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Outline

1 Main idea

For a system of PDEs

F = 0

and its evolutionary symmetry

X = Eϕ ,

there is a mechanism of reduction of X -invariant conservation laws:

LXω = dhϑ .

2 Main results

The mechanism working for any local symmetries

Two computational algorithms for 1+1 systems of evolution equations
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Systems of evolution equations

Let us consider a 1+1 system of evolution equations

u1t = f 1 ,

. . .

umt = f m .

(1)

t and x are independent variables,

u1, . . . , um are dependent variables,

π : Rm × R2 → R2 ⇒ J∞(π),

f 1, . . . , f m are functions of t, x , u1, . . . , um and a �nite number of

derivatives of the form uix , u
i
xx , . . .

Denote by E ⊂ J∞(π) system (1) with all its di�erential consequences

E : uit = f i , uitt = Dt(f
i ) , uitx = Dx(f i ), . . . i = 1, . . . ,m (2)

(the set of formal solutions).
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Structure of E : ui

t
= f i , ui

tt
= Dt(f

i) , ui

tx
= Dx(f

i), . . .

Denote by F(π) the algebra of smooth functions of a �nite number of

t, x , ui , uit , uix , uitt , uitx , uixx , . . . (3)

Let F(E) denote the restriction

F(E) = F(π)|E (4)

One can interpret the variables t, x , ui and the x-derivatives uix , u
i
xx , . . . as

coordinates on E . Then

F(E) ⊂ F(π) (5)

The total derivative Dx preserves F(E). Denote by Dt the restriction of

the total derivative Dt to E

Dt = ∂t + f i∂ui + Dx(f i )∂uix + D2
x (f i )∂uixx + . . . (6)

= ∂t + Dk
x (f i )∂ui

kx

(7)

Here k > 0, ui0x = ui , ui1x = uix , u
i
2x = uixx , . . .
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Evolutionary symmetries

Denote

κ(π) = F(π)× . . .×F(π)︸ ︷︷ ︸
m

, κ(E) = F(E)× . . .×F(E)︸ ︷︷ ︸
m

(8)

For a vector function ϕ = (ϕ1, . . . , ϕm) ∈ κ(E), there is Eϕ ∈ D(π),

Eϕ = ϕi∂ui + Dt(ϕ
i )∂uit + Dx(ϕi )∂uix + . . . (9)

One can see that Eϕ preserves F(E).

Evolutionary symmetries of E
An evolutionary symmetry of E is an evolutionary vector �eld Eϕ such that

ϕ ∈ κ(E) and

Eϕ(uit − f i )
∣∣
E = 0 for i = 1, . . . ,m (10)

Point symmetries can be described in terms of evolutionary symmetries.
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Invariant solutions

If X = Eϕ is an evolutionary symmetry of E , the X -invariant solutions

satisfy the system

uit = f i , ϕi = 0 i = 1, . . . ,m (11)

Denote by EX its in�nite prolongation.

Let us note that

The symmetry

X = ϕi∂ui + Dt(ϕ
i )∂uit + Dx(ϕi )∂uix + . . . (12)

vanishes on EX .

Since ϕ ∈ κ(E), the system

ϕ1 = 0 , . . . , ϕm = 0 (13)

describes initial conditions that are satis�ed by X -invariant solutions.
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Conservation laws

Consider a relation ∫ x2

x1

P1 dx

∣∣∣∣t2
t1

=

∫ t2

t1

P2 dt

∣∣∣∣x2
x1

(14)

that holds on every smooth solution of E for any Π = [t1; t2]× [x1; x2] that
lies in its domain. Here P1,P2 ∈ F(E). Equivalently,∫

∂Π
P1 dx − P2 dt = 0 ⇔

∫
Π

(
Dt(P1) + Dx(P2)

)
dt ∧ dx = 0 (15)

In this case, we say that P1 dx − P2 dt determines a conservation law.

If for some ν ∈ F(E), the formula

P1 dx − P2 dt = Dx(ν)dx + Dt(ν)dt (16)

holds, we say that the conservation law is trivial. It takes the form(
ν
∣∣∣x2
x1

)∣∣∣t2
t1

= −
(
ν
∣∣∣t2
t1

)∣∣∣x2
x1

(17)
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Conservation laws

Let us de�ne horizontal forms on E as di�erential forms generated by dt

and dx . For instance, if P1,P2 ∈ F(E), then

ω = P1 dx − P2 dt (18)

is a horizontal 1-form. The horizontal di�erential

dh = dx ∧ Dx + dt ∧ Dt (19)

acts on horizontal forms and gives rise to the horizontal complex

0→ F(E)→ Λ1
h(E)→ Λ2

h(E)→ 0 (20)

Conservation laws of E
A conservation law of E is an element of the �rst horizontal cohomology.
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Invariant conservation laws

Let X = Eϕ be a symmetry of E , and let ω = P1 dx − P2 dt represent its

conservation law,

dh ω = 0 . (21)

Invariant conservation laws

The conservation law is X -invariant if the Lie derivative

LXω (22)

represents the trivial conservation law.

In this case, there is a function ϑ ∈ F(E) such that

LXω = dhϑ . (23)

This formula is the reduction mechanism.
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Invariant reduction

Since X vanishes on EX , the restriction of LXω to EX is zero. Then

LXω = dhϑ ⇒ dhϑ
∣∣
EX

= 0 . (24)

In other words, the restriction of the function ϑ|EX to an X -invariant

solution with a connected domain is constant.

So, the function

ϑ|EX (25)

is a constant of X -invariant motion.

If ω′ = ω + dh ν is another representative of the same conservation law,

LXω′ = dh(ϑ+ LXν) . (26)

Thus, since the kernel of dh : F(E)→ Λ1
h(E) is R, the conservation law

uniquely determines ϑ
∣∣
EX

(up to an additive real number).
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The �rst algorithm

For ω = P1 dx − P2 dt and X = Eϕ, we see that

LXω = X (P1) dx − X (P2) dt . (27)

Then

LXω = dhϑ ⇒ X (P1) = Dx(ϑ) . (28)

Using the horizontal homotopy formula, one obtains ϑ up to an additive

function h(t). This function can be determined from the relation

−X (P2) = Dt(ϑ) (29)

becoming an ODE of the form

dh

dt
= g(t) , (30)

where g(t) is known. Note that the algorithm determines ϑ ∈ F(E) and

doesn't involve EX . Hence, the algorithm is global.
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Conservation laws and cosymmetries

Consider the following system

δ(ψi (u
i
t − f i ))

δuj

∣∣∣∣
E

= 0 j = 1, . . . ,m (31)

for ψ = (ψ1, . . . , ψm), where ψi ∈ F(E). Its solutions are cosymmetries. A

non-trivial conservation law de�nes the non-zero cosymmetry

ω = P1 dx − P2 dt ⇒ ψ =
(δP1

δu1
, . . . ,

δP1

δum

)
. (32)

A cosymmetry ψ corresponds to a conservation law i�

δ(ψi (u
i
t − f i ))

δuj
= 0 j = 1, . . . ,m (33)

The corresponding conservation law arises from the relation

ψi (u
i
t − f i ) = Dt(P1) + Dx(P2) (34)

for some P1,P2 ∈ F(E).
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Let X = Eϕ be a symmetry of E . Introduce the operator
lϕ : κ(E)→ κ(E) , lϕ : χ 7→ Eχ(ϕ) (35)

A conservation law ω = P1 dx − P2 dt is X -invariant i� for the

corresponding cosymmetry, one has

X (ψ) + l ∗ϕ (ψ) = 0 . (36)

Proposition 1.

If the conservation law represented by a horizontal 1-form ω ∈ Λ1
h(E) is

X -invariant, then there are functions rki ∈ F(E) such that

ψiϕ
i = Dx(ϑ− rkiD

k
x (ϕi )) , (37)

where LXω = dhϑ, ϑ ∈ F(E) and ψ is the corresponding cosymmetry.

Note that(
ϑ− rkiD

k
x (ϕi )

)∣∣
EX

= ϑ|EX
If ψ, ϕ, and f 1, . . . , f m don't depend on t, ϑ doesn't depend on t.

Note that
(
ϑ+ rkiD

k
x (ϕi )

)∣∣
EX

= ϑ|EX . (38)Kostya Druzhkov Invariant reduction for PDEs. I: Conservation laws of 1+1 systems 13 / 22
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Proof of Proposition 1.

Let ω = P1 dx − P2 dt. Integrating by parts (Noether's identity), we �nd

that there are functions rki ∈ F(E) such that for any χ ∈ κ(E),

Eχ(P1) =
δP1

δui
χi + Dx(rkiD

k
x (χi )) . (39)

Let us put χ = ϕ. From LXω = dhϑ it follows that

Eϕ(P1) = X (P1) = Dx(ϑ) . (40)

Since δP1/δu
i = ψi , we get

ψiϕ
i = Dx(ϑ− rkiD

k
x (ϕi )) . (41)
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The second algorithm

Assume that ψ, ϕ, and f 1, . . . , f m don't depend on t.

The second algorithm

One can �nd the constant of X -invariant motion applying the horizontal

homotopy formula to

ψiϕ
i . (42)

Advantages of the second algorithm

The algorithm is more tractable: it's easier to do calculations by hand

than in the �rst algorithm.

Only cosymmetries of conservation laws are required.
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Example: the potential Boussinesq system

ut = vx , vt =
8

3
uux +

1

3
uxxx . (43)

Here u1 = u, u2 = v . Let X be the evolutionary symmetry of (43) with

ϕ1 = vxxx + 4(uxv + uvx) , (44)

ϕ2 =
1

3
u5x + 4uuxxx + 8uxuxx +

32

3
u2ux + 4vvx . (45)

The conservation law with the cosymmetry ψ1 = c1 ∈ R, ψ2 = c2 ∈ R is

X -invariant since X (ψ) + l ∗ϕ (ψ) = 0. According to the second algorithm,

ψiϕ
i = Dx

(
c1(vxx + 4uv) + c2

(u4x
3

+ 4uuxx + 2u2x +
32

9
u3 + 2v2

))
(46)

So, for each X -invariant solution, there are constants C1,C2 ∈ R such that

vxx + 4uv = C1 , (47)
1

3
u4x + 4uuxx + 2u2x +

32

9
u3 + 2v2 = C2 (48)

hold on the solution.
Kostya Druzhkov Invariant reduction for PDEs. I: Conservation laws of 1+1 systems 16 / 22



Example: the potential Boussinesq system

ut = vx , vt =
8

3
uux +

1

3
uxxx . (43)

Here u1 = u, u2 = v . Let X be the evolutionary symmetry of (43) with

ϕ1 = vxxx + 4(uxv + uvx) , (44)

ϕ2 =
1

3
u5x + 4uuxxx + 8uxuxx +

32

3
u2ux + 4vvx . (45)

The conservation law with the cosymmetry ψ1 = c1 ∈ R, ψ2 = c2 ∈ R is

X -invariant since X (ψ) + l ∗ϕ (ψ) = 0. According to the second algorithm,

ψiϕ
i = Dx

(
c1(vxx + 4uv) + c2

(u4x
3

+ 4uuxx + 2u2x +
32

9
u3 + 2v2

))
(46)

So, for each X -invariant solution, there are constants C1,C2 ∈ R such that

vxx + 4uv = C1 , (47)
1

3
u4x + 4uuxx + 2u2x +

32

9
u3 + 2v2 = C2 (48)

hold on the solution.
Kostya Druzhkov Invariant reduction for PDEs. I: Conservation laws of 1+1 systems 16 / 22



Example: the KdV

ut = 6uux + uxxx . (49)

Let X be the evolutionary symmetry of (49) with

ϕ = u5x + 10uuxxx + 20uxuxx + 30u2ux . (50)

The conservation law that corresponds to the cosymmetry (c0, c1, c2 ∈ R)

ψ = c0 + 2c1u − c2(uxx + 3u2) (51)

is X -invariant, because X (ψ) + l ∗ϕ (ψ) = 0. Using the �rst algorithm, we get

ϑ = c0(u4x + 10uuxx + 5u2x + 10u3) + c1(2uu4x − 2uxuxxx + u2xx

+ 20u2uxx + 15u4) + c2

(
uxu5x − uxxu4x − 3u2u4x − 18u5

− 30u3uxx + 30u2u2x + 14u2xuxx − 8uu2xx + 16uuxuxxx +
u2xxx
2

)
.

(52)

One can eliminate u5x using the constraint ϕ = 0.
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Example: the KdV

We obtain three functionally independent constants of X -invariant motion

u4x + 10uuxx + 5u2x + 10u3 = C0 , (53)

2uxuxxx − u2xx + 10uu2x + 5u4 − 2C0u = C1 , (54)

u2xxx
2

+(6uxuxxx +2u2xx)u−(u2x−10u3+C0)uxx +(15u2x +12u3−3C0)u2 = C2 .

(55)

The conservation law with the cosymmetry

u4x + 10uuxx + 5u2x + 10u3 (56)

is also X -invariant. The corresponding constant of X -invariant motion

1

2
(u4x + 10uuxx + 5u2x + 10u3)2 =

C 2
0

2
. (57)

One can use (53)-(55) together with the symmetries ∂t , ∂x to integrate the

system for X -invariant (�nite-gap?) solutions.
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+(6uxuxxx +2u2xx)u−(u2x−10u3+C0)uxx +(15u2x +12u3−3C0)u2 = C2 .

(55)

The conservation law with the cosymmetry

u4x + 10uuxx + 5u2x + 10u3 (56)

is also X -invariant. The corresponding constant of X -invariant motion

1

2
(u4x + 10uuxx + 5u2x + 10u3)2 =

C 2
0

2
. (57)

One can use (53)-(55) together with the symmetries ∂t , ∂x to integrate the

system for X -invariant (�nite-gap?) solutions.

Kostya Druzhkov Invariant reduction for PDEs. I: Conservation laws of 1+1 systems 18 / 22



The constants of X -invariant motion allow one to express the variables

u4x , uxxx , ux as functions of u, uxx , and C0, C1, C2 in a neighborhood of

an appropriate point. Assuming ux 6= 0, we get

uxxx =
1

2ux
(u2xx − 10uu2x − 5u4 + 2C0u + C1) (58)

and the biquadratic equation for ux

au4x + bu2x + c = 0 , (59)

a = −5u
2

2
− uxx , b =

5uu2xx
2

+ (10u3 − C0)uxx − 2C0u
2+

C1u + 19u5

2
− C2,

(60)

c =
u4xx
8

+
(C1

4
− 5u4

4
+
C0u

2

)
u2xx +

C0(C0u
2−5u5+C1u)

2
− 5C1u

4

4
+
25u8+C 2

1

8
.

(61)

E.g., in a neighborhood of u = 1, uxx = 0, C0 = C1 = C2 = 0, one can take

ux =

√
−b +

√
b2 − 4ac

2
. (62)
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Using the constants of X -invariant motion and EX , one can replace ut , ux ,

utxx , and uxxx with their expressions in terms of u, uxx ,C0,C1,C2 in

du − utdt − uxdx = 0 , duxx − utxxdt − uxxxdx = 0 . (63)

Then in a neighborhood of u = 1, uxx = 0, C0 = C1 = C2 = 0, we �nd

dt =
uxxxdu − uxduxx

utuxxx − uxutxx
, dx =

−utxxdu + utduxx

utuxxx − uxutxx
. (64)

Denote by A0, A2, B0, B2 the following functions of (u, uxx ,C0,C1,C2)

uxxx

utuxxx − uxutxx
= A0 ,

−ux
utuxxx − uxutxx

= A2 , (65)

−utxx
utuxxx − uxutxx

= B0 ,
ut

utuxxx − uxutxx
= B2 . (66)

Finally, we derive the (local) general solution in the implicit form

t =

∫ u

1

A0(s, 0,C0,C1,C2)ds +

∫ uxx

0

A2(u, s,C0,C1,C2)ds + C3 , (67)

x =

∫ u

1

B0(s, 0,C0,C1,C2)ds +

∫ uxx

0

B2(u, s,C0,C1,C2)ds + C4 . (68)
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Thank you!
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