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Motivation from Gauge Theories

▶ In physics, gauge theories are variational PDEs that have special,
large symmetry groups locally parametrized by arbitrary functions.

▶ The degrees of freedom that are affected by gauge symmetry
transformations are considered unphysical. Thus, the relevant
properties of the PDE are those invariant under gauge
symmetries. This gives rise to a lot of interesting geometry.

▶ While non-linear PDEs are the most important, it is already
interesting and important to study linear gauge theories (e.g.,
linearizations of non-linear theories).

▶ Infinitesimal gauge symmetries (gauge generators) are given by
differential operators. As overdetermined equations, gauge
generators give rise to compatibility complexes.
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Examples
▶ Maxwell:

▶ ∂a∂[aAb] = 0
▶ Ab — 1-form on flat space
▶ Ab = ∂bϕ — gauge generator; ∂a∂[a∂b]ϕ = 0

▶ Linearized Yang-Mills (YM):
▶ DaD[aAb] +

1
2 [Fba,Aa] = 0

▶ Ab — Lie algebra valued 1-form; Da — Lie algebra valued
connection; Fab — curvature of Da

▶ Ab = Dbϕ — gauge generator; DaD[aDb]ϕ+ 1
2 [Fba,Daϕ] = 0

▶ Linearized General Relativity (GR):
▶ ∇a∇ahcd − 2Rc

ab
dhab − 2∇(c∇ah̄d)a = 0

▶ hcd — symmetric 2-tensor; ∇a — Levi-Civita connection; Rabcd —
Riemann curvature of ∇a; h̄cd = hcd − 1

2 (tr h)gcd — trace shift
▶ hcd = K [v ]cd = ∇cvd +∇dvc — gauge generator;

∇a∇aK [v ]cd − 2Rc
ab

dK [v ]ab − 2∇(c∇aK [v ]d)a = 0
▶ Others similar to Maxwell or YM: Chern-Simons, Maxwell p-forms,

Rarita-Schwinger spinors, linearized super-gravities, . . .
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Structure of a Linear Gauge Theory
▶ F → M — field (vector) bundle over a (spacetime) manifold M,

dimM = n; F̃ ∗ := F ∗ ⊗ ΛnM — densitized dual bundle.
▶ Equations of motion (EOM): e : Γ(F ) → Γ(F̃ ∗) — a self-adjoint

linear differential operator, e∗ = e.
▶ Gauge generator: g : Γ(P) → Γ(F ) — linear operator satisfying

e ◦ g = 0; P → M — vector bundle of gauge parameters.
▶ Technical point: g has to be ‘universal,’ meaning that any g′

satisfying e ◦ g′ = 0 must factor through g (∃q : g′ = g ◦ q).
▶ Gauge symmetries are locally parametrized by arbitrary functions:

for an arbitrary section ε : M → P, ϕ = g[ε] is a solution of
e[ϕ] = 0, since e[g[ε]] = e ◦ g[ε] = 0.

▶ Noether’s second theorem — a self-adjoint complex:

P F F̃ ∗ P̃∗g e g∗

Far from being exact! (Spoiler: not the complex we want!)
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Gauge Fixing
▶ The existence of a non-trivial gauge generator, an operator g such

that e ◦ g = 0, implies that the principal symbol of e is degenerate.
Thus, e can be neither elliptic nor hyperbolic ⇒ bad analytic
behavior!

▶ However, we are looking at equivalence classes [ϕ] = [ϕ+ g[ε]] of
solutions of e[ϕ] = 0. Thus, some special representatives of [ϕ]
may satisfy an analytically better behaved equation.

▶ We impose a gauge fixing (or subsidiary) condition f [ϕ] = 0, with
some linear differential operator f : Γ(F ) → Γ(P̃∗). Then, add s ◦ f ,
for some linear differential operator s : Γ(P̃∗) → Γ(F̃ ∗), to the EOM
to get a PDE with a non-degenerate principal symbol:

h[ϕ] = e[ϕ] + s ◦ f [ϕ] = 0

▶ The condition f [ϕ] = 0 must be ‘strong enough.’ It is reasonable to
ask that only those gauge modes ϕ = g[ε] satisfy h[ϕ] = 0 that
have parameters satisfying their own principally non-degenerate
equation k [ε] = 0: namely, h[g[ε]] = s[k [ε]] for any ε ∈ Γ(P).
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Extended Gauge Differential Complex

Keep in mind:
▶ gauge symmetry: e ◦ g = 0
▶ gauge fixing: h = e + s ◦ f
▶ principal non-degeneracy: h ◦ g = s ◦ k

This information can be structured into a differential complex:

P F F̃ ∗ P̃∗g e=e∗ g∗

By self-adjointness, we only need half of it.

Moreover. . .
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Extended Gauge Differential Complex
Keep in mind:
▶ gauge symmetry: e ◦ g = 0, factorization e = f ′ ◦ g′

▶ gauge fixing: h = e + s ◦ f
▶ principal non-degeneracy: h ◦ g = s ◦ k (by homotopy formula)

horizontal arrows — complexes, solid vertical — cochain maps, dashed
diagonal — homotopies: (fill in with 0s, where needed)

· · · P F P ′ · · ·

· · · P̃∗ F̃ ∗ P̃ ′∗ · · ·

k

g

f
e

g′

f ′
k ′

s s′

▶ homotopy formula: h = s ◦ f + e = s ◦ f + f ′ ◦ g′, k = f ◦ g + · · ·
▶ homotopy equivalence: (. . . ,0,e,0, . . .) ∼ (. . . , k ,h, k ′, . . .) ∼ 0
▶ choose g′, . . . and s′, . . . to be compatibility operators (‘universal’)
▶ packaging top/bottom complexes into a single differential Q2 = 0 has a

long history (BV-BRST, Lyakhovich-Sharapov et al, Grigoriev et al, . . . )
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Hodege-like Structure

▶ The resulting Hodge-like structure (recall ∆ = δd + dδ):

0 P0 P1 · · · Pn 0

0 P̃∗
0 P̃∗

1 · · · P̃∗
n 0

g1

h0

g2

h1
f1

gn

f2
hn

fn
s1 s2 sn

▶ (P•,g•), (P̃∗
• , s•) — compatibility complexes

▶ (h•) — cochain maps, induced by (f•) — cochain homotopies
▶ F = Pi — bundle of fields (for some i)
▶ P = Pi−1 — bundle of gauge parameters
▶ P ′ = Pi+1 — bundle of invariant fields
▶ g = gi — gauge generator
▶ g′ = gi+1 — gauge invariant combinations
▶ fi — gauge fixing condition
▶ e = fi+1 ◦ gi+1 — gauge invariant EOM
▶ hi = fi+1 ◦ gi+1 + si ◦ fi — gauge fixed EOM
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Compatibility Complexes and Cochain Homotopies
▶ The resulting Hodge-like structure:

0 P0 P1 · · · Pn 0

0 P̃∗
0 P̃∗

1 · · · P̃∗
n 0

g1

h0

g2

h1
f1

gn

f2
hn

fn
s1 s2 sn

▶ Examples:
▶ Maxwell (i = 1): de Rham complex, Laplace-Beltrami Laplacians;

g1 = s1 = d — de Rham differential
▶ Flat linearized YM (i = 1): de Rham complex, twisted by Lie algebra g;

g1 = s1 = D = d + B — flat connection on g-valued functions
▶ de Sitter linearized GR (i = 1): Calabi complex, with vector,

Lichnerowicz, Penrose, etc. Laplacians; [IK arXiv:1409.7212]

g1 = s1 = K — Killing operator
▶ Maxwell p-forms (i = p): de Rham complex again

▶ More examples?
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Sheaves, Cohomology, Duality
▶ Local solutions of g1[ε0] = 0 form a sheaf G on M.
▶ Under favorable conditions, the differential complex is a soft

(⇒ acyclic) resolution of G :

G P0 P1 · · · Pn 0
g1 g2 gn

(e.g., when g1[ε0] = 0 is a PDE of finite type)
▶ giving an isomorphism in cohomology H•(M,G ) ∼= H(P•,g•)

▶ Poinacaré-Serre duality (1955):

H•
c (M,G )∗ ∼= Hc(P•,g•)

∗ ∼= H(P̃∗
• ,g

∗) ∼= Hn−•(M,G ∗),

where we have used the adjoint complex

0 P̃∗
0 P̃∗

1 · · · P̃∗
n G ∗g∗

1
g∗

n−1 g∗
n

and the sheaf G ∗ that it resolves.
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Causally and Dynamically Restricted Supports

▶ Typically, we study gauge theories on globally hyperbolic
spacetimes M (= we can choose gauge fixed (h•) to be hyperbolic
with unique retarded and advanced inverses).

▶ For a complex with Hodge-like structure (P•,g•), (h•), (f•) and
(h•) hyperbolic, it is interesting to consider cohomologies with
spatially compact supports and restricted to solutions
[IK arXiv:1404.1932]:

Hsc(P•,g•) ∼= Hc(P•+1,g•+1),

Hsc(ker h•,g•) ∼= Hc(P•,g•)⊕ Hc(P•+1,g•+1).
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Applications to Gauge Theories
Starting with g = gi and

· · · P F P ′ · · ·

· · · P̃∗ F̃ ∗ P̃ ′∗ · · ·

k

g

f
h

g′

f ′
k ′

s s′

▶ G = ker g1 — link to sheaf cohomology

▶ g′[ϕ] = gi+1[ϕ] — gauge invariant field combinations

▶
∫

M g′[ϕ] · ψc =
∫

M ϕ · g′∗[ψc ], hence gauge invariant functionals are
generated by g′∗ = g∗

i+1 plus H i
c(P̃∗

• ,g∗
•)

▶ In physics, the solution space ker h (mod img) has a natural variational
(pre-)symplectic and Poisson structure. The kernels of these bilinear forms
do not exceed the dimensions of [IK arXiv:1402.1282,1404.1932,1409.7212]

dimH i
c(P

∗
• , g

∗
•)⊕ H i

sc(P•, g•)⊕ H i
sc(ker h•, g•) ≤ bounded by dimH•(M,G ) and H•(M,G ∗)

These kernels are related to ‘global charges.’

▶ H•≤i(P•,g•) ∼= H•≤i(M,G ) — rigid higher stage symmetries
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Gauge Invariants

▶ Consider a (pseudo-)Riemannian manifold (M,g).

▶ ∇a — Levi-Civita connection; Rabcd — Riemann tensor of ∇a.

▶ K [v ]ab = ∇avb +∇bva — Killing operator.

▶ The Killing equation K [v ]ab = 0 is a PDE of finite type.

▶ Q:
▶ For Linearized General Relativity on (M,g), what is a complete set

(Ij) of local gauge invariants, Ij ◦ K [v ] = 0 (∀v)?
▶ Or given g, what is the full compatibility complex of K [v ]ab = 0?

T ∗M S2T ∗M · · · · · ·K K ′=? ?

Similar question for YM Da[ϕ] = (d + B)aϕ, when Da is not flat.
▶ The components of K ′ give a complete set of invariants (Ij).

▶ Until recently, complete answer known for only very few g!

▶ Practical solution given in [IK arXiv:1805.03751].
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▶ Or given g, what is the full compatibility complex of K [v ]ab = 0?

T ∗M S2T ∗M · · · · · ·K K ′=? ?

Similar question for YM Da[ϕ] = (d + B)aϕ, when Da is not flat.
▶ The components of K ′ give a complete set of invariants (Ij).

▶ Until recently, complete answer known for only very few g!

▶ Practical solution given in [IK arXiv:1805.03751].
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Solution via Twisted de Rham Complex
▶ A PDE K [v ] = 0 is of finite type (holonomic D-module) if the solution

space is (even locally) finite dimensional and knowing v(x) and finitely
many derivatives at any x ∈ M (locally) determines the solution uniquely.
Examples:

▶ de Rham derivative on scalars, (dϕ)a = ∂aϕ.
▶ Connection on vector bundle, DB[w ]µa = ∂awµ + Bµ

νawν .
▶ Killing equation, K [v ]ab = ∇avb +∇bva.
▶ Generalized Killing tensors and spinors K [t ]ab··· = ∇(atb···).

▶ A PDE of finite type K [v ] = 0 is equivalent to a DB[w ] = 0 for a flat
connection Bµ

νa on some vector bundle, [DB,DB]w = 0.
▶ The compatibility complex for the DB[w ] = 0 is the twisted de Rham

complex, DB[w ]µa1···ak = k(∂[a1w
µ
a2···ak ]

+ Bµ
ν[a1

wν
a2···ak ]

),

W Λ1T ∗ ⊗ W · · · ΛnT ∗ ⊗ W
DB=D1

B D2
B Dn

B

▶ In practice, given K 1 = K we first reduce it to a DB and then lift the D•
B

operators to build a full compatibility complex K •. A witness to the
construction is a homotopy equivalence between K • and D•

B.

Igor Khavkine (CAS, Prague) Complexes of Diff.Ops. 14/12/2021 13 / 15



Killing Compatibility Complexes: Examples

▶ Previously, answers known only for constant curvature (Calabi,
1961) and locally symmetric (Gasqui-Goldschmidt, 1983) cases.

▶ FLRW spatially homogeneous and isotropic cosmologies (any
dimension) [IK arXiv:1801.02632 (w/ et al), 1805.03751].

▶ Schwarzschild static spherically symmetric black hole (any
dimension) [IK arXiv:1805.03751].

▶ Kerr stationary rotating black hole (4 dimensions)
[IK arXiv:1910.08756 (w/ et al)].
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Discussion

▶ Compatibility operators of generators of infinitesimal gauge
symmetries naturally give rise to compatibility complexes, which
play a significant role in the structure of variational PDEs with
gauge symmetry.

▶ These compatibility complexes can be constructed in specific
cases by reducing to a twisted de Rham complex.

▶ They have cohomologies with important applications in the
geometry of Gauge Theories in physics.

▶ The cohomologies can be linked to the cohomologies of certain
sheaves, and thus computed by algebro-topological methods.

▶ Open problem: find more applications of H•(M,G ) and H•(M,G )!

Thank you for your attention!
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Complete solution: Constant Curvature backgrounds
Constant curvature: R[g]ab:cd = Λ (gacgbd − gadgbc).
Calabi complex, tensorial formulas [IK arXiv:1409.7212]:

g1[v ]a:b = K [v ]a:b = ∇avb +∇bva

g2[h]ab:cd = (∇∇⊙ h)ab:cd + λ(g ⊙ h)ab:cd

=
(
∇(a∇c)hbd −∇(b∇c)had −∇(a∇d)hbc +∇(b∇d)hac

)
+ λ(gachbd − gbchad − gadhbc + gbdhac)

g3[r ]abc:de = dL[r ]abc:de = 3∇[arbc]:de

= ∇arbc:de +∇brca:de +∇crab:de

g4[b]abcd :ef = dL[b]abcd :ef = 4∇[abbcd ]:ef

= ∇abbcd :ef −∇bbcda:ef −∇cbdab:ef −∇dbabc:ef

gi [b]a1···al :bc = dL[b]a1···al :bc = i∇[a1
ba2···ai ]:bc (i ≥ 3)

va : 1 ha:b : a b rab:cd : a c
b d

babc:de : a d
b e
c

. . .



Example: FLRW cosmology

▶ For an (n − 1)-dimensional constant curvature Riemannian
metric g̃ with R̃[g̃]abcd = α(g̃ac g̃bd − g̃ad g̃bc), let

g = −(dt)2 + f 2(t)g̃ (f ′(t) ̸= 0).

▶ Parametrize va = −A f (dt)a + f 2X̃a
and hab = p (dt)2

ab + 2f 2(dt)(aỸb) + f 2Z̃ab.
▶ The Killing operator h = K [v ] becomesp

Ỹ
Z̃

 = K

[
A

X̃

]
=

 −2(Af )′

X̃ ′ − f−1∇̃A
K̃ [X̃ ] + 2Af ′g̃

 =

 −2∂t f 0

−f−1∇̃ ∂t

2f ′g̃ K̃

[
A

X̃

]
,

where (−)′ = ∂t(−), while ∇̃ and K̃ come from g̃.



FLRW: canonical form

▶ Any solution of K [v ] = 0 has
A = 0, K̃ [X̃ ] = 0 and ∂t X̃ = 0.

▶ There exists an operator J such
that J[K [v ]] = A.

▶ Since R′ = ∂tRab
ab[g] ̸= 0, we

can take

J[h] =
1

fR′ Ṙ[h].

▶ Since we know the constant
curvature full compatibility
complex for K̃ , there is no need
to fully reduce it to a flat
connection.

[
A

X̃a

] p

Ỹ
Z̃



X̃a

[
X̃a

h̃ab

]

K=


−2∂t f 0

−f−1∇̃ ∂t

2f ′g̃ K̃



[
0 id

]

J

0



0 id 0

0 0 id


id−K

J

0




∂t

K̃



0

id



0


0 0

id 0

0 id




