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In a nutshell

For a system of PDEs
E: F =0, Du«(F)=0, ... (1)
and its evolutionary symmetry
X =Eple, (2)

there is a mechanism of reduction of X-invariant cohomology to the
subsystem for X-invariant solutions

Ex: F'=0, ¢=0, Du(F)=0, Du(¢)=0, ... (3)
The mechanism is based on the observation
X‘gx =0 = ﬁx’gx =0 (4)

and reduces a “horizontal degree” by one,

Lxw=d9 =  0=0(dg). (5)
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Jets: notation

Let m: E"™™ — M" be a locally trivial smooth vector bundle. Denote by
o x = (x!,...,x") coordinates in U C M (independent variables),

e u=(u',...,u™) coordinates along the fibers (dependent variables).
o u' adapted coordinates along the fibers of 7., : J(7) — M over U.

Here a = anx! + ... apx™ = ajx’,
1

al=a1+ ...+ ap.
Took: J2(m) = J¥(n), T JK(m) = M. (6)

Functions and differential forms on J*°(7):

Fr) = mex €U (@),  N(m) = N U () (@)
k>0 k>0
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Jets: notation

Let m: E"™™ — M" be a locally trivial smooth vector bundle. Denote by
o x = (x!,...,x") coordinates in U C M (independent variables),
e u=(u',...,u™) coordinates along the fibers (dependent variables).

o u' adapted coordinates along the fibers of 7., : J(7) — M over U.
Here o = anx! 4+ ... apx" = aix', |a| = aq + ... + an.
Took: J2(m) = J¥(n), T JK(m) = M. (6)

Functions and differential forms on J*°(7):

Fr) = mex €U (@),  N(m) = N U () (@)

k>0 k>0
The Cartan distribution on J°(7) is spanned by the total derivatives

Dk:8k+ui

X X a+x

kaug, k:1,...,n (8)
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Cartan (contact) forms:
CN*(m) C N*(m)
In adapted coordinates:

w0l e CAY(n), 6, =du!

i k
a Ua_,’_xkdX

Horizontal forms:
Ni(m) = N(m) /CN () == F(mr) - w3 (N (M)
Horizontal differential:
dy: Ny() = N+ ()

Horizontal cohomology class of a Lagrangian L € Aj(n):

L+ dp NI~ ()
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Equations: notation and regularity conditions

Let ¢ be a locally trivial smooth vector bundle over the same base M.
A section F of 7%(() defines the corresponding differential equation

F=0 &  Fi(xu)=0, l|af<r (14)
The infinite prolongation (the set of formal solutions) & C J*°(7)
E: Do(F)=0 la| >0 (15)

is endowed with its Cartan distribution C and

F(E)=F(m)le,  N(E)=N(m)le,  CN(€) =CN(m)le. (16)
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Equations: notation and regularity conditions

Let ¢ be a locally trivial smooth vector bundle over the same base M.
A section F of 7%(() defines the corresponding differential equation

F=0 &  Fi(xu)=0, l|af<r (14)
The infinite prolongation (the set of formal solutions) & C J*°(7)
E: Do(F)=0 la] >0 (15)

is endowed with its Cartan distribution C and

F(E)=F(m)le,  N(E)=N(m)le,  CN(€) =CN(m)le. (16)

Regularity conditions

o mg(€) = M, where g = moole.
o The differentials dF} are independent for any p € J'(7), s.t. F(p) = 0.

o flg = 0iff f = A(F) for some total differential operator A = A®D,,.
o Hip(€) =0 fori>0.
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Symmetries of J>°(7) = elements of the F(m)-module of characteristics
() = |J k(). (17)
k>0
%(’/T) S = ((pl(x7 Ua), v 790m(X7 Ua)) = ESD = Da((pi)au(;l (18)

A symmetry of £ is
a derivation X of F(&) that preserves the Cartan distribution C,
LxCNY(E) cCAYE), Lx=doXi+Xiod. (19)

Trivial symmetries of £ are sections of C, i.e., derivations of the form

kD, D =Dule. (20)
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Symmetries of J>°(7) = elements of the F(m)-module of characteristics
() = |J k(). (17)
k>0
%(’/T) S = ((pl(x7 ua)? oo 790m(X7 Ua)) = ESD = Da(‘Pi)aug (18)

A symmetry of £ is
a derivation X of F(&) that preserves the Cartan distribution C,

LxCNY(E) cCAYE), Lx=doXi+Xiod. (19)
Trivial symmetries of £ are sections of C, i.e., derivations of the form
kD, D =Dule. (20)
The restriction E,|¢ of an evolutionary field is a symmetry of £ iff
E,(F)le =0. (21)

If Too,0(E) = JO(m), any symmetry is equivalent to some E,|s (or to ¢ls).
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The Vinogradov C-spectral sequence

d(CPN*(E)) C CPN*(E). (22)
Vinogradov's C-spectral sequence (E*?(£), dP?) originates from
N*(E) D CA*(E) D CPA(E) D CN(E) C ... (23)
Here all dP?: EP9(E) — EPT"9%177(£) are induced by d,
CPAPTA(E) . .
EPE) = gorippragey: B () =kerdpt/imdp Tt (24)

Using e = Toole: € — M, we identify

EPI(E) = CPAP(E) ATE(NI(M)),  do = dxk A Ls,, dv=d—d
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The Vinogradov C-spectral sequence

d(CPN*(E)) C CPN*(E). (22)
Vinogradov's C-spectral sequence (E*?(£), dP?) originates from
A () DCA*(E) D C?A*(E) D C3N*(E) C ... (23)
Here all dP?: EP9(E) — EPT"9%177(£) are induced by d,
CPAPTA(E)

ESI(E) = EPI(E) = kerdf/imdf I~ (24)

Cp+1/\p+q(5) ’
Using e = Toole: € — M, we identify
EPI(E) = CPNP(E) ATE(NI(M)), do=dx* ALy, dy=d—do
Variational k-forms of £ are elements of
Ek,n—l _ k,n—1 /. k,n—2
1 () =kerdy" 7 /im dy (25)

Presymplectic structures of £ = d;-closed variational 2-forms.
Conservation laws of £ = variational 0-forms.
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Invariant reduction mechanism

Let X be a symmetry of the infinite prolongation & C J*°(7) of F =0,

X=Ele. E,=Dul¢)0y (26)
Then X-invariant solutions satisfy the invariant subsystem Ex C &,
Ex: D.(FY=0, Du(¢)=0. (27)
Suppose w € EJ*9(E) represents an X-invariant element of E/*7(€), i.e.,
Lxw=dy0, 0eEPTYE) (28)
Then J|¢, € Eé”q_l(é'x) represents an element of Elp’q_l(g‘fx), as
doVle, =0 (29)
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Invariant reduction mechanism

Let X be a symmetry of the infinite prolongation & C J*°(7) of F =0,

X=Eile,  E,=Da(¢))y (26)
Then X-invariant solutions satisfy the invariant subsystem Ex C &,
Ex: Do(F)=0,  Du(¢)=0. (27)
Suppose w € EJ*9(E) represents an X-invariant element of E/*7(€), i.e.,
Lxw=dy0, 0eEPTYE) (28)
Then J|¢, € Eé”q_l(é'x) represents an element of Elp’q_l(g‘fx), as
doVle, =0 (29)
The reduction is defined up to EP971(&)|¢, since
Lx(w+im d®9 ) = dP97 (0 + im L) (30)
If EP971(E)|e, = 0, the reduction is the homomorphism
R EPI(E)X — EPTH(Ex) (31)
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Ex. Calogero—Bogoyavlenskii-Schiff breaking soliton eq.

Utx = 2Uy Uxx + lxlyy — Usxxy - (32)

As coordinates on £, we take all the variables except us, and its derivatives.
Consider the higher symmetry X = E_|¢,

© = Unex — 302 (33)
and the X-invariant conservation laws represented by wy,w» € E00’2(5),

w1 = (oo — U2)dE A dx + 2uxu, dt A dy + uxdx A dy, (34)
2 2
Wy = (uxuxxx+%—ui)dt/\dx—l—(uiuy—i—uXXqu)dt/\dy—i—%dx/\dy (35)
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Ex. Calogero—Bogoyavlenskii-Schiff breaking soliton eq.

Utx = 2Uy Uxx + lxlyy — Usxxy - (32)

As coordinates on £, we take all the variables except us, and its derivatives.
Consider the higher symmetry X = E,

Er
© = Unex — 302 (33)
and the X-invariant conservation laws represented by wy,w» € E00’2(5),

w1 = (oo — U2)dE A dx + 2uxu, dt A dy + uxdx A dy, (34)
2 2
Wy = (uxuxxx+%—ui)dt/\dx—l—(uiuy—i—uXXqu)dt/\dy—i—%dx/\dy (35)

Directly solving the equations Lxw; = dyi}; on &, we obtain, for example,

V1 = @ dy — (Usx — BUxlxx — 5u)2<x + 4u§)dt, (36)
u)2(x 3 u)2<xx 2 2 9 4
Yy = (uxuxxx - - 2ux)dy— <UXU5X + y Qus Uy — Bux s, + §”x>dt

XX
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CBS: the results

The system Ex is determined by

Upx = 2uyuxx + 4Uxey — Uxxxy » (37)

Usxx — 3u)2< =0. (38)

Finally,

the reductions are represented by the one-component horizontal 1-forms
3 U
ﬁl’szzgdta ﬂz‘gngdy, g:ux_%7 (39)

respectively. Thus g € EIO’O(SX) is a constant of X-invariant motion.

But this g cannot be obtained through the invariant reduction mechanism.
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CBS: the results

The system Ex is determined by

Upx = 2uyuxx + 4Uxey — Uxxxy » (37)

Usxx — 3u)2< =0. (38)

Finally,

the reductions are represented by the one-component horizontal 1-forms
3 U
ﬁl’szzgdta ﬂz‘gngdy, g:ux_%7 (39)

respectively. Thus g € EIO’O(SX) is a constant of X-invariant motion.

But this g cannot be obtained through the invariant reduction mechanism.

Compatibility complex?
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The reduction R%7 and the C-spectral sequences

Let £ be an infinitely prolonged system of differential equations, and let
X = E,|¢ be its symmetry. Suppose P97 (&) = EPTH97H(E) = 0. Then
on the X-invariant subspace of E (&),

RETIody = —dy o RE? (40)
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The reduction R%7 and the C-spectral sequences

Let £ be an infinitely prolonged system of differential equations, and let
X = E,|¢ be its symmetry. Suppose P97 (&) = EPTH97H(E) = 0. Then
on the X-invariant subspace of E (&),

RE T 0 dy = —dy o RE? (40)

Theorem 2

Suppose that X = E,|g, X1 = E,, |¢ are commuting symmetries of an
infinitely prolonged system &. If Elp’q_l(é’) = Elp_l’q_l(é') =0, then on
the X-invariant subspace of E9(&),

Rf(_l’q oXju=—Xi|gga o 'Rf(’q (41)

v
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Internal Lagrangian formalism

Denote by Elo’k_l(é') the cohomology group of

2 n n+1
0—>]-"(8)—>/\1(5)—>C/2\+22)...—> 6/2\/\22') — C/Q\/\J’:Jrgf;) — 0 (42)

at AK(E)/C2NK(E). Internal Lagrangians of £ are elements of Elo’"_l(S).
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Internal Lagrangian formalism

Denote by Elo’k_l(é') the cohomology group of

2 n n+1
0—>]-"(8)—>/\1(5)—>C/2\+22)...—> CQAE(E;) — C/Q\/\J’:Jrgf;) — 0 (42)

at AK(E)/C2NK(E). Internal Lagrangians of £ are elements of Elo’"_l(é').
Noether: for L € A?(r), there is w; € CAY () A i (N"71(M)) s.t.

L, (L) = (E(L), ) + dp(Epawr), ¢ € () (43)

If E(L)|¢ =0, then (L 4+ w;)|e = internal Lagrangian.
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Internal Lagrangian formalism

Denote by Elo’k_l(é’) the cohomology group of

A2(€) A(E)  ATTL(E)
CIN2(E) " CZAN(E) | CEATL(E)

0— F(E) = AYE) — — 0 (42)

at AK(E)/C2NK(E). Internal Lagrangians of £ are elements of EO L.
Noether: for L € A?(r), there is w; € CAY () A i (N"71(M)) s.t.
L, (L) = (E(L), ) + dp(Epawr), ¢ € () (43)
If E(L)|¢ =0, then (L 4+ w;)|e = internal Lagrangian.
d " B TNE) » ETNE) (44)

The horizontal cohomology class of L € Aj() such that E(L)|¢ =0
= a unique internal Lagrangian of £ = presymplectic str. Q € ker d2 1
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Let L be a Lagrangian s.t. E(L)|¢ =0, and let Q be the presymplectic str.

Noether's theorem

If a variational field E, preserves the horizontal cohomology class of L,
then there is a conservation law & € E2""1(€) such that for X = E,|¢,

XiQ=di¢ (45)

Note: di{le, = 0.
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Let L be a Lagrangian s.t. E(L)|¢ =0, and let Q be the presymplectic str.

Noether's theorem

If a variational field E, preserves the horizontal cohomology class of L,
then there is a conservation law & € E2""1(€) such that for X = E,|¢,

X1Q = dig (45)
Note: di{|e, = 0. For an invariant system Ex, we can replace (if possible):
Qs RY"HQ) (46)

Let Ir(¢) = E,(F). Then & is f-normal if for Ic = IF|e,
Volg=0 = V=0 (47)

Suppose X = E,|g, X1 = E,, |¢ are commuting symmetries of an /-normal

system £. Let Q € E2"(€) be an X-invariant presymplectic structure,
and let £ € Elo’"_l(é’) be a conservation law such that X;,Q = d1£. Then

Xilex R " Q) = R (€) (48)
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Invariant reduction for PDEs without bundle structures

Let Y be a symmetry of £, and let w € E["(E) represent a Y-invariant
element of EP9(E). Then there exists Uy € EP97(€) s.t.

,Cyw = d019y (49)
A reduction is represented by the well-defined restriction of
dy — Yaw (50)

to the system for Y-invariant solutions, characterized by the condition that
at its points, the vectors of Y lie in the respective Cartan planes.
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Invariant reduction for PDEs without bundle structures

Let Y be a symmetry of £, and let w € E["(E) represent a Y-invariant
element of EP9(E). Then there exists Uy € EP97(€) s.t.

Lyw = d019y (49)
A reduction is represented by the well-defined restriction of
dy — Yaw (50)

to the system for Y-invariant solutions, characterized by the condition that
at its points, the vectors of Y lie in the respective Cartan planes.

lan M. Anderson and Mark E. Fels proposed a reduction method, e.g.,

for elements of ker dy on & arising from the invariant part of the zero page
E"9 on J°(7). They considered some symmetries that generate flows
preserving a fiber (not necessarily vector) bundle structure 7w: E — M.

Lyw=0 = (Yow)le (51)

In some cases, this approach = multi-reduction.
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Multi-reduction

Proposition. Let X = E_|¢ and X; = E,,|¢ be symmetries of an infinitely
prolonged system & such that [X, Xi] = ¢X for some ¢ € R. Suppose

w € Ef (&) represents an element of Ef9(€) that is both X-invariant
and Xi-invariant, and Elp’q_l(é') =0. Let Lxw = dp?.

1) If ¥|g, = Xilgy-invariant non-trivial element of E{”q_l(c‘fx), thenc =0
2) If ¢ =0, then |g, represents an Xi|g,-invariant element of Elp’qfl(gx)
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Multi-reduction

Proposition. Let X = E_|¢ and X; = E,,|¢ be symmetries of an infinitely
prolonged system & such that [X, Xi] = ¢X for some ¢ € R. Suppose

w € Ef (&) represents an element of Ef9(€) that is both X-invariant
and Xi-invariant, and Elp’q_l(é') =0. Let Lxw = dp?.

1) If ¥|g, = Xilgy-invariant non-trivial element of E{”q_l(c‘fx), thenc =0
2) If ¢ =0, then |g, represents an Xi|g,-invariant element of Elp’qfl(gx)

Proof. There is 91 € EP97(€) such that Lx,w = dyt); and hence,
do(Cﬁ) Iﬁcxw :£[X7X1]w :Exdoﬁl—ﬁxldoﬂ = do(ﬁxﬁl—ﬁxlﬂ) (52)
Since Elp’q_l(é’) =0, we get

cd — (,Cx’lgl — »CX1'19) cimdy. (53)
Then for the restrictions to £x, one has
C19|5x + [’Xﬂgx (79|5x) €imdp. (54)
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Multi-reduction

Proposition. Let X = E_|¢ and X; = E,,|¢ be symmetries of an infinitely
prolonged system & such that [X, Xi] = ¢X for some ¢ € R. Suppose

w € Ef (&) represents an element of Ef9(€) that is both X-invariant
and Xi-invariant, and Elp’q_l(é') =0. Let Lxw = dp?.

1) If ¥|g, = Xilgy-invariant non-trivial element of E{”q_l(c‘fx), thenc =0
2) If ¢ =0, then |g, represents an Xi|g,-invariant element of Elp’qfl(gx)

Proof. There is 91 € EP97(€) such that Lx,w = dyt); and hence,
do(Cﬁ) Iﬁcxw :£[X7X1]w :Exdoﬁl—ﬁxldoﬂ = do(ﬁxﬁl—ﬁxlﬂ) (52)
Since Elp’q_l(é’) =0, we get

cd — (,Cx’lgl — »CX1'19) cimdy. (53)
Then for the restrictions to £x, one has
C19|5x + ‘C’Xﬂgx (79|5x) €imdp. (54)

In the case ¢ = 0, the reduction of a conservation law under X and then
under Xi differs from its reduction under X; and then under X in sign.
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Reduction of variational principles

If we Eg’k(é') represents an X-invariant element of glo’k(é'), then

Lxw = dy? (55)
for some 9 € Eg’k_l(c‘f). If Kk =n—1 = the reduction mechanism for
X-invariant internal Lagrangians

BHEY - B (Ex) (56)

If Elo’"_2(5)|gx = 0, the reduction is well-defined.
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Reduction of variational principles

If we Eg’k(é') represents an X-invariant element of glo’k(é'), then

Lxw = dov) (55)
for some 9 € Eg’k_l(c‘f). If Kk =n—1 = the reduction mechanism for
X-invariant internal Lagrangians

EPMNE = B (Ex) (56)
If Elo’"_2(5)|gx = 0, the reduction is well-defined.

Let us consider variational principles determined by EIO’O(SX). In terms of
the reduction under a single symmetry, they appear if n = 2.

Denote by 7¢, the projection mg|s,,

Tex  Ex =+ M (57)
Suppose o € Al(Ex) represents an element of EP’O(EX), ie.,

do € C2N2(Ex) (58)
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Suppose o € Al(Ex) represents an element of EIO’O(SX), ie.,
do € CPN*(Ex) (59)
Let v: R x M — Ex be a mapping such that for every 7 € R, the map
Y1) M= Ex, ~(1): x — ~(7,x) (60)
is a section of 7g,. Then ~(7) is a path in sections of 7¢, .

Stationary points

A section o: M — Ex is a stationary point of o+ d(F(Ex)) € Elo’o(é’x), if

d
dr

o @ =0 (61)

holds for any embedded, compact, 1-dimensional submanifold N € M and
any path ~(7) in sections of 7g, such that 7(0) = o and each point of the
boundary ON is fixed.

We assume that each appropriate N is oriented.
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All solutions of 7g, are stationary points of any element of EIO’O(SX).
Denote by 0 the zero section Oy : M — R x M, Opp(x) = (0,x). Then

T [ @ = [ 0@ (62)

And the variational principle is determined by do € E12’0(€X).
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All solutions of 7g, are stationary points of any element of EIO’O(SX).
Denote by 0 the zero section Oy : M — R x M, Opp(x) = (0,x). Then

T [ @ = [ 0@ (62)

And the variational principle is determined by do € E12’0(€X).

do is a field of operators from 7, -vertical vectors to Cartan 1-forms

If Ex is a finite-dimensional smooth manifold and the field of operators is
non-degenerate at each point of Ex, the variational principle yields only
solutions to 7g, .

In this case, the restrictions of dp (or —dp) to fibers of mg, are invertible
and determine a Poisson bivector.

It maps differentials of constants of X-invariant motion to symmetries

the (local) flow of a vector field corresponding to a constant of X-invariant
motion preserves the differential form dp, and hence, it preserves the kernel
of dp on Ex, i.e., the Cartan distribution.
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On algorithms for evolution systems

Consider a system of evolution equations F = 0, where F € (),
Flr=ul — fi(x,u,up, ... tgn-1,...), t=x" (63)
Then F(£) € F(r) and Eg"H(E) € A7 (x). Put
H(E) = s4(m)le C () (64)
and introduce
(€)= #(r)e € ) = Homp(((m). AY(T)). (65)
Note that ¢ € 5(E) C () is a symmetry of £ iff

Eq(F) = 1o(F). (66)
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Algorithm for conservation laws

Let X = E,|¢ be a symmetry of an evolution system &, ¢ € »(E) C »(m).
Suppose w € Eg’”_l(é') represents an X-invariant conservation law. There
exist 1 € (&) and a total differential operator A;: s(m) — /\Z_l(ﬂ') s.t.

dpw = (¢, F) 4 dp(ArF) (67)

Besides, integrating by parts, we obtain
(W, 1o(F)) = {5 (¥), F) + dn(A2F), (68)
where Ay: 3¢(m) — AJ~'(r) is a total differential operator. Next, we obtain
dn(Le,w — Le,(AF) — AsF) = 0. (69)

Assuming that the de Rham cohomology group Hg,;l(M) is trivial, one can
apply the total homotopy formula to find 9 € /\2_2(77) s.t. on J*®(7),

,CEww—,CEW(AlF)—AQF:dhg. (70)

Restricting Jto &, we get a desired ¢.
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Ex. potential Kaup-Boussinesq and its presymplectic str.

_ % - L 71
Vt—_7_77X7 nt—_Vxnx_ZVxxx- ( )

Here ul = v, u> =0, F1 = vi +v2/2 4+ 1, F2 =0t + vilix + Vi /4.
Consider the symmetry X = E ¢,

1 Vixxx V,? 2 Thxx Vx V)%x 2 2
Pl= g T2t 5, 0 = T et S vt (72)

and the X-invariant presymplectic structure represented by w € E02’1(8),
w=—0, N0 Ndx+...Adt, 0 =0l (73)

It is generated by the Lagrangian

1 1
L=MXdtANdx, A= —§(vt17x + vene + v)gnx —{—773( + ZVXVXXX) (74)
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Applying integration by parts, we find that Lxw = dy¢} for

11 2 11 2 11 -2 -1 1 =1
19: _§6XXXA0 +§9XX/\6X_gexAGXX_HXAEVXHXX (75)
— (V2420 AN — 2w, 0o NG
The system Ex is given by the infinite prolongation of the pKB and
3 3
Viox = —6VxT)x — V)? ) Thox = 6V377x + EV;‘ - ZV)EX - 377)2<- (76)

Finally, reduction of the presymplectic structure yields 9|¢, € EZ%(Ex),
11 -2 1
§0XX NO, — 3

1 -1 =1

ﬁ‘gx = §>1< A é)2<x - EVXHX N Hxx7 éLx = éix‘gx . (77)
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Applying integration by parts, we find that Lxw = dy¢} for

11 2 11 2 11 -2 -1 1 =1
’19: _§0XXXA0 +§9XX/\0X_gex/\axx_ex/\ivxexx (75)
— (V2420 AN — 2w, 0o NG
The system Ex is given by the infinite prolongation of the pKB and
3 3
Viox = —6VxT)x — V)? ) Thox = 6V377x + EV;‘ - ZV)EX - 377)2<- (76)

Finally, reduction of the presymplectic structure yields 9|¢, € EZ%(Ex),

11 11 1 -1 -1

ﬁ‘gx = 30xx A él)2< - 39X A 5)2(X - EVXQX N 9XX’ éLx = éix‘gx : (77)

Let us demonstrate how the Noether theorem for invariant solutions works.

1 1 1
Yi(0ey) = d<§vxxnxx + 2 + §V377x + vavfx) ) Y =0x. (78)
Then the symmetry Y corresponds to the constant of X-invariant motion
1 1 1
§Vxx77xx + Vx77>2< + §V377x + ZVX VEX . (79)
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On presymplectic reduction

Coordinates on Ex : (t,x, v, 1, Vx, Mx, Vxxs Mxx)-
1 2 1.1 o2 1 1 w1 i i
19‘5)( = §9xx NOy — §9x N Oy — EVXHX A O s O = Qkx‘gx : (80)
Taking the quotient by the group action v — v + €1, n+— 1+ € on Ex, we
get the differential covering
(t7X) V1), Vs Tixy Vxxs nxx) = (t7X7 Vi, TIx s Vxxs nxx) (81)

from Ex to the quotient system. Then J|g, is the lift of the closed 2-form
that has the same expression in the coordinates on the quotient system.

Liouville integrability of the quotient system

This 2-form is non-degenerate on fibers of the quotient system bundle
%‘SX: (t,X, VX777X7VXX77]X)() '_> (t,X) (82)

= Poisson bivector = Liouville integrability (inherited from & via 0x, 0;).
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Ex. the nonlinear Schrédinger equation and var. principle

ut:—7+(u2+v2)v, Vi = %—(u2+v2)u. (83)
Here u' = u, u?> = v. The NLS admits the Noether symmetry X = E|¢
ot = uXXX—6(u2—|—v2)uX, ©? = vXXX—6(u2—|—v2)vX. (84)
The Lagrangian of the NLS

1

2., .2 2 2)2
L:—E(uvt—utv—i—ux—i_‘/x (" + %)

2 2
gives rise to the presymplectic structure represented by

>dt A dx (85)

w=—0 AN Ndx+...Adt, 0, =0
We take (t, x, u, v, Ux, Vx, LUxx, Vxx) as coordinates on Ex. Then Lxw = dyv
D=0 NG+ 0 NG — 0 AO +6(+vR)0 A . (86)

The reduction of the presymplectic structure is ¥|¢, .
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Reduction of the internal Lagrangian

The reduction of the int. Lagrangian is represented by any o € A1(Ex) s.t.
—do =1Vgy (87)
For instance, one can take
0 = Udvie — V dusy — uxdvy + 60%v du — 6uv?dv + (U Vi — Vixlixx) dX

N (_ Uiy + Vi

2 + (v +v?) (uuxx+vvxx— (u2+v2)2)+(uvx—vux)2>dt
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Reduction of the internal Lagrangian

The reduction of the int. Lagrangian is represented by any o € A1(Ex) s.t.
—do =1Vgy (87)
For instance, one can take
0 = Udvie — V dusy — uxdvy + 60%v du — 6uv?dv + (U Vi — Vixlixx) dX

Uiy + Vi 2, .2 2, 2y2 2
+(— T+(u +v?) (Ut + v — (4% +v7)?) 4 (uvy — vuy) )dt
Let o: R? — Ex be a section of me, 1 (t, X, U, v, Ux, Vx, Uxx, Vxx) F> (t,X)

o: u=ay(t,x), v=nbo(t,x), ux = a1, vx = b1, Uxx = a2, Vxx = bp (88)
Choose a compact submanifold N* C R?. It suffices to consider paths

u=ag+7dag, Ux=ar+70a1, Ux =ar+ Tlay,

Y(7): _ B _
v=>by+7dby, vi=0b1+T0b1, Ve =bo+T7bo,

(89)

where §a;, 5b; € C>°(IR?) are arbitrary functions that vanish on ON.
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The reduced variational principle

d

dr

TZO/N’Y(T)*(Q)=/NU*(W_|dg), (90)

where

w = dag Oy + 0by Oy + day E)ux + by 8vx +dax 0, + 0bo 8Vxx . (91)

Uxx

At any point of Ex, wado =0 iff w = 0. Then dp = —9|g, defines the
field of non-degenerate operators from 7¢, -vertical vectors to Cartan forms.

a section o: R? — Ex is a stationary point of the reduction of the internal
Lagrangian if and only if o is an X-invariant solution of the NLS.
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Liouville integrability

The Poisson bracket is determined by the inverse of —dp on fibers of 7¢,,

P =0y, Ay — Oy, Ay, + 0y A Dy, +6(U 4 v?)Dy, A O (92)

Uxx Uxx Vxx

The NLS admits the 4-dimensional commutative Lie algebra
X, Y1 =0x, Yo =20 Y3=v0O,—ul,+vx0y, —uxOy, +VxxOu,, —UsxxOyy,+. -

Then Ex inherits the symmetries Yilg,, Y2le,, Y3le,. They give rise to
the mutually Poisson commuting constants of X-invariant motion

h = UxVix — Vxlxx,

U + Vi 2 .2 2 2y2 2
lzz—T-l-(U + v%) (v + Wi — (1% 4 v2)?) + (uvy — vuy)?,
312 + v2)2 & 12 + 2
I3 = —uugx — vvex + (" + ) +UX+VX,

2

respectively. Since I, b, I3 are independent, one can say that Ex is
Liouville integrable
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Liouville integrability

The Poisson bracket is determined by the inverse of —dp on fibers of 7¢,,

P =0y, Ay — Oy, Ay, + 0y A Dy, +6(U 4 v?)Dy, A O (92)

Uxx Uxx Vxx

The NLS admits the 4-dimensional commutative Lie algebra
X, Y1 =0x, Yoa=0, Y3 =v0,—ul,+vxOy, —UxOy, +VxxOu,, —Usx Oy, +- - -

Then Ex inherits the symmetries Yilg,, Y2le,, Y3le,. They give rise to
the mutually Poisson commuting constants of X-invariant motion

h = UxVix — Vxlxx,

U + Vi 2 .2 2 2y2 2
/2:—f+(u + v%) (v + Wi — (1% 4 v2)?) + (uvy — vuy)?,
312 + v2)2 & 12 + 2
I3 = —uugx — vvex + (" + ) +UX+VX,

2
respectively. Since I, b, I3 are independent, one can say that Ex is
Liouville integrable, and its integrability is inherited from the NLS via
invariant reduction.
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What if a bundle of the form 7g, is non-trivial?

For the NLS, the bundle g, is trivial. Since
{I]_, } :8X_DX’5X and {/2, }:at—Dt’gX, (93)

a function f € F(Ex) that does not depend on ¢t and x is a constant of
X-invariant motion if and only if

{h,f} ={h,f} =0. (94)

Thus /1 and /; can be interpreted as Hamiltonians of two commuting
vector fields that, together, reproduce Ex.
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What if a bundle of the form 7g, is non-trivial?

For the NLS, the bundle g, is trivial. Since
{I]_, } :8X_DX’5X and {/2, }:at—Dt’gX, (93)

a function f € F(Ex) that does not depend on ¢t and x is a constant of
X-invariant motion if and only if

{h,f} ={h,f} =0. (94)

Thus /1 and /; can be interpreted as Hamiltonians of two commuting
vector fields that, together, reproduce Ex.

However, this interpretation is not invariant

and plays no significant role in the integrability of £x. Moreover, if a
bundle of the form g, is non-trivial, the corresponding system cannot be
restored from a fiber using vector fields of the form (93).

This triviality is essential for the interpretation in terms of Hamiltonians,
but not for the invariant reduction mechanism, which is global (on &).
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Thank you!
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