} for the momentum representation.

A

Qr=P/A

@ Geometrically: quantum states represented by wave functions
defined on a generalized configuration space Qp = P/A
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Galilei transformation

Classical Galilei transformation:
X=x-Vt ; pP=p—mV

(V — observer’s velocity).
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Galilei transformation

Classical Galilei transformation:
X=x-Vt ; pP=p—mV

(V — observer’s velocity). At t = 0, we have x’ = x. Nevertheless,
wave function undergoes the Galilei transformation:

B(x) = ¢/ (x) - x5

where S(x) = mVx.
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Galilei transformation

Classical Galilei transformation:

X=x-Vt ; pP=p—mV
(V — observer’s velocity). At t = 0, we have x’ = x. Nevertheless,
wave function undergoes the Galilei transformation:

B(x) = ¢/ (x) - x5

where S(x) = mVx. Wave function describes quantum state with
respect to a reference frame.

Reference frame: Lagrangian surface transversal to foliation A.
For the observer at rest:
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Galilei transformation

Classical Galilei transformation:
X=x-Vt ; pP=p—mV

(V — observer’s velocity). At t = 0, we have x’ = x. Nevertheless,
wave function undergoes the Galilei transformation:

B(x) = ¢/ (x) - x5

where S(x) = mVx. Wave function describes quantum state with
respect to a reference frame.

Reference frame: Lagrangian surface transversal to foliation A.
For the observer at rest:

A={p=0}.

For the observer moving with velocity V:

N={p=0}={p=mV}.
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Galilei transformation

Theorem: A pair of reference frames, (N, \) defines uniquely a
closed one-form on Q. It will be denoted “)\ — \".
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Closed form is exact (due to trivial topology): A" — XA = dSy ».
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Galilei transformation

Theorem: A pair of reference frames, (N, \) defines uniquely a
closed one-form on Q. It will be denoted “)\ — \".
Closed form is exact (due to trivial topology): A" — XA = dSy ».

@ Resulting phase factor: 1) = eTioN TN

Jerzy Kijowski Center for Theoretical Physics PAS Warsaw Geometric quantization and Backlund transformations 7/20



Galilei transformation

Theorem: A pair of reference frames, (N, \) defines uniquely a

”

closed one-form on Q. It will be denoted “)\ — \".
Closed form is exact (due to trivial topology): A" — XA = dSy ».

@ Resulting phase factor: 1) = eTioN TN

o Global phase never controlled!

A N
1
1 A
A 4] |
A
—L ] J/)\

Jerzy Kijowski Center for Theoretical Physics PAS Warsaw Geometric quantization and Backlund transformations 7/20



Galilei transformation

Proof: For g € Qp and k € g there is a canonical isomorphism:

Toq = T:Qn
where (P|p’) := Q(p1,p") = Q(p2, p).
/\ /
K
P
b1 . . .
</ Each fiber g is an affine space.
K
NP2
Q@A
qg P
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Galilei transformation

Polarization A and a transversal reference frame A imply a
symplectomorphism:

P~T Qnp .
P=T"Qn

A

Qn=P/N
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Galilei transformation

Polarization A and a transversal reference frame A imply a
symplectomorphism:
P~ T*Qna .

P=T"Qna

)\ - zero section of T"Qn

Qn=P/N

Observable Sy/ , on P generates a group of symplectomorphisms:

(x,p) = (x,p+t(N = X))
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Hilbert space of half-densities

There is no need for a “privileged” measure on the configuration
space Qp if we treat wave functions as half-densities and not just
scalar functions:

(6l) = /Q Fodix = /Q (ovam) (svax) .

®=¢pvd'x , V=9yvdix
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Hilbert space of half-densities

There is no need for a “privileged” measure on the configuration
space Qp if we treat wave functions as half-densities and not just
scalar functions:

(6l) = /Q Fodix = /Q (ovam) (svax) .

®=¢pvd'x , V=9yvdix

L2(Qa) - Hilbert space of square-integrable half-densities with
scalar product:

(o|W) = /Q&u

Jerzy Kijowski Center for Theoretical Physics PAS Warsaw Geometric quantization and Backlund transformations 10/20



Quantization of momenta

Now, quantization of momenta does not require any linear
structure on the configuration space Qa:
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Quantization of momenta

Now, quantization of momenta does not require any linear
structure on the configuration space Qa:

If X = X’ o is a vector field on Qn, then X(x, p) := X' (x)pi
generates a group of symplectomorphisms of P — a canonical lift of
the flow X from Qp to T*Qh.

Naive quantization rule: pgi)(x) := 2

di (x) must be replaced by:

XV(x) = ?ﬁxW(X)

(Lie derivative of a half-form).
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Quantization of momenta

Now, quantization of momenta does not require any linear
structure on the configuration space Qa:

If X = X’ o is a vector field on Qn, then X(x, p) := X' (x)pi
generates a group of symplectomorphisms of P — a canonical lift of
the flow X from Qp to T*Qh.

Naive quantization rule: pgi)(x) := 2

di (x) must be replaced by:

XV(x) = ?ﬁxW(X)

(Lie derivative of a half-form).
Automatically self-adjoint if X-complete!
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Quantization schemes

@ Quantum state is described by a wave function W with
respect to a polarization A (a “representation”) and a
reference frame \.
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Quantization schemes

@ Quantum state is described by a wave function W with
respect to a polarization A (a “representation”) and a
reference frame \.

@ Appropriate notation would be Wy .
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@ Classical dynamics of a free particle:

(0) + = t9(0)

X
~
~
I
x
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@ Classical dynamics of a free particle:

1
x(t) = x(0) + —tp(0)
p(t) = p(0)
@ Classical dynamics of a harmonic oscillator:

tanwT

() = cosmx(oH% sinwrp(0) = coswr (x(oH% ; ,3(0))

p(7) = —mwsinwTX(0) + coswTp(0)
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@ Classical dynamics of a free particle:

1
x(t) = x(0) + —tp(0)
p(t) = p(0)
@ Classical dynamics of a harmonic oscillator:

tanwT

() = cosmx(oH% sinwrp(0) = coswr (x(oH% ; ,3(0))

p(7) = —mwsinwTX(0) + coswTp(0) ‘
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@ Classical dynamics of a free particle:

x(t) = x(0) + %tp(O)
p(t) = p(0)

@ Classical dynamics of a harmonic oscillator:

. o I Sy o
X(1) = cos w7x(0)+% sinwtp(0) = coswT (X(O)+

p(7) = —mwsinwTX(0) + coswTp(0)
of N _ 1 N
X(T) - m (t)

2
t
ML (1) + V1 + w?t2p(t)

)=~ oe
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@ Classical dynamics of a free particle:

x(t) = x(0) + %tp(O)
p(t) = p(0)

@ Classical dynamics of a harmonic oscillator:

. o I Sy o
X(1) = cos w7x(0)+% sinwtp(0) = coswT (X(O)+

p(7) = —mwsinwTX(0) + coswTp(0)
of N _ 1 N
X(T) - m (t)

2
t
ML (1) + V1 + w?t2p(t)

)=~ oe

Foliations {x(t) = const.} and {%(7) = const.} coincide.
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%(r) = ——t

V14 w? tzx(t
2
. mw*<t
p(r) = —

x(t) +
Sz

1+ w?t2p(t)
{x(0) = const.} = {X(0) = const .}

{p(0) = const.} = {p(0) = const .}

= {X(7) = const .}
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%(r) = ——t

x(t
V14 w?t?
Br) = - () + VTF R Pp(t)
T) = — X w
V14 w?t?
S x(0) } = {%(0) }
= x(0) = const.} = {X(0) = const.
g A= {p(t) =0}
Il \ \ \ \
1<% \ \ \ \
inad \\ \\ ‘\ \\
Il 5 5 8 .
S Ve B =0
) ——re — p(0) =
Il - ‘\'

{x(t) = const.} = {X(7) = const .}
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1
V1+ w2t2X(t)

mw?t

)=~y oe

X(7) =

x(t) +V1+ w?t?p(t)

:; {x(0) = const.} = {X(0) = const .}
5 A= {p(t) = 0}
JIES I T S ={5(r) = 0}
E mw?t
| | \ \ = t) = t
1 ~ {(p(6) = LT ax(0))
S e B=o
o — hO0)=
I
~ \ \ \
3 \

v v v \

{x(t) = const .} : {)"((7')‘: const .}

Jerzy Kijowski Center for Theoretical Physics PAS Warsaw Geometric quantization and Backlund transformations 14 /20



1
V1+ w2t2X(t)

2
t
M7 x(t) + 1+ w2e2p(t)

)=~y oe

X(7) =

:; {x(0) = const.} = {X(0) = const .}

3 A= {p(t) = 0}

S S = {(r) = 0}

-~ 2

Il mwt

= e B =0 = p(0) = T ()

% _______ -~ p(0) = 0 mw?t

I A=A = 1)

2 1, mw?t 5
=G e

{x\(t) = cc\mst Ny : {)"((7')‘: const .}
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Consider a family of quantum states W(7) = (7, X)VdX.

X i

mw~t 2 A/
)er 2(1+w2e2) * dx

1
t,x)Vdx = ¢(— arctan wt, ——— _
(t, x) Q’Z)(w 1+ 2t2 (1 + w2t?)i
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Consider a family of quantum states W(7) = (7, X)VdX.

1 X iome 2 y/dx
t,x dx = —arctanwt, ———)eh20+??)"
AtV =l et v o o 1 we)!
Y — A e e

X

Theorem:

< ¢ satisfies the free ) PN <w satisfies the Schrddinger equation)

Schrodinger equation. of a harmonic oscillator.
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Consider a family of quantum states W(7) = (7, X)VdX.

X i mw?t 2 ‘/dX

1 i x
— — = Veh2+w2¢2)” ____*
o(t, x)Vdx ¢(w arctan wt, T e ar w2t2)%
d — S5 ————

X

Theorem:

< ¢ satisfies the free ) PN <w satisfies the Schrddinger equation)

Schrodinger equation. of a harmonic oscillator.

Backlund transformation via geometric quantization!
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How Wp » changes if we change A and \?
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How Wp » changes if we change A and \?

On the classical level any such change is infinitesimally
implemented by a Hamiltonian vector field Xy.
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How Wp » changes if we change A and \?

On the classical level any such change is infinitesimally
implemented by a Hamiltonian vector field Xy.

If we want to have a polarization-independent description of a
quantum state, we must define a quantum counterpart of this
change, i.e. a mapping from classical to quantum observables:

]__(,P) 5 H quantization scheme /:/ c OP(H)

(self-adjoint operators!)
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How Wp » changes if we change A and \?

On the classical level any such change is infinitesimally
implemented by a Hamiltonian vector field Xy.

If we want to have a polarization-independent description of a
quantum state, we must define a quantum counterpart of this
change, i.e. a mapping from classical to quantum observables:

]__(,P) 5 H quantization scheme /:/ c OP(H)

(self-adjoint operatorsl)  GX# — e~ utH
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Quantization schemes

We already know how to “quantize” some observables:
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Quantization schemes

We already know how to “quantize” some observables:

@ Function on Qp generate Galilei transformations and,
therefore, must be quantized as multiplication operators.
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Quantization schemes

We already know how to “quantize” some observables:

@ Function on Qp generate Galilei transformations and,
therefore, must be quantized as multiplication operators.

@ Function linear in momenta generates a hamiltonian flow on
P, preserving polarization A and the reference frame {p = 0}.
Corresponding transport of the wave function is generated by
the Lie derivative: X = '%ﬁx, automatically self-adjoint.
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Quantization schemes

We already know how to “quantize” some observables:

@ Function on Qp generate Galilei transformations and,
therefore, must be quantized as multiplication operators.

@ Function linear in momenta generates a hamiltonian flow on
P, preserving polarization A and the reference frame {p = 0}.
Corresponding transport of the wave function is generated by
the Lie derivative: X = '%ﬁx, automatically self-adjoint.

@ Linearity 777
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Quantization schemes

The result of the “change of polarization” procedure should not
depend upon the way we change it!!!
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Quantization schemes

The result of the “change of polarization” procedure should not
depend upon the way we change it!!!

Fiber: quantum states

Base: polarizations
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Quantization schemes

The result of the “change of polarization” procedure should not
depend upon the way we change it!!!

Fiber: quantum states

Base: polarizations

Path-independence requires: [H,G] — {H,G}'=c- L
Modulo “c - I" because only projective representations considered:
global phase never controlled!
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Linear Symplectic group

The above dream of many generations cannot be fulfilled!
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The above dream of many generations cannot be fulfilled!
No universal quantization scheme!!!
Non-vanishing curvature!

Jerzy Kijowski Center for Theoretical Physics PAS Warsaw Geometric quantization and Backlund transformations 19/20



Linear Symplectic group

The above dream of many generations cannot be fulfilled!
No universal quantization scheme!!!

Non-vanishing curvature!

But some miracles occur.
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Linear Symplectic group

The above dream of many generations cannot be fulfilled!

No universal quantization scheme!!!

Non-vanishing curvature!

But some miracles occur.

Small miracle: If P is a linear symplectic space than algebra F2(P)
of “at most quadratic” observables generates the linear symplectyic
group Sp(P) which is uniquely, and exactly quantized.
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Linear Symplectic group

The above dream of many generations cannot be fulfilled!

No universal quantization scheme!!!

Non-vanishing curvature!

But some miracles occur.

Small miracle: If P is a linear symplectic space than algebra F2(P)
of “at most quadratic” observables generates the linear symplectyic
group Sp(P) which is uniquely, and exactly quantized.

Remainder: These are projective representations of Sp(P). There
is no unitary representation, unless we pass to the universal
covering: the metaplectic group Mp(P).
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Linear Symplectic group

@ Any linear Lagrangian foliation A of P can be used to
represent quantum states.
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Linear Symplectic group

@ Any linear Lagrangian foliation A of P can be used to
represent quantum states.

@ There is a unique transformation between two such
representations (“Fractional Fourier transform”, equivalence of
all possible quantum dynamics).
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Linear Symplectic group

@ Any linear Lagrangian foliation A of P can be used to
represent quantum states.

@ There is a unique transformation between two such

representations (“Fractional Fourier transform”, equivalence of
all possible quantum dynamics).

Theorem 1: Observables which are linear with respect to momenta

in any of the above representations span the space F(P) of all the
observables.
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Linear Symplectic group

@ Any linear Lagrangian foliation A of P can be used to
represent quantum states.

@ There is a unique transformation between two such
representations (“Fractional Fourier transform”, equivalence of
all possible quantum dynamics).

Theorem 1: Observables which are linear with respect to momenta
in any of the above representations span the space F(P) of all the
observables.

Theorem 2: A unique quantization scheme F(P) — Op(H)
satisfying X = ?EX is the Weyl quantization.
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