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In a nutshell

For a system of PDEs

E : F i = 0 , Dxk (F i ) = 0 , . . . (1)

and its evolutionary symmetry

X = Eϕ|E , (2)

there is a mechanism of reduction of X -invariant cohomology to the

subsystem for X -invariant solutions

EX : F i = 0 , ϕj = 0 , Dxk (F i ) = 0 , Dxk (ϕj) = 0 , . . . (3)

The mechanism is based on the observation

X |EX = 0 ⇒ LX |EX = 0 (4)

and reduces a �horizontal degree� by one,

LXω = ∂ϑ ⇒ 0 = ∂
(
ϑ|EX

)
. (5)

Kostya Druzhkov Invariant reduction for PDEs. II: The general mechanism 2 / 30



Jets: notation

Let π : En+m → Mn be a locally trivial smooth vector bundle. Denote by

x = (x1, . . . , xn) coordinates in U ⊂ M (independent variables),

u = (u1, . . . , um) coordinates along the �bers (dependent variables).

uiα adapted coordinates along the �bers of π∞ : J∞(π)→ M over U.

Here α = α1x
1 + . . . αnx

n = αix
i , |α| = α1 + . . .+ αn.

π∞,k : J∞(π)→ Jk(π) , πk : Jk(π)→ M . (6)

Functions and di�erential forms on J∞(π):

F(π) =
⋃
k>0

π∗∞,kC
∞(Jk(π)) , Λ∗(π) =

⋃
k>0

π∗∞,k Λ∗(Jk(π)) (7)

The Cartan distribution on J∞(π) is spanned by the total derivatives

Dxk = ∂xk + uiα+xk∂uiα , k = 1, . . . , n (8)
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Cartan (contact) forms:

CΛ∗(π) ⊂ Λ∗(π) (9)

In adapted coordinates:

ωαi θ
i
α ∈ CΛ1(π) , θiα = duiα − uiα+xkdx

k (10)

Horizontal forms:

Λk
h(π) = Λk(π)/CΛk(π) ' F(π) · π∗∞(Λk(M)) (11)

Horizontal di�erential:

dh : Λk
h(π)→ Λk+1

h (π) (12)

Horizontal cohomology class of a Lagrangian L ∈ Λn
h(π):

L + dhΛn−1
h (π) (13)
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Equations: notation and regularity conditions

Let ζ be a locally trivial smooth vector bundle over the same base M.

A section F of π∗r (ζ) de�nes the corresponding di�erential equation

F = 0 ⇔ F i (x , uα) = 0 , |α| 6 r (14)

The in�nite prolongation (the set of formal solutions) E ⊂ J∞(π)

E : Dα(F i ) = 0 |α| > 0 (15)

is endowed with its Cartan distribution C and

F(E) = F(π)|E , Λ∗(E) = Λ∗(π)|E , CΛ∗(E) = CΛ∗(π)|E . (16)

Regularity conditions

πE(E) = M, where πE = π∞|E .
The di�erentials dF i

ρ are independent for any ρ ∈ J r (π), s.t. F (ρ) = 0.

f |E = 0 i� f = ∆(F ) for some total di�erential operator ∆ = ∆α
i Dα.

H i
dR(E) = 0 for i > 0.
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Symmetries

Symmetries of J∞(π) = elements of the F(π)-module of characteristics

κ(π) =
⋃
k>0

Γ(π∗k(π)) . (17)

κ(π) 3 ϕ = (ϕ1(x , uα), . . . , ϕm(x , uα)) ⇒ Eϕ = Dα(ϕi )∂uiα (18)

A symmetry of E is

a derivation X of F(E) that preserves the Cartan distribution C,
LX CΛ1(E) ⊂ CΛ1(E) , LX = d ◦ Xy + Xy ◦ d . (19)

Trivial symmetries of E are sections of C, i.e., derivations of the form

ξkDxk , Dxk = Dxk |E . (20)

The restriction Eϕ|E of an evolutionary �eld is a symmetry of E i�

Eϕ(F )|E = 0 . (21)

If π∞,0(E) = J0(π), any symmetry is equivalent to some Eϕ|E (or to ϕ|E).
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The Vinogradov C-spectral sequence

d(CpΛ∗(E)) ⊂ CpΛ∗(E) . (22)

Vinogradov's C-spectral sequence (Ep,q
r (E), dp,qr ) originates from

Λ•(E) ⊃ CΛ•(E) ⊃ C2Λ•(E) ⊃ C3Λ•(E) ⊂ . . . (23)

Here all dp,qr : Ep,q
r (E)→ E

p+r , q+1−r
r (E) are induced by d ,

E
p,q
0 (E) =

CpΛp+q(E)

Cp+1Λp+q(E)
, E

p,q
1 (E) = ker dp,q0 / im d

p,q−1
0 (24)

Using πE = π∞|E : E → M, we identify

E
p,q
0 (E) = CpΛp(E) ∧ π∗E(Λq(M)) , d0 = dxk ∧ LD

xk
, dv = d − d0

Variational k-forms of E are elements of

E
k,n−1
1 (E) = ker dk,n−10 / im d

k,n−2
0 (25)

Presymplectic structures of E = d1-closed variational 2-forms.

Conservation laws of E = variational 0-forms.
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Invariant reduction mechanism

Let X be a symmetry of the in�nite prolongation E ⊂ J∞(π) of F = 0,

X = Eϕ|E , Eϕ = Dα(ϕi )∂uiα (26)

Then X -invariant solutions satisfy the invariant subsystem EX ⊂ E ,
EX : Dα(F i ) = 0 , Dα(ϕj) = 0 . (27)

Suppose ω ∈ E
p,q
0 (E) represents an X -invariant element of Ep,q

1 (E), i.e.,

LXω = d0ϑ , ϑ ∈ E
p,q−1
0 (E) (28)

Then ϑ|EX ∈ E
p,q−1
0 (EX ) represents an element of Ep,q−1

1 (EX ), as

d0ϑ|EX = 0 (29)

The reduction is de�ned up to E
p,q−1
1 (E)|EX since

LX (ω + im d
p,q−1
0 ) = d

p,q−1
0 (ϑ+ imLX ) (30)

If Ep,q−1
1 (E)|EX = 0, the reduction is the homomorphism

Rp,q
X : Ep,q

1 (E)X → E
p,q−1
1 (EX ) (31)
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Ex. Calogero�Bogoyavlenskii�Schi� breaking soliton eq.

utx = 2uyuxx + 4uxuxy − uxxxy . (32)

As coordinates on E , we take all the variables except utx and its derivatives.

Consider the higher symmetry X = Eϕ|E ,

ϕ = uxxx − 3u2x (33)

and the X -invariant conservation laws represented by ω1, ω2 ∈ E
0,2
0 (E),

ω1 = (uxxx − u2x )dt ∧ dx + 2uxuydt ∧ dy + uxdx ∧ dy , (34)

ω2 =
(
uxuxxx +

u2xx
2
−u3x

)
dt∧dx+(u2xuy +uxxuxy )dt∧dy+

u2x
2
dx∧dy (35)

Directly solving the equations LXωi = d0ϑi on E , we obtain, for example,

ϑ1 = ϕ dy − (u5x − 8uxuxxx − 5u2xx + 4u3x )dt , (36)

ϑ2 =
(
uxuxxx −

u2xx
2
− 2u3x

)
dy−

(
uxu5x +

u2xxx
2
− 9u2xuxxx − 6uxu

2
xx +

9

2
u4x

)
dt .
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CBS: the results

The system EX is determined by

utx = 2uyuxx + 4uxuxy − uxxxy , (37)

uxxx − 3u2x = 0 . (38)

Finally,

the reductions are represented by the one-component horizontal 1-forms

ϑ1|EX = 2g dt , ϑ2|EX = g dy , g = u3x −
u2xx
2
, (39)

respectively. Thus g ∈ E
0,0
1 (EX ) is a constant of X -invariant motion.

But this g cannot be obtained through the invariant reduction mechanism.

Compatibility complex?
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The reduction Rp,q
X and the C-spectral sequences

Theorem 1

Let E be an in�nitely prolonged system of di�erential equations, and let

X = Eϕ|E be its symmetry. Suppose E p,q−1
1 (E) = E

p+1,q−1
1 (E) = 0. Then

on the X -invariant subspace of E p,q
1 (E),

Rp+1,q
X ◦ d1 = −d1 ◦ Rp,q

X (40)

Theorem 2

Suppose that X = Eϕ|E , X1 = Eϕ1 |E are commuting symmetries of an

in�nitely prolonged system E . If E p,q−1
1 (E) = E

p−1,q−1
1 (E) = 0, then on

the X -invariant subspace of E p,q
1 (E),

Rp−1,q
X ◦ X1y = −X1|EX y ◦ R

p,q
X (41)
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Internal Lagrangian formalism

Denote by Ẽ
0,k−1
1 (E) the cohomology group of

0→ F(E)→ Λ1(E)→ Λ2(E)

C2Λ2(E)
. . .→ Λn(E)

C2Λn(E)
→ Λn+1(E)

C2Λn+1(E)
→ 0 (42)

at Λk(E)/C2Λk(E). Internal Lagrangians of E are elements of Ẽ 0,n−1
1 (E).

Noether: for L ∈ Λn
h(π), there is ωL ∈ CΛ1(π) ∧ π∗∞(Λn−1(M)) s.t.

LEϕ(L) = 〈E(L), ϕ〉+ dh(EϕyωL) , ϕ ∈ κ(π) (43)

If E(L)|E = 0, then (L + ωL)|E ⇒ internal Lagrangian.

d̃
0,n−1
1 : Ẽ 0,n−1

1 (E)→ E
2,n−1
1 (E) (44)

The horizontal cohomology class of L ∈ Λn
h(π) such that E(L)|E = 0

⇒ a unique internal Lagrangian of E ⇒ presymplectic str. Ω ∈ ker d2,n−1
1 .
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Let L be a Lagrangian s.t. E(L)|E = 0, and let Ω be the presymplectic str.

Noether's theorem

If a variational �eld Eϕ preserves the horizontal cohomology class of L,

then there is a conservation law ξ ∈ E
0,n−1
1 (E) such that for X = Eϕ|E ,

XyΩ = d1ξ (45)

Note: d1ξ|EX = 0. For an invariant system EX , we can replace (if possible):

Ω 7→ R2,n−1
X (Ω) (46)

Let lF (ϕ) = Eϕ(F ). Then E is `-normal if for lE = lF |E ,

∇ ◦ lE = 0 ⇒ ∇ = 0 (47)

Theorem 3

Suppose X = Eϕ|E , X1 = Eϕ1 |E are commuting symmetries of an `-normal

system E . Let Ω ∈ E
2,n−1
1 (E) be an X -invariant presymplectic structure,

and let ξ ∈ E
0,n−1
1 (E) be a conservation law such that X1yΩ = d1ξ. Then

X1|EX yR
2,n−1
X (Ω) = d1R0,n−1

X (ξ) (48)
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Invariant reduction for PDEs without bundle structures

Let Y be a symmetry of E , and let ω ∈ E
p,q
0 (E) represent a Y -invariant

element of E p,q
1 (E). Then there exists ϑY ∈ E

p,q−1
0 (E) s.t.

LY ω = d0ϑY (49)

A reduction is represented by the well-de�ned restriction of

ϑY − Y yω (50)

to the system for Y -invariant solutions, characterized by the condition that

at its points, the vectors of Y lie in the respective Cartan planes.

Ian M. Anderson and Mark E. Fels proposed a reduction method, e.g.,

for elements of ker d0 on E arising from the invariant part of the zero page

E
p,q
0 on J∞(π). They considered some symmetries that generate �ows

preserving a �ber (not necessarily vector) bundle structure π : E → M.

LY ω = 0 ⇒ (Y yω)|E (51)

In some cases, this approach ⇒ multi-reduction.
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E
p,q
0 on J∞(π). They considered some symmetries that generate �ows

preserving a �ber (not necessarily vector) bundle structure π : E → M.

LY ω = 0 ⇒ (Y yω)|E (51)

In some cases, this approach ⇒ multi-reduction.
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Multi-reduction

Proposition. Let X = Eϕ|E and X1 = Eϕ1 |E be symmetries of an in�nitely

prolonged system E such that [X ,X1] = cX for some c ∈ R. Suppose
ω ∈ E

p,q
0 (E) represents an element of E p,q

1 (E) that is both X -invariant

and X1-invariant, and E
p,q−1
1 (E) = 0. Let LXω = d0ϑ.

1) If ϑ|EX ⇒ X1|EX -invariant non-trivial element of E p,q−1
1 (EX ), then c = 0

2) If c = 0, then ϑ|EX represents an X1|EX -invariant element of E p,q−1
1 (EX )

Proof. There is ϑ1 ∈ E
p,q−1
0 (E) such that LX1ω = d0ϑ1 and hence,

d0(cϑ) =LcXω =L[X ,X1]ω =LXd0ϑ1−LX1d0ϑ = d0(LXϑ1−LX1ϑ) (52)

Since E p,q−1
1 (E) = 0, we get

cϑ− (LXϑ1 − LX1ϑ) ∈ im d0 . (53)

Then for the restrictions to EX , one has

cϑ|EX + LX1|EX
(ϑ|EX ) ∈ im d0 . (54)

In the case c = 0, the reduction of a conservation law under X and then

under X1 di�ers from its reduction under X1 and then under X in sign.
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Reduction of variational principles

If ω ∈ Ẽ
0,k
0 (E) represents an X -invariant element of Ẽ 0,k

1 (E), then

LXω = d̃0ϑ (55)

for some ϑ ∈ Ẽ
0,k−1
0 (E). If k = n − 1 ⇒ the reduction mechanism for

X -invariant internal Lagrangians

Ẽ
0,n−1
1 (E)X → Ẽ

0,n−2
1 (EX ) (56)

If Ẽ 0,n−2
1 (E)|EX = 0, the reduction is well-de�ned.

Let us consider variational principles determined by Ẽ
0,0
1 (EX ). In terms of

the reduction under a single symmetry, they appear if n = 2.

Denote by πEX the projection πE |EX ,
πEX : EX → M (57)

Suppose % ∈ Λ1(EX ) represents an element of Ẽ 0,0
1 (EX ), i.e.,

d% ∈ C2Λ2(EX ) (58)
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Suppose % ∈ Λ1(EX ) represents an element of Ẽ 0,0
1 (EX ), i.e.,

d% ∈ C2Λ2(EX ) (59)

Let γ : R×M → EX be a mapping such that for every τ ∈ R, the map

γ(τ) : M → EX , γ(τ) : x 7→ γ(τ, x) (60)

is a section of πEX . Then γ(τ) is a path in sections of πEX .

Stationary points

A section σ : M → EX is a stationary point of %+ d(F(EX )) ∈ Ẽ
0,0
1 (EX ), if

d

dτ

∣∣∣
τ=0

∫
N

γ(τ)∗(%) = 0 (61)

holds for any embedded, compact, 1-dimensional submanifold N ⊂ M and

any path γ(τ) in sections of πEX such that γ(0) = σ and each point of the

boundary ∂N is �xed.

We assume that each appropriate N is oriented.
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All solutions of πEX are stationary points of any element of Ẽ 0,0
1 (EX ).

Denote by 0M the zero section 0M : M → R×M, 0M(x) = (0, x). Then

d

dτ

∣∣∣
τ=0

∫
N

γ(τ)∗(%) =

∫
N

0∗M(∂τy γ
∗(d%)) (62)

And the variational principle is determined by d% ∈ E
2,0
1 (EX ).

d% is a �eld of operators from πEX -vertical vectors to Cartan 1-forms

If EX is a �nite-dimensional smooth manifold and the �eld of operators is

non-degenerate at each point of EX , the variational principle yields only

solutions to πEX .

In this case, the restrictions of d% (or −d%) to �bers of πEX are invertible

and determine a Poisson bivector.

It maps di�erentials of constants of X -invariant motion to symmetries

the (local) �ow of a vector �eld corresponding to a constant of X -invariant

motion preserves the di�erential form d%, and hence, it preserves the kernel

of d% on EX , i.e., the Cartan distribution.
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On algorithms for evolution systems

Consider a system of evolution equations F = 0, where F ∈ κ(π),

F i = uit − f i (x , u, ux1 , . . . , uxn−1 , . . .) , t = xn (63)

Then F(E) ⊂ F(π) and E
0,n−1
0 (E) ⊂ Λn−1

h (π). Put

κ(E) = κ(π)|E ⊂ κ(π) (64)

and introduce

κ̂(E) = κ̂(π)|E ⊂ κ̂(π) = HomF(π)(κ(π),Λn
h(π)). (65)

Note that ϕ ∈ κ(E) ⊂ κ(π) is a symmetry of E i�

Eϕ(F ) = lϕ(F ) . (66)
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Algorithm for conservation laws

Let X = Eϕ|E be a symmetry of an evolution system E , ϕ ∈ κ(E) ⊂ κ(π).

Suppose ω ∈ E
0,n−1
0 (E) represents an X -invariant conservation law. There

exist ψ ∈ κ̂(E) and a total di�erential operator A1 : κ(π)→ Λn−1
h (π) s.t.

dhω = 〈ψ,F 〉+ dh(A1F ) (67)

Besides, integrating by parts, we obtain

〈ψ, lϕ(F )〉 = 〈l ∗ϕ (ψ),F 〉+ dh(A2F ) , (68)

where A2 : κ(π)→ Λn−1
h (π) is a total di�erential operator. Next, we obtain

dh(LEϕω − LEϕ(A1F )− A2F ) = 0 . (69)

Assuming that the de Rham cohomology group Hn−1
dR (M) is trivial, one can

apply the total homotopy formula to �nd ϑ̂ ∈ Λn−2
h (π) s.t. on J∞(π),

LEϕω − LEϕ(A1F )− A2F = dhϑ̂ . (70)

Restricting ϑ̂ to E , we get a desired ϑ.
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Ex. potential Kaup-Boussinesq and its presymplectic str.

vt = −v
2
x

2
− ηx , ηt = −vxηx −

1

4
vxxx . (71)

Here u1 = v , u2 = η, F 1 = vt + v2x /2 + ηx , F
2 = ηt + vxηx + vxxx/4.

Consider the symmetry X = Eϕ|E ,

ϕ1 =
vxxx

3
+ 2vxηx +

v3x
3
, ϕ2 =

ηxxx
3

+
vx

2
vxxx +

v2xx
4

+ v2x ηx + η2x (72)

and the X -invariant presymplectic structure represented by ω ∈ E
2,1
0 (E),

ω = −θ1x ∧ θ
2 ∧ dx + . . . ∧ dt , θ

i

α = θiα|E (73)

It is generated by the Lagrangian

L = λ dt ∧ dx , λ = −1
2

(
vtηx + vxηt + v2x ηx + η2x +

1

4
vxvxxx

)
(74)
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Applying integration by parts, we �nd that LXω = d0ϑ for

ϑ = − 1

3
θ
1
xxx ∧ θ

2
+

1

3
θ
1
xx ∧ θ

2
x −

1

3
θ
1
x ∧ θ

2
xx − θ

1
x ∧

1

2
vxθ

1
xx

− (v2x + 2ηx)θ
1
x ∧ θ

2 − 2vxθ
2
x ∧ θ

2
.

(75)

The system EX is given by the in�nite prolongation of the pKB and

vxxx = −6vxηx − v3x , ηxxx = 6v2x ηx +
3

2
v4x −

3

4
v2xx − 3η2x . (76)

Finally, reduction of the presymplectic structure yields ϑ|EX ∈ E
2,0
1 (EX ),

ϑ|EX =
1

3
θ̃
1

xx ∧ θ̃
2

x −
1

3
θ̃
1

x ∧ θ̃
2

xx −
1

2
vx θ̃

1

x ∧ θ̃
1

xx , θ̃
i

kx = θ
i

kx |EX . (77)

Let us demonstrate how the Noether theorem for invariant solutions works.

Y y (ϑ|EX ) = d
(1
3
vxxηxx + vxη

2
x +

1

3
v3x ηx +

1

4
vxv

2
xx

)
, Y = ∂x . (78)

Then the symmetry Y corresponds to the constant of X -invariant motion

1

3
vxxηxx + vxη

2
x +

1

3
v3x ηx +

1

4
vxv

2
xx . (79)

Kostya Druzhkov Invariant reduction for PDEs. II: The general mechanism 22 / 30



Applying integration by parts, we �nd that LXω = d0ϑ for

ϑ = − 1

3
θ
1
xxx ∧ θ

2
+

1

3
θ
1
xx ∧ θ

2
x −

1

3
θ
1
x ∧ θ

2
xx − θ

1
x ∧

1

2
vxθ

1
xx

− (v2x + 2ηx)θ
1
x ∧ θ

2 − 2vxθ
2
x ∧ θ

2
.

(75)

The system EX is given by the in�nite prolongation of the pKB and

vxxx = −6vxηx − v3x , ηxxx = 6v2x ηx +
3

2
v4x −

3

4
v2xx − 3η2x . (76)

Finally, reduction of the presymplectic structure yields ϑ|EX ∈ E
2,0
1 (EX ),

ϑ|EX =
1

3
θ̃
1

xx ∧ θ̃
2

x −
1

3
θ̃
1

x ∧ θ̃
2

xx −
1

2
vx θ̃

1

x ∧ θ̃
1

xx , θ̃
i

kx = θ
i

kx |EX . (77)

Let us demonstrate how the Noether theorem for invariant solutions works.

Y y (ϑ|EX ) = d
(1
3
vxxηxx + vxη

2
x +

1

3
v3x ηx +

1

4
vxv

2
xx

)
, Y = ∂x . (78)

Then the symmetry Y corresponds to the constant of X -invariant motion

1

3
vxxηxx + vxη

2
x +

1

3
v3x ηx +

1

4
vxv

2
xx . (79)

Kostya Druzhkov Invariant reduction for PDEs. II: The general mechanism 22 / 30



On presymplectic reduction

Coordinates on EX : (t, x , v , η, vx , ηx , vxx , ηxx).

ϑ|EX =
1

3
θ̃
1

xx ∧ θ̃
2

x −
1

3
θ̃
1

x ∧ θ̃
2

xx −
1

2
vx θ̃

1

x ∧ θ̃
1

xx , θ̃
i

kx = θ
i

kx |EX . (80)

Taking the quotient by the group action v 7→ v + ε1, η 7→ η + ε2 on EX , we
get the di�erential covering

(t, x , v , η, vx , ηx , vxx , ηxx) 7→ (t, x , vx , ηx , vxx , ηxx) (81)

from EX to the quotient system. Then ϑ|EX is the lift of the closed 2-form

that has the same expression in the coordinates on the quotient system.

Liouville integrability of the quotient system

This 2-form is non-degenerate on �bers of the quotient system bundle

π̃EX : (t, x , vx , ηx , vxx , ηxx) 7→ (t, x) (82)

⇒ Poisson bivector ⇒ Liouville integrability (inherited from E via ∂x , ∂t).
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Ex. the nonlinear Schrödinger equation and var. principle

ut = −vxx
2

+ (u2 + v2)v , vt =
uxx

2
− (u2 + v2)u . (83)

Here u1 = u, u2 = v . The NLS admits the Noether symmetry X = Eϕ|E

ϕ1 = uxxx − 6(u2 + v2)ux , ϕ2 = vxxx − 6(u2 + v2)vx . (84)

The Lagrangian of the NLS

L = −1
2

(
uvt − utv +

u2x + v2x
2

+
(u2 + v2)2

2

)
dt ∧ dx (85)

gives rise to the presymplectic structure represented by

ω = − θ1 ∧ θ2 ∧ dx + . . . ∧ dt , θ
i

α = θiα|E .

We take (t, x , u, v , ux , vx , uxx , vxx) as coordinates on EX . Then LXω = d0ϑ

ϑ = − θ1xx ∧ θ
2

+ θ
1
x ∧ θ

2
x − θ

1 ∧ θ2xx + 6(u2 + v2) θ
1 ∧ θ2 . (86)

The reduction of the presymplectic structure is ϑ|EX .
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Reduction of the internal Lagrangian

The reduction of the int. Lagrangian is represented by any % ∈ Λ1(EX ) s.t.

−d% = ϑ|EX (87)

For instance, one can take

% = u dvxx − v duxx − uxdvx + 6u2v du − 6uv2dv + (uxvxx − vxuxx) dx

+
(
− u2xx +v2xx

4
+ (u2 +v2)

(
uuxx +vvxx − (u2 +v2)2

)
+ (uvx −vux)2

)
dt

Let σ : R2 → EX be a section of πEX : (t, x , u, v , ux , vx , uxx , vxx) 7→ (t, x)

σ : u = a0(t, x), v = b0(t, x), ux = a1, vx = b1, uxx = a2, vxx = b2 (88)

Choose a compact submanifold N1 ⊂ R2. It su�ces to consider paths

γ(τ) :
u = a0 + τδa0 ,

v = b0 + τδb0 ,

ux = a1 + τδa1 ,

vx = b1 + τδb1 ,

uxx = a2 + τδa2 ,

vxx = b2 + τδb2 ,
(89)

where δai , δbi ∈ C∞(R2) are arbitrary functions that vanish on ∂N.
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The reduced variational principle

d

dτ

∣∣∣
τ=0

∫
N

γ(τ)∗(%) =

∫
N

σ∗(wy d%) , (90)

where

w = δa0 ∂u + δb0 ∂v + δa1 ∂ux + δb1 ∂vx + δa2 ∂uxx + δb2 ∂vxx . (91)

At any point of EX , wy d% = 0 i� w = 0. Then d% = −ϑ|EX de�nes the

�eld of non-degenerate operators from πEX -vertical vectors to Cartan forms.

Hence,

a section σ : R2 → EX is a stationary point of the reduction of the internal

Lagrangian if and only if σ is an X -invariant solution of the NLS.
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Liouville integrability

The Poisson bracket is determined by the inverse of −d% on �bers of πEX ,

P = ∂uxx ∧ ∂v − ∂ux ∧ ∂vx + ∂u ∧ ∂vxx + 6(u2 + v2)∂uxx ∧ ∂vxx (92)

The NLS admits the 4-dimensional commutative Lie algebra

X , Y1 = ∂x , Y2 = ∂t , Y3 = v∂u−u∂v+vx∂ux−ux∂vx +vxx∂uxx−uxx∂vxx +. . .

Then EX inherits the symmetries Y1|EX , Y2|EX , Y3|EX . They give rise to

the mutually Poisson commuting constants of X -invariant motion

I1 = uxvxx − vxuxx ,

I2 = −u
2
xx + v2xx

4
+ (u2 + v2)

(
uuxx + vvxx − (u2 + v2)2

)
+ (uvx − vux)2,

I3 = −uuxx − vvxx +
3(u2 + v2)2 + u2x + v2x

2
,

respectively. Since I1, I2, I3 are independent, one can say that EX is

Liouville integrable, and its integrability is inherited from the NLS via

invariant reduction.
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What if a bundle of the form πEX is non-trivial?

For the NLS, the bundle πEX is trivial. Since

{I1, } = ∂x − Dx |EX and {I2, } = ∂t − Dt |EX , (93)

a function f ∈ F(EX ) that does not depend on t and x is a constant of

X -invariant motion if and only if

{I1, f } = {I2, f } = 0 . (94)

Thus I1 and I2 can be interpreted as Hamiltonians of two commuting

vector �elds that, together, reproduce EX .

However, this interpretation is not invariant

and plays no signi�cant role in the integrability of EX . Moreover, if a

bundle of the form πEX is non-trivial, the corresponding system cannot be

restored from a �ber using vector �elds of the form (93).

This triviality is essential for the interpretation in terms of Hamiltonians,

but not for the invariant reduction mechanism, which is global (on E).
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Thank you!
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