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© Main idea
@ For a system of PDEs
F=0

and its evolutionary symmetry
X=E,,
there is a mechanism of reduction of X-invariant conservation laws:

Lxw = dpd.

© Main results
@ The mechanism working for any local symmetries
@ Two computational algorithms for 141 systems of evolution equations
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Systems of evolution equations

Let us consider a 14+1 system of evolution equations

u} =ft,
(1)
ul" = 7.
@ t and x are independent variables,
o ul, ..., u™ are dependent variables,
o m: R™x R? = R? = J>®(7),
o f1, ... F™ are functions of t, x, u!, ..., u™ and a finite number of

i

. . I'
derivatives of the form v}, ul,, ...
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Systems of evolution equations

Let us consider a 14+1 system of evolution equations

u} =ft,
(1)
ul" = 7.
@ t and x are independent variables,
o ul, ..., u™ are dependent variables,
o m: R™ x R2 - R?2 = J>(7),
o f1, ... F™ are functions of t, x, u!, ..., u™ and a finite number of

i

. . I'
derivatives of the form v}, ul,, ...

Denote by & C J*°() system (1) with all its differential consequences
E: wi=F ul,=D(f, ul, =D (f), ... i=1,...,m (2)

(the set of formal solutions).
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Denote by F(7) the algebra of smooth functions of a finite number of

i i i i i i
t, X, U, Up, U, Up, U, Uy, ... (3)

Let F(&) denote the restriction

F(&) = F(m)le (4)
One can interpret the variables ¢, x, u' and the x-derivatives u)"(, u)"(x, ...as
coordinates on £. Then

F(&) C F(m) (5)

The total derivative Dy preserves F(E).
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Denote by F(7) the algebra of smooth functions of a finite number of

i i i i i i
t, X, U, Up, U, Up, U, Uy, ... (3)

Let F(&) denote the restriction

F(&) = F(m)le (4)
One can interpret the variables ¢, x, u' and the x-derivatives u)"(, u)"(x, ...as
coordinates on £. Then

F(&) C F(m) (5)

The total derivative D, preserves F(&). Denote by D, the restriction of
the total derivative D; to &£

De =0t + 10, + De(f)0,; + D2(F )0, + ... (6)
= 8 + DY(f1)d, (7)
Here k >0, u), = u', ul, = ul, ub = ul, ...
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Evolutionary symmetries

Denote

%(F):.F(W)X...X.F(Trz, #(E)=F(E)x...x F(&E) (8)

m m

For a vector function ¢ = (¢, ..., ™) € (&), there is E, € D(r),
E, = soiﬁu; + Dt(@i)aui + Dx(goi)aui +... (9)

One can see that E, preserves F(&).

Evolutionary symmetries of £

An evolutionary symmetry of £ is an evolutionary vector field £, such that
@ € #(€) and

Ej(uj— )|, =0 for i=1,....m (10)
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Evolutionary symmetries

Denote

s(m) = F(r) X ... x F(w), #(E)=F(E)x...x F(&E) (8)

m m

For a vector function ¢ = (¢, ..., ™) € (&), there is E, € D(r),
E, = goiau,- + Dt(@i)aui + Dx(goi)ﬁui +... (9)

One can see that E, preserves F(&).

Evolutionary symmetries of £

An evolutionary symmetry of £ is an evolutionary vector field £, such that
@ € #(€) and

Ej(uj— )|, =0 for i=1,....m (10)

Point symmetries can be described in terms of evolutionary symmetries.
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Invariant solutions

If X = E, is an evolutionary symmetry of £, the X-invariant solutions
satisfy the system

ul = £, o' =0 i=1,....m (11)

Denote by Ex its infinite prolongation.

Let us note that
The symmetry

X =9, + De(9')0,; + Dx(0')04s + - - (12)

vanishes on Ex.

Kostya Druzhkov Invariant reduction for PDEs. |: Conservation laws of 1+1 systems 6 /22



Invariant solutions

If X = E, is an evolutionary symmetry of £, the X-invariant solutions
satisfy the system

ul = £, o' =0 i=1,....m (11)

Denote by Ex its infinite prolongation.

Let us note that
The symmetry

X =9, + De(9')0,; + Dx(0')04s + - - (12)

vanishes on Ex.

Since ¢ € x#(E), the system
ol =0, cey " =0 (13)

describes initial conditions that are satisfied by X-invariant solutions.
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Conservation laws

Consider a relation
X2 t2 t2
/ Py dx :/ P, dt (14)
X1 t1 t1 X1

that holds on every smooth solution of £ for any I = [t;; t2] X [x1; x2] that
lies in its domain. Here P, P, € F(E). Equivalently,

X2

/Pldx—Pgdtzo & /(Et(P1)+DX(P2))dt/\dx=o (15)
aon n

In this case, we say that P; dx — P, dt determines a conservation law.
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Conservation laws

Consider a relation
X2 t2 t2
/ P dx| = / P, dt
X1 t1 t

that holds on every smooth solution of £ for any I = [t;; t2] X [x1; x2] that
lies in its domain. Here P, P, € F(E). Equivalently,

X2

(14)

X1

/Pldx—Pgdtzo & /(Et(Pl)—i—Dx(Pg))dt/\dx:O (15)
aon n

In this case, we say that P; dx — P, dt determines a conservation law.
If for some v € F(&), the formula

Py dx — Py dt = Dy (v)dx + D.(v)dt (16)
holds, we say that the conservation law is trivial. It takes the form
X2 to 53
(V X1> t1 - _<V t1>
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Conservation laws

Let us define horizontal forms on & as differential forms generated by dt
and dx. For instance, if P1, P> € F(&), then

w= Prdx — Pydt (18)
is a horizontal 1-form. The horizontal differential
dy, = dx A Dy + dt A Dy (19)
acts on horizontal forms and gives rise to the horizontal complex

0— F(E) = AL(E) = N2(E) =0 (20)

Conservation laws of £

A conservation law of £ is an element of the first horizontal cohomology.
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Invariant conservation laws

Let X = E, be a symmetry of £, and let w = Py dx — P> dt represent its
conservation law,

dpw =0. (21)

Invariant conservation laws

The conservation law is X-invariant if the Lie derivative
Lxw (22)

represents the trivial conservation law.

In this case, there is a function ¥ € F(&) such that
Lxw = dpV. (23)

This formula is the reduction mechanism.
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Invariant reduction

Since X vanishes on Ex, the restriction of Lxw to Ex is zero. Then
Lxw = dh’l9 = dhﬁ‘gx =0. (24)

In other words, the restriction of the function 9|g, to an X-invariant
solution with a connected domain is constant.

So, the function

19|5x (25)

is a constant of X-invariant motion.
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Invariant reduction

Since X vanishes on Ex, the restriction of Lxw to Ex is zero. Then
Lxw = dh’l9 = dhﬁ‘gx =0. (24)

In other words, the restriction of the function 9|g, to an X-invariant
solution with a connected domain is constant.

So, the function

Vlex (25)

is a constant of X-invariant motion.

If W' = w + dj v is another representative of the same conservation law,
Lxw' = dp(V + Lxv). (26)

Thus, since the kernel of dy: F(E) — AL(E) is R, the conservation law
uniquely determines 19‘5)( (up to an additive real number).
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The first algorithm

For w = Py dx — P, dt and X = E, we see that
Lxw = X(P1)dx — X(P2)dt. (27)
Then
Lxw = dpd = X(P1) = Dy(0). (28)

Using the horizontal homotopy formula, one obtains ¥ up to an additive
function h(t). This function can be determined from the relation

—X(P2) = Di(9) (29)
becoming an ODE of the form
dh
1), (30)

where g(t) is known.
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The first algorithm

For w = Py dx — P, dt and X = E, we see that
Lxw = X(P1)dx — X(P2)dt. (27)
Then
Lxw = dpd = X(P1) = Dy(0). (28)

Using the horizontal homotopy formula, one obtains ¥ up to an additive
function h(t). This function can be determined from the relation

—X(P2) = Di(9) (29)
becoming an ODE of the form
dh
1), (30)

where g(t) is known. Note that the algorithm determines ¢ € F(€) and
doesn't involve Ex. Hence, the algorithm is global.
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Conservation laws and cosymmetries

Consider the following system

O(tiug — 1))

S

=0 j=1,...,m (31)
&

for ¥ = (¢1,...,%m), where 1b; € F(&). Its solutions are cosymmetries. A
non-trivial conservation law defines the non-zero cosymmetry

5P 3P
w=Prdx—Pydt = @z):(é—u}(su—;) (32)

Kostya Druzhkov
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Conservation laws and cosymmetries

Consider the following system

O(tiug — 1))

S

=0 j=1,...,m (31)
&

for ¥ = (¢1,...,%m), where 1b; € F(&). Its solutions are cosymmetries. A
non-trivial conservation law defines the non-zero cosymmetry

B (6P 0Py
A cosymmetry 1) corresponds to a conservation law iff
Sui(uf — 1)) _ a
T_O j=1...,m (33)
The corresponding conservation law arises from the relation
¢;(u£ — fi) = D¢(P1) + Dx(P?) (34)

for some Py, P € F(€).
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Let X = E, be a symmetry of £. Introduce the operator
lp: 2(E) = #(E), lo: x — Ex(p) (35)

A conservation law w = Py dx — P> dt is X-invariant iff for the
corresponding cosymmetry, one has

X))+ 15($) =0, (36)
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Let X = E, be a symmetry of £. Introduce the operator
lp: 2(E) = #(E), lo: x — Ex(p) (35)

A conservation law w = Py dx — P> dt is X-invariant iff for the
corresponding cosymmetry, one has

X))+ 15($) =0, (36)

Proposition 1

If the conservation law represented by a horizontal 1-form w € AL(E) is
X-invariant, then there are functions ry; € F(€) such that

7711190 =D (19 riiD ((pi))v (37)

where Lxw = dpt, 9 € F(E) and 9 is the corresponding cosymmetry.

Note that
o (0 —riDi(¢")|g, = Vlex
o If ¢, ¢, and f1, ..., f™ don't depend on t, ¥ doesn’t depend on t.

Kostya Druzhkov Invariant reduction for PDEs. |: Conservation laws of 1+1 systems 13 / 22



Proof of Proposition 1.

Let w = Py dx — P, dt. Integrating by parts (Noether's identity), we find
that there are functions ry; € F(&) such that for any x € (&),

4] P1

Ev(P1) = —X' + Du(riDE(X")) - (39)

Let us put x = ¢. From Lxw = dp? it follows that
E,(P1) = X(P1) = Dx(0). (40)
Since 6Py /0u’ = 1;, we get

Vi’ = Dx(¥ — riD5(¢')) - (41)
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The second algorithm

Assume that v, o, and 1, ..., f™ don’t depend on t.

The second algorithm

One can find the constant of X-invariant motion applying the horizontal
homotopy formula to

Pig'. (42)

Advantages of the second algorithm

@ The algorithm is more tractable: it's easier to do calculations by hand
than in the first algorithm.

@ Only cosymmetries of conservation laws are required.
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Example: the potential Boussinesq system

1
Ur = vy, - §uux + §uxxx. (43)
Here u! = u, u?> = v. Let X be the evolutionary symmetry of (43) with
gol = Vix + 4(uxv + uvy), (44)
1 32
¢2 = §U5x 4 AUl + Sy Uy + ?uzux + 4dvvy . (45)

The conservation law with the cosymmetry 1 = ¢t € R, Y» = € R is
X-invariant since X(v) + I5(¢) = 0.
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Example: the potential Boussinesq system

Ur = vy, - §uux + §uxxx. (43)
Here u! = u, u?> = v. Let X be the evolutionary symmetry of (43) with
gol = Vix + 4(uxv + uvy), (44)
1 32
902 = §U5x 4 AUl + Sy Uy + ?uzux + 4dvvy . (45)

The conservation law with the cosymmetry 1 = ¢t € R, Y» = € R is
X-invariant since X(%) + /5(¢)) = 0. According to the second algorithm,

. " 2
Yo' = Dy <C1(Vxx +4uw) + o (% + duuyy + 2u)2< + %u3 + 2v2)> (46)

So, for each X-invariant solution, there are constants C;, C; € R such that

Vex + duv = Cy, (47)
§u4x+4uuxx+2ux+3u +2ve =G (48)

hold on the solution.
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Example: the KdV

U = O0uly + Uyxx - (49)
Let X be the evolutionary symmetry of (49) with
© = sy + 10Ul + 20Uy txy 4+ 3002y . (50)
The conservation law that corresponds to the cosymmetry (¢, c1, 2 € R)
¥ = o+ 2c1u — couxx + 30°) (51)
is X-invariant, because X(¢) +/3(¢) = 0.
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Example: the KdV

U = O0uly + Uyxx - (49)
Let X be the evolutionary symmetry of (49) with
© = sy + 10Ul + 20Uy txy 4+ 3002y . (50)
The conservation law that corresponds to the cosymmetry (¢, c1, 2 € R)
¥ = o+ 2c1u — couxx + 30°) (51)
is X-invariant, because X(¢) +/7(¢)) = 0. Using the first algorithm, we get
¥ = co(uax + 10uuy + 5u>2( + 10u3) + c1(2uuax — 2uyUyex + u)2(x

+ 2002 Uy + 15u4) + © (UXU5X — Upxlax — 3u%ugy — 180°

(52)
2
— 300 uny 4 300202 + 1402 U — Buu?, + 16Ul Uy + u’;“),

One can eliminate usy using the constraint ¢ = 0.
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Example: the KdV

We obtain three functionally independent constants of X-invariant motion

uax + 10wty 4 502 +100° = G, (53)
Quythx — U2, + 10w + 5u* — 2Cou = G, (54)

2
u’;‘x+(6uxuxxx+2u)2(x)u—(u)2(—10u3+Co)uxx+(15u)2(+12u3—3Co)u2: G.
(55)
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Example: the KdV

We obtain three functionally independent constants of X-invariant motion

Uy + 10uuy, + 5u>2( +10u® = G, (53)
Quythx — U2, + 10w + 5u* — 2Cou = G, (54)
U

5 + (6 U oo +-202, ) u— (U2 =100 + Co )t + (1502 + 1203 —3Go) v’ = Gy

(55)
The conservation law with the cosymmetry
Usx + 10uuyy + 5u)2< +10u8 (56)
is also X-invariant. The corresponding constant of X-invariant motion
1 2 32 G
§(U4x + 10uuyy + 5ug 4+ 10u°)° = - (57)
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Example: the KdV

We obtain three functionally independent constants of X-invariant motion

Uy + 10uuy, + 5u>2( +10u® = G, (53)
Quythx — U2, + 10w + 5u* — 2Cou = G, (54)
U

5 + (6 U oo +-202, ) u— (U2 =100 + Co )t + (1502 + 1203 —3Go) v’ = Gy

(55)
The conservation law with the cosymmetry
Usx + 10uuyy + 5u)2< +10u8 (56)
is also X-invariant. The corresponding constant of X-invariant motion
1 2 32 G
§(U4x + 10uuyy + 5ug 4+ 10u°)° = - (57)

One can use (53)-(55) together with the symmetries O¢, Oy to integrate the
system for X-invariant (finite-gap?) solutions.
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The constants of X-invariant motion allow one to express the variables
Ugx, Usxx, Ux as functions of u, u., and Gy, Ci, G in a neighborhood of
an appropriate point. Assuming u, # 0, we get

1

Uxxx =
2uy

(u2, — 10uu? — 5u* +2GCou + () (58)

and the biquadratic equation for uy,

au} +buZ+c=0, (59)
5u° Suu’ Cru+ 19u°

a= —% — Uxx, b= %—F (1Ou3 — Co)Uxx — 2Cou’+ % - G,

(60)

ut, (G But Gy 5,  Go(CouP—5uP+CGu) 5CGut 2518+ C?
oty (G Gy Gt 20+

8 4 4 2 2 4 8
(61)
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The constants of X-invariant motion allow one to express the variables
Ugx, Usxx, Ux as functions of u, u., and Gy, Ci, G in a neighborhood of
an appropriate point. Assuming u, # 0, we get

1

Uxxx =
2uy

(u2, — 10uu? — 5u* +2GCou + () (58)

and the biquadratic equation for uy,

au} +buZ+c=0, (59)
5u? Suu? C 194°
a:—%—uxx, b:%+(10u3— Co)uxx—2C0u2+$— G,

(60)
4 4 2_ .5 4 95,84 (2
C:&jL(g_ﬂ CoU)U§X+C0(C0U 5u +C1u)_5C1u n 5u —I—Cl'
8 4 4 2 2 4 8
(61)

E.g., in a neighborhood of u =1, uyx =0, G = C; = C; = 0, one can take
\/—b+\/b2 —4ac
Uy = :

5 (62)
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Using the constants of X-invariant motion and £x, one can replace uy, uy,
Uper and Uy with their expressions in terms of u, uyy, Co, C1, G in

du — ugdt — uydx =0, AUy — Upxe dt — UsedXx = 0. (63)
Then in a neighborhood of u =1, uy =0, (g = GG = G =0, we find

Usoox AU — Uy dUy —Upex dU + U duyy

dt: s dX:

Uplxxx — UxUtxx UpUxxx — UxUtxx

(64)
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Using the constants of X-invariant motion and £x, one can replace uy, uy,
Uper and Uy with their expressions in terms of u, uyy, Co, C1, G in

du — ugdt — uydx =0, AUy — Upxe dt — UsedXx = 0. (63)
Then in a neighborhood of u =1, uy =0, (g = GG = G =0, we find

Usoox AU — Uy dUy —Upex dU + U duyy

dt: s dX:

Uplxxx — UxUtxx UpUxxx — UxUtxx

Denote by Ag, Az, By, B> the following functions of (u, ux, Co, Ci, (2)

(64)

Uxxx —Ux
XX = A, ——=A, (65)
UtlUxxx — UxUgxx Uplxxx — UxUgxx

—Utxx U
L (66)
UtlUxxx — UxUgxx Uplxxx — UxUgxx

Finally, we derive the (local) general solution in the implicit form

t:/ Ao(S,O,Co,Cl,CQ)dS+/XXAQ(U,S, Co,Cl,CQ)dS+ G, (67)
1 0

X:/ B()(S,O7 Co,Cl,CQ)dS-i-/XX BQ(U,S, Co,Cl,CQ)dS-i- Cy. (68)
1 0
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Thank you!
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