Hamiltonian formalism for general PDEs

Paul Kersten
Joseph Krasil'shchik
Alexander Verbovetsky
Raffaele Vitolo (speaker)

25 June 2010

Plan

1. Examples
2. Hamiltonian Operators as Variational Bivectors
3. Examples revisited

Example: KdV

$$
\begin{gathered}
u_{t}=u_{x x x}+6 u u_{x}=D_{x} \delta\left(u^{3}-u_{x}^{2} / 2\right) \\
=\left(D_{x x x}+4 u D_{x}+2 u_{x}\right) \delta\left(u^{2} / 2\right) \\
u_{x}=v, \quad v_{x}=w, \quad w_{x}=u_{t}-6 u v \\
\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)_{x}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & -6 u \\
0 & 6 u & D_{t}
\end{array}\right) \delta\left(u w-v^{2} / 2+2 u^{3}\right) \\
\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)_{x}=\left(\begin{array}{ccc}
0 & -2 u & -D_{t}-2 v \\
2 u & D_{t} & -12 u^{2}-2 w \\
-D_{t}+2 v & 12 u^{2}+2 w & 8 u D_{t}+4 u_{t}
\end{array}\right) \delta\left(-3 u^{2} / 2-w / 2\right)
\end{gathered}
$$

S. P. Tsarev, The Hamilton property of stationary and inverse equations of condensed matter mechanics and mathematical physics, Math. Notes 46 (1989), 569-573

Example: Camassa-Holm equation

$$
\begin{gathered}
u_{t}-u_{t x x}-u u_{x x x}-2 u_{x} u_{x x}+3 u u_{x}=0 \\
m_{t}+u m_{x}+2 u_{x} m=0, \quad m-u+u_{x x}=0 \\
m_{t}=-u m_{x}-2 u_{x} m=B_{1} \delta\left(\mathcal{H}_{1}\right)=B_{2} \delta\left(\mathcal{H}_{2}\right)
\end{gathered}
$$

where

$$
\begin{aligned}
B_{1} & =-\left(m D_{x}+D_{x} m\right), \quad \mathcal{H}_{1}=\frac{1}{2} \int m u d x \\
B_{2} & =D_{x}^{3}-D_{x}, \quad \mathcal{H}_{2}=\frac{1}{2} \int\left(u^{3}+u u_{x}^{2}\right) d x
\end{aligned}
$$

\mathcal{H}_{1} and \mathcal{H}_{2} are viewed as functionals of m and not of u, with $u=\left(1-D_{x}^{2}\right)^{-1} m$.

Example: Kupershmidt deformation

B. Kupershmidt, KdV6: An integrable system, Phys. Lett. A 372 (2008), 2634-2639

$$
u_{t}=f\left(t, x, u, u_{x}, u_{x x}, \ldots\right)
$$

A_{1}, A_{2} are compatible Hamiltonian operators
H_{1}, H_{2}, \ldots is a Magri hierarchy of conserved densities
$D_{t}\left(H_{i}\right)=0, A_{1} \delta\left(H_{i}\right)=A_{2} \delta\left(H_{i+1}\right)$.

$$
\begin{equation*}
u_{t}=f-A_{1}(w), \quad A_{2}(w)=0 \tag{1}
\end{equation*}
$$

The KdV6 equation
(A. Karasu-Kalkanli, A. Karasu, A. Sakovich, S. Sakovich, and
R. Turhan, A new integrable generalization of the Korteweg-de Vries equation, J. Math. Phys. 49 (2008) 073516, arXiv:0708.3247)

$$
u_{t}=u_{x x x}+6 u u_{x}-w_{x}, \quad w_{x x x}+4 u w_{x}+2 u_{x} w=0
$$

Theorem (Kupershmidt)

H_{1}, H_{2}, \ldots are conserved densities for (1).

Infinite jet space: notation

The jet space J^{∞} with coordinates x^{i}, u_{σ}^{j}
$D_{i}=\partial_{x^{i}}+\sum_{j, \sigma} u_{\sigma i}^{j} \partial_{u_{\sigma}^{j}}$ are total derivatives
$E_{\varphi}=\sum_{j} \varphi^{j} \partial_{u^{j}}+\sum_{j i} D_{i}\left(\varphi^{j}\right) \partial_{u_{i}^{j}}+\ldots$ is an evolutionary field, $\varphi=\left(\varphi^{1}, \ldots, \varphi^{m}\right)$ is a vector function on J^{∞}
$\ell_{f}=\left\|\sum_{\sigma} \partial_{u_{\sigma}^{j}}\left(f_{i}\right) D_{\sigma}\right\|$ is the linearization of a vector function f on $J^{\infty}, \ell_{f}(\varphi)=E_{\varphi}(f)$

$$
\Delta^{*}=\left\|\sum_{\sigma}(-1)^{\sigma} D_{\sigma} a_{\sigma}^{j i}\right\|, \quad \text { if } \Delta=\left\|\sum_{\sigma} a_{\sigma}^{i j} D_{\sigma}\right\|
$$

the adjoint \mathcal{C}-differential operator

Differential equations: notation

Let $F_{k}\left(x^{i}, u_{\sigma}^{j}\right)=0, k=1, \ldots, l$, be a system of equations
Relations $F=0, D_{\sigma}(F)=0$ define its infinite prolongation $\mathcal{E} \subset J^{\infty}$
$\ell_{\mathcal{E}}=\left.\ell_{F}\right|_{\mathcal{E}}$ is the linearization of the equation \mathcal{E}
E_{φ} is a symmetry of \mathcal{E} if $\left.E_{\varphi}(F)\right|_{\mathcal{E}}=\ell_{\mathcal{E}}(\varphi)=0, \operatorname{Sym}(\mathcal{E})=\operatorname{ker} \ell_{\mathcal{E}}$ φ is its generating function
Vector function $R=\left(R^{1}, \ldots, R^{n}\right)$ on \mathcal{E} is a conserved current if $\sum_{i} D_{i}\left(R^{i}\right)=0$ on \mathcal{E}
Conservation laws of \mathcal{E} are conserved currents mod. trivial ones Generating function of a conservation law:

$$
\psi=\left(\psi_{1}, \ldots, \psi_{m}\right)=\Delta^{*}(1), \text { where } \sum_{i} D_{i}\left(R^{i}\right)=\Delta(F) \text { on } J^{\infty}
$$

$$
\ell_{\mathcal{E}}^{*}(\psi)=0, \quad \mathrm{CL}(\mathcal{E}) \subset \operatorname{ker} \ell_{\mathcal{E}}^{*}
$$

Analogy

Manifold M	Jet J^{∞}	PDE \mathcal{E}
functions	functionals	conservation laws
vector fields	evolutionary vect. fields	symmetries
$T^{*} M$	$\mathcal{T}_{J^{\infty} \infty}^{*}=J_{h}^{\infty}(\hat{\varkappa})$	$\mathcal{L}^{*}(\mathcal{E})$
$T M$	$\mathcal{T}_{J^{\infty}}=J_{h}^{\infty}(\varkappa)$	$\mathcal{L}(\mathcal{E})$
De Rham complex	$E_{0}^{0, n-1} \rightarrow E_{0}^{1, n-1} \ldots$	$E_{1}^{0, n-1} \rightarrow E_{1}^{1, n-1} \ldots$
multivectors	variational multiv.	variational multiv.
Schouten bracket	variational Sch. br.	variational Sch. br.

The analogy can be extended to the Liouville one-form $\theta_{0} \in \Omega^{1}\left(T^{*} M\right)$ and the symplectic form $\omega_{0}=d \theta_{0}$.

Differential equations: the model

$\mathcal{D}(\mathcal{E})=\operatorname{Sym}(\mathcal{E})=$ the Lie algebra of symmetries of \mathcal{E} $\Lambda^{q}(\mathcal{E}) \supset \mathcal{C} \Lambda^{q}(\mathcal{E}) \supset \mathcal{C}^{2} \Lambda^{q}(\mathcal{E}) \supset \mathcal{C}^{3} \Lambda^{q}(\mathcal{E}) \supset \cdots$

$$
\begin{aligned}
& E_{1}^{0, n} \xrightarrow{d_{1}^{0, n}} E_{1}^{1, n} \stackrel{\xrightarrow{d_{1}^{1, n}} E_{1}^{2, n} \xrightarrow{d_{1}^{2, n}} E_{1}^{3, n} \xrightarrow{d_{1}^{3, n}} \cdots}{ } \begin{array}{l}
E_{1}^{0, n-1} \xrightarrow{d_{1}^{0, n-1}} E_{1}^{1, n-1} \xrightarrow{d_{1}^{1, n-1}} E_{1}^{2, n-1} \xrightarrow{d_{1}^{2, n-1}} E_{1}^{3, n-1} \xrightarrow{d_{1}^{3, n-1}} \cdots \\
E_{1}^{0, n-2} \\
\vdots \\
E_{1}^{0,0}
\end{array}
\end{aligned}
$$

$E_{1}^{0, n-1}=$ space of conservation laws
$E_{1}^{1, n-1}=\operatorname{Cosym} \mathcal{E}=\operatorname{ker} \ell_{\mathcal{E}}^{*}$

$$
E_{1}^{2, n-1}=\left\{\Delta \mid \ell_{\mathcal{E}}^{*} \Delta=\Delta^{*} \ell_{\mathcal{E}}\right\} /\left\{\nabla \ell_{\mathcal{E}} \mid \nabla^{*}=\nabla\right\}
$$

Differential equations: the cotangent space

$\mathcal{T}_{\mathcal{E}}^{*}: \quad F=0, \quad \ell_{\mathcal{E}}^{*}(\boldsymbol{p})=0$
$\mathcal{L}=\langle F, \boldsymbol{p}\rangle \quad \ell_{\mathcal{T}_{\mathcal{E}}^{*}}^{*}=\ell \mathcal{T}_{\mathcal{E}}^{*}$
Variational multivectors on \mathcal{E} are conservation laws on $\mathcal{T}_{\mathcal{E}}^{*}$.
Theorem
A variational bivector on \mathcal{E} can be identified with the equivalence class of operators A on \mathcal{E} that satisfy the condition

$$
\ell_{\mathcal{E}} A=A^{*} \ell_{\mathcal{E}}^{*}
$$

with two operators being equivalent if they differ by an operator of the form $\square \ell_{\mathcal{E}}^{*}$.
If A is a bivector and \mathcal{E} is written in evolution form then $A^{*}=-A$.

Differential equations: the Schouten bracket of bivectors

$$
\begin{aligned}
& \llbracket A_{1}, A_{2} \rrbracket\left(\psi_{1}, \psi_{2}\right) \\
& \qquad \begin{array}{l}
=\ell_{A_{1}, \psi_{1}}\left(A_{2}\left(\psi_{2}\right)\right)-\ell_{A_{1}, \psi_{2}}\left(A_{2}\left(\psi_{1}\right)\right) \\
\quad+\ell_{A_{2}, \psi_{1}}\left(A_{1}\left(\psi_{2}\right)\right)-\ell_{A_{2}, \psi_{2}}\left(A_{1}\left(\psi_{1}\right)\right) \\
\quad \quad-A_{1}\left(B_{2}^{*}\left(\psi_{1}, \psi_{2}\right)\right)-A_{2}\left(B_{1}^{*}\left(\psi_{1}, \psi_{2}\right)\right)
\end{array}
\end{aligned}
$$

where $\ell_{F} A_{i}-A_{i}^{*} \ell_{F}^{*}=B_{i}(F, \cdot)$ on J^{∞},
$B_{i}^{*}\left(\psi_{1}, \psi_{2}\right)=\left.B_{i}^{*_{1}}\left(\psi_{1}, \psi_{2}\right)\right|_{\mathcal{E}}$.
B_{i}^{*} are skew-symmetric and skew-adjoint in each argument.
If \mathcal{E} is in evolution form then $B_{i}^{*}\left(\psi_{1}, \psi_{2}\right)=\ell_{A_{i}, \psi_{2}}^{*}\left(\psi_{1}\right)$

Differential equations: Poisson bracket

Definition

A variational bivector is called Hamiltonian if $\llbracket A, A \rrbracket=0$
$S_{1}, S_{2} \in \operatorname{CL}(\mathcal{E}), \psi_{1}, \psi_{2}$ are the generating functions
$\left\{S_{1}, S_{2}\right\}_{A}=E_{A\left(\psi_{1}\right)}\left(S_{2}\right)$
Definition
The Magri hierarchy on a bihamiltonian equation \mathcal{E} is the infinite sequence S_{1}, S_{2}, \ldots of conservation laws of \mathcal{E} such that $A_{1}\left(\psi_{i}\right)=A_{2}\left(\psi_{i+1}\right)$.

Proposition

For Magri hierarchy we have
$\left\{S_{i}, S_{j}\right\}_{A_{1}}=\left\{S_{i}, S_{j}\right\}_{A_{2}}=\left\{E_{\varphi_{i}}, E_{\varphi_{j}}\right\}=0$, where
$\varphi_{i}=A_{1}\left(\psi_{i}\right)=A_{2}\left(\psi_{i+1}\right)$.

Invariance of the cotangent equation

Each two resolutions of the module of Cartan forms $\mathcal{C} \Lambda^{1}$ are homotopic. In particular, we consider normal equations, for which $\mathcal{C} \Lambda^{1}$ admits resolutions of length 1 :

$$
\begin{aligned}
& 0 \longrightarrow \mathcal{C}\left(P_{1}, \mathcal{F}\right) \xrightarrow{\bar{\ell}_{F_{1}}^{+}} \mathcal{C}\left(\varkappa_{1}, \mathcal{F}\right) \xrightarrow{r_{1}} \mathcal{C} \Lambda^{1} \longrightarrow 0 \\
& \begin{array}{llll}
\alpha^{\prime+} \uparrow \mid{ }^{\prime} \beta^{+} & & \alpha^{+} \uparrow \mid{ }^{\beta^{+}} & \text {id } \\
\mathcal{C}\left(P_{2}^{+}, \mathcal{F}\right) \xrightarrow{\downarrow} & \\
\mathcal{C}\left(\varkappa_{2}, \mathcal{F}\right) \xrightarrow{r_{2}} \mathcal{C} \Lambda^{1} \longrightarrow 0
\end{array}
\end{aligned}
$$

Invariance of the cotangent equation

Theorem
Let \mathcal{E} be a normal equation. Then:
$\ell_{\mathcal{E}}^{1}$ is homotopically equivalent to $\ell_{\mathcal{E}}^{2}$
\Rightarrow
$\ell_{\mathcal{E}}^{1 *}$ is homotopically equivalent to $\ell_{\mathcal{E}}^{2 *}$.
It follows that the cotangent space to \mathcal{E} does not depend on the inclusion of \mathcal{E} into J^{∞}.
We have the change of coordinate formula for bivectors:

$$
\begin{aligned}
& A_{2}=\alpha A_{1} \alpha^{\prime *} \\
& A_{1}=\beta A_{2} \beta^{\prime *}
\end{aligned}
$$

Example: KdV

$$
\begin{aligned}
& F_{1}=u_{t}-u_{x x x}-6 u u_{x}=0 \\
& F_{2}=\left(\begin{array}{c}
u_{x}-v \\
v_{x}-w \\
w_{x}-u_{t}+6 u v
\end{array}\right)=0 \\
& \ell_{\mathcal{E}}^{1}=D_{t}-D_{x x x}-6 u D_{x}-6 u_{x} \quad \ell_{\mathcal{E}}^{2}=\left(\begin{array}{ccc}
D_{x} & -1 & 0 \\
0 & D_{x} & -1 \\
-D_{t}+6 v & 6 u & D_{x}
\end{array}\right) \\
& \alpha=\left(\begin{array}{c}
1 \\
D_{x} \\
D_{x x}
\end{array}\right) \quad \alpha^{\prime}=\left(\begin{array}{r}
0 \\
0 \\
-1
\end{array}\right) \quad \begin{array}{l}
\beta=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \\
\beta^{\prime}=\left(\begin{array}{lll}
-D_{x x}-6 u & -D_{x} & -1
\end{array}\right)
\end{array} \\
& s_{1}=0 \quad s_{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
D_{x} & 1 & 0
\end{array}\right)
\end{aligned}
$$

Example: Camassa-Holm equation

$$
\begin{gathered}
u_{t}-u_{t x x}-u u_{x x x}-2 u_{x} u_{x x}+3 u u_{x}=0 \\
A_{1}=D_{x} \quad A_{2}=-D_{t}-u D_{x}+u_{x} \\
m_{t}+u m_{x}+2 u_{x} m=0, \\
m-u+u_{x x}=0 \\
\frac{u=\left(1-D_{x}^{2}\right)^{-1} m}{} \\
A_{1}^{\prime}=\left(\begin{array}{ccc}
D_{x} & 0 \\
D_{x}-D_{x}^{3} & 0
\end{array}\right) \quad A_{2}^{\prime}=\left(\begin{array}{cc}
0 & -1 \\
2 m D_{x}+m_{x} & 0
\end{array}\right)
\end{gathered}
$$

Example: Kupershmidt deformation

Let \mathcal{E} be a bi-Hamiltonian equation given by $F=0$

Definition

The Kupershmidt deformation $\tilde{\mathcal{E}}$ has the form

$$
F+A_{1}^{*}(w)=0, \quad A_{2}^{*}(w)=0
$$

where $w=\left(w^{1}, \ldots, w^{l}\right)$ are new dependent variables
Theorem
The Kupershmidt deformation $\tilde{\mathcal{E}}$ is bi-Hamiltonian.
Proof.
The following two bivectors define a bi-Hamiltonian structures:

$$
\tilde{A}_{1}=\left(\begin{array}{cc}
A_{1} & -A_{1} \\
0 & \ell_{F+A_{1}^{*}(w)+A_{2}^{*}(w)}
\end{array}\right) \quad \tilde{A}_{2}=\left(\begin{array}{cc}
A_{2} & -A_{2} \\
-\ell_{F+A_{1}^{*}(w)+A_{2}^{*}(w)} & 0
\end{array}\right)
$$

More examples

- H. Baran and M. Marvan, On integrability of Weingarten surfaces: a forgotten class, J. Phys. A: Math. Theor. 42 (2009), 404007

$$
\begin{gathered}
z_{y y}+(1 / z)_{x x}+2=0 \\
D_{x x}, \quad 2 z D_{x y}-z_{y} D_{x}+z_{x} D_{y} .
\end{gathered}
$$

- F. Neyzi, Y. Nutku, M.B. Sheftel, Multi-Hamiltonian structure of Plebanski's second heavenly equation arxiv:nlin/0505030

$$
u_{t t} u_{x x}-u_{t x}^{2}+u_{x z}+u_{t y}=0
$$

It is Lagrangian, hence the identity operator is a Hamiltonian bivector. This is rewritten in the above paper in evolutionary coordinates.

Symbolic computations

Hamiltonian operators, recursion operators, symplectic operators, etc. can be computed as (generalized or higher) symmetries or cosymmetries in the cotangent space of the given PDE.
We use a set of packages for Reduce developed by Kersten et al. at the Twente University (Holland). This is available at the Geometry of Differential Equations website
http://gdeq.org/
together with documentation, a tutorial (by R.V.) and examples. We are currently extending it to work for non-evolutionary equations.

References

- P. Kersten, I. Krasil'shchik, and A. Verbovetsky, Hamiltonian operators and ℓ^{*}-coverings, J. Geom. Phys. 50 (2004), 273-302
- P. Kersten, I. Krasil'shchik, and A. Verbovetsky, (Non)local Hamiltonian and symplectic structures, recursions, and hierarchies: a new approach and applications to the $N=1$ supersymmetric KdV equation, J. Phys. A: Math. Gen. $\mathbf{3 7}$ (2004), 5003-5019
- P. Kersten, I. Krasil'shchik, and A. Verbovetsky, The Monge-Ampère equation: Hamiltonian and symplectic structures, recursions, and hierarchies, Memorandum of the Twente University 1727 (2004)
- P. Kersten, I. Krasil'shchik, and A. Verbovetsky, A geometric study of the dispersionless Boussinesq type equation, Acta Appl. Math. 90 (2006), 143-178
- J. Krasil'shchik, Nonlocal geometry of PDEs and integrability, in Symmetry and perturbation theory (G. Gaeta, R. Vitolo, and S. Walcher, eds.), World Sci., 2007, pp. 100-108

References

- V. A. Golovko, I. S. Krasil'shchik, and A. M. Verbovetsky, Variational Poisson-Nijenhuis structures for partial differential equations, Theor. Math. Phys. 154 (2008), 227-239
- V. A. Golovko, I. S. Krasil'shchik, and A. M. Verbovetsky, On integrability of the Camassa-Holm equation and its invariants, Acta Appl. Math. 101 (2008), 59-83
- P. Kersten, I. Krasil'shchik, A. Verbovetsky, R. Vitolo, Integrability of Kupershmidt deformations, Acta Appl. Math. 109 (2010), 75-86
- P. Kersten, I. Krasil'shchik, A. Verbovetsky, R. Vitolo, Hamiltonian structures for general PDEs, in Differential Equations-Geometry, Symmetries and Integrability: The Abel Symposium 2008 (B. Kruglikov, V. Lychagin, and E. Straume, eds.), Abel Symposia 5, Springer, 2009, pp. 187-198
- J. Krasil'shchik and A. Verbovetsky, Geometry of jet spaces and integrable systems, arXiv:1002.0077
- S. Igonin, P. Kersten, J. Krasil'shchik, A. Verbovetsky, R. Vitolo, Variational brackets in geometry of PDEs, 2010, to appear

Infinite jet space: the model

$\mathcal{D}\left(J^{\infty}\right)=\varkappa=$ the Lie algebra of evolutionary fields
$\Lambda^{q}\left(J^{\infty}\right) \supset \mathcal{C} \Lambda^{q}\left(J^{\infty}\right) \supset \mathcal{C}^{2} \Lambda^{q}\left(J^{\infty}\right) \supset \mathcal{C}^{3} \Lambda^{q}\left(J^{\infty}\right) \supset \cdots$

$$
\begin{aligned}
& E_{1}^{0, n} \xrightarrow{d_{1}^{0, n}} E_{1}^{1, n} \xrightarrow{d_{1}^{1, n}} E_{1}^{2, n} \xrightarrow{d_{1}^{2, n}} E_{1}^{3, n} \xrightarrow{d_{1}^{3, n}} \cdots \\
& E_{1}^{0, n-1}
\end{aligned}
$$

$$
\vdots
$$

$$
E_{1}^{0,0}
$$

n is number of x 's
$E_{1}^{0, n}$ consists of all "actions" $\int L\left(x^{i}, u_{\sigma}^{j}\right) d x^{1} \wedge \cdots \wedge d x^{n}$
$E_{1}^{1, n}=\hat{\varkappa}, \quad \hat{\varkappa}=\operatorname{Hom}_{C}^{\infty}\left(J^{\infty}\right)\left(\varkappa, \Lambda^{n}\left(J^{\infty}\right) / \mathcal{C} \Lambda^{n}\left(J^{\infty}\right)\right)$
$d_{1}^{0, n}$ is the Euler operator
$E_{1}^{2, n}=\mathcal{C}^{\text {skew }}(\varkappa, \hat{\varkappa})$
$d_{1}^{1, n}(\psi)=\ell_{\psi}-\ell_{\psi}^{*}$

Infinite jet space: the cotangent space

B. A. Kupershmidt, Geometry of jet bundles and the structure of Lagrangian and Hamiltonian formalisms, Lect. Notes Math. 775, 1980, pp. 162-218

$$
\mathcal{T}_{J \infty}^{*}=J_{h}^{\infty}(\hat{\varkappa})
$$

$S \in \Omega^{2}\left(\mathcal{T}_{J_{\infty}}^{*}\right)=\mathcal{C}(\varkappa \oplus \hat{\varkappa}, \varkappa \oplus \hat{\varkappa}) \quad S(\varphi, \psi)=(-\psi, \varphi)$ $\mathcal{D}^{2}\left(J^{\infty}\right)=\mathcal{C}^{\text {skew }}(\hat{\varkappa}, \varkappa) \quad A_{1}, A_{2} \in \mathcal{D}^{2}\left(J^{\infty}\right)$

$$
\begin{aligned}
& \llbracket A_{1}, A_{2} \rrbracket\left(\psi_{1}, \psi_{2}\right) \\
& =\ell_{A_{1}, \psi_{1}}\left(A_{2}\left(\psi_{2}\right)\right)-\ell_{A_{1}, \psi_{2}}\left(A_{2}\left(\psi_{1}\right)\right) \\
& +\ell_{A_{2}, \psi_{1}}\left(A_{1}\left(\psi_{2}\right)\right)-\ell_{A_{2}, \psi_{2}}\left(A_{1}\left(\psi_{1}\right)\right) \\
& -A_{1}\left(\ell_{A_{2}, \psi_{2}}^{*}\left(\psi_{1}\right)\right)-A_{2}\left(\ell_{A_{1}, \psi_{2}}^{*}\left(\psi_{1}\right)\right),
\end{aligned}
$$

where $\ell_{A, \psi}=\ell_{A(\psi)}-A \ell_{\psi}$

