Invariant reduction for PDEs. II: The general mechanism

Kostya Druzhkov

PIMS Postdoctoral fellow

Department of Mathematics and Statistics University of Saskatchewan

(joint with A. Shevyakov)

Geometry of Differential Equations, IUM March 5, 2025

In a nutshell

For a system of PDEs

$$\mathcal{E}: F^{i} = 0, \quad D_{x^{k}}(F^{i}) = 0, \quad \dots$$
 (1)

and its evolutionary symmetry

$$X = E_{\varphi}|_{\mathcal{E}}, \qquad (2)$$

there is a mechanism of reduction of X-invariant cohomology to the subsystem for X-invariant solutions

$$\mathcal{E}_X: \quad F^i = 0, \quad \varphi^j = 0, \quad D_{x^k}(F^i) = 0, \quad D_{x^k}(\varphi^j) = 0, \quad \dots \quad (3)$$

The mechanism is based on the observation

$$X|_{\mathcal{E}_X} = 0 \qquad \Rightarrow \qquad \mathcal{L}_X|_{\mathcal{E}_X} = 0$$
 (4)

and reduces a "horizontal degree" by one,

$$\mathcal{L}_{\boldsymbol{X}}\omega = \partial \vartheta \qquad \Rightarrow \qquad \mathbf{0} = \partial \big(\vartheta|_{\mathcal{E}_{\boldsymbol{X}}}\big) \,. \tag{5}$$

Kostya Druzhkov

Jets: notation

Let $\pi: E^{n+m} \to M^n$ be a locally trivial smooth vector bundle. Denote by • $x = (x^1, \dots, x^n)$ coordinates in $U \subset M$ (independent variables), • $u = (u^1, \dots, u^m)$ coordinates along the fibers (dependent variables). • u_{α}^i adapted coordinates along the fibers of $\pi_{\infty}: J^{\infty}(\pi) \to M$ over U. Here $\alpha = \alpha_1 x^1 + \dots \alpha_n x^n = \alpha_i x^i$, $|\alpha| = \alpha_1 + \dots + \alpha_n$.

$$\pi_{\infty,k}\colon J^{\infty}(\pi)\to J^k(\pi)\,,\qquad \pi_k\colon J^k(\pi)\to M\,.$$
 (6)

Functions and differential forms on $J^{\infty}(\pi)$:

$$\mathcal{F}(\pi) = \bigcup_{k \ge 0} \pi^*_{\infty,k} C^{\infty}(J^k(\pi)), \qquad \Lambda^*(\pi) = \bigcup_{k \ge 0} \pi^*_{\infty,k} \Lambda^*(J^k(\pi))$$
(7)

The Cartan distribution on $J^\infty(\pi)$ is spanned by the total derivatives

$$D_{x^k} = \partial_{x^k} + u^i_{\alpha + x^k} \partial_{u^i_{\alpha}}, \qquad k = 1, \dots, n$$
(8)

御下 イヨト イヨト ニヨ

Jets: notation

Let $\pi: E^{n+m} \to M^n$ be a locally trivial smooth vector bundle. Denote by • $x = (x^1, \dots, x^n)$ coordinates in $U \subset M$ (independent variables), • $u = (u^1, \dots, u^m)$ coordinates along the fibers (dependent variables). • u_{α}^i adapted coordinates along the fibers of $\pi_{\infty}: J^{\infty}(\pi) \to M$ over U. Here $\alpha = \alpha_1 x^1 + \dots \alpha_n x^n = \alpha_i x^i$, $|\alpha| = \alpha_1 + \dots + \alpha_n$.

$$\pi_{\infty,k}\colon J^{\infty}(\pi)\to J^k(\pi)\,,\qquad \pi_k\colon J^k(\pi)\to M\,.$$
(6)

Functions and differential forms on $J^{\infty}(\pi)$:

$$\mathcal{F}(\pi) = \bigcup_{k \ge 0} \pi^*_{\infty,k} C^{\infty}(J^k(\pi)), \qquad \Lambda^*(\pi) = \bigcup_{k \ge 0} \pi^*_{\infty,k} \Lambda^*(J^k(\pi))$$
(7)

The Cartan distribution on $J^\infty(\pi)$ is spanned by the total derivatives

$$D_{x^k} = \partial_{x^k} + u^i_{\alpha+x^k} \partial_{u^i_\alpha}, \qquad k = 1, \dots, n$$
(8)

Cartan (contact) forms:

$$\mathcal{C}\Lambda^*(\pi) \subset \Lambda^*(\pi)$$
 (9)

In adapted coordinates:

$$\omega_i^{\alpha} \theta_{\alpha}^i \in \mathcal{C} \Lambda^1(\pi) , \qquad \theta_{\alpha}^i = du_{\alpha}^i - u_{\alpha+x^k}^i dx^k$$
(10)

Horizontal forms:

$$\Lambda_h^k(\pi) = \Lambda^k(\pi) / \mathcal{C}\Lambda^k(\pi) \simeq \mathcal{F}(\pi) \cdot \pi_\infty^*(\Lambda^k(M))$$
(11)

Horizontal differential:

$$d_h \colon \Lambda_h^k(\pi) \to \Lambda_h^{k+1}(\pi) \tag{12}$$

Horizontal cohomology class of a Lagrangian $L \in \Lambda_h^n(\pi)$:

$$L + d_h \Lambda_h^{n-1}(\pi) \tag{13}$$

4 / 30

Equations: notation and regularity conditions

Let ζ be a locally trivial smooth vector bundle over the same base M. A section F of $\pi_r^*(\zeta)$ defines the corresponding differential equation

$$F = 0 \qquad \Leftrightarrow \qquad F^{i}(x, u_{\alpha}) = 0, \qquad |\alpha| \leqslant r$$
 (14)

The infinite prolongation (the set of formal solutions) $\mathcal{E} \subset J^\infty(\pi)$

$$\mathcal{E}: \qquad D_{\alpha}(F^{i}) = 0 \qquad |\alpha| \ge 0 \tag{15}$$

is endowed with its Cartan distribution ${\mathcal C}$ and

$$\mathcal{F}(\mathcal{E}) = \mathcal{F}(\pi)|_{\mathcal{E}}, \qquad \Lambda^*(\mathcal{E}) = \Lambda^*(\pi)|_{\mathcal{E}}, \qquad \mathcal{C}\Lambda^*(\mathcal{E}) = \mathcal{C}\Lambda^*(\pi)|_{\mathcal{E}}.$$
 (16)

Regularity conditions

•
$$\pi_{\mathcal{E}}(\mathcal{E}) = M$$
, where $\pi_{\mathcal{E}} = \pi_{\infty}|_{\mathcal{E}}$.

• The differentials $dF^i_
ho$ are independent for any $ho\in J^r(\pi)$, s.t. F(
ho)=0.

• $f|_{\mathcal{E}} = 0$ iff $f = \Delta(F)$ for some total differential operator $\Delta = \Delta_i^{\alpha} D_{\alpha}$.

• $H^{i}_{dR}(\mathcal{E}) = 0$ for i > 0.

Equations: notation and regularity conditions

Let ζ be a locally trivial smooth vector bundle over the same base M. A section F of $\pi_r^*(\zeta)$ defines the corresponding differential equation

$$F = 0 \qquad \Leftrightarrow \qquad F^{i}(x, u_{\alpha}) = 0, \qquad |\alpha| \leqslant r$$
 (14)

The infinite prolongation (the set of formal solutions) $\mathcal{E} \subset J^\infty(\pi)$

$$\mathcal{E}: \qquad D_{\alpha}(F^{i}) = 0 \qquad |\alpha| \ge 0 \tag{15}$$

is endowed with its Cartan distribution ${\mathcal C}$ and

$$\mathcal{F}(\mathcal{E}) = \mathcal{F}(\pi)|_{\mathcal{E}}, \qquad \Lambda^*(\mathcal{E}) = \Lambda^*(\pi)|_{\mathcal{E}}, \qquad \mathcal{C}\Lambda^*(\mathcal{E}) = \mathcal{C}\Lambda^*(\pi)|_{\mathcal{E}}.$$
(16)

Regularity conditions

•
$$\pi_{\mathcal{E}}(\mathcal{E}) = M$$
, where $\pi_{\mathcal{E}} = \pi_{\infty}|_{\mathcal{E}}$.

• The differentials $dF^i_
ho$ are independent for any $ho\in J^r(\pi)$, s.t. F(
ho)=0.

• $f|_{\mathcal{E}} = 0$ iff $f = \Delta(F)$ for some total differential operator $\Delta = \Delta_i^{\alpha} D_{\alpha}$.

•
$$H^i_{dR}(\mathcal{E}) = 0$$
 for $i > 0$.

Symmetries

Symmetries of $J^\infty(\pi)$ = elements of the $\mathcal{F}(\pi)$ -module of characteristics

$$\varkappa(\pi) = \bigcup_{k \ge 0} \Gamma(\pi_k^*(\pi)).$$
(17)

$$\varkappa(\pi) \ni \varphi = (\varphi^{1}(x, u_{\alpha}), \dots, \varphi^{m}(x, u_{\alpha})) \quad \Rightarrow \quad E_{\varphi} = D_{\alpha}(\varphi^{i})\partial_{u_{\alpha}^{i}} \quad (18)$$

A symmetry of $\mathcal E$ is

a derivation X of $\mathcal{F}(\mathcal{E})$ that preserves the Cartan distribution \mathcal{C} , $\mathcal{L}_X \mathcal{C} \Lambda^1(\mathcal{E}) \subset \mathcal{C} \Lambda^1(\mathcal{E}), \qquad \mathcal{L}_X = d \circ X \lrcorner + X \lrcorner \circ d.$ (19)

Trivial symmetries of ${\mathcal E}$ are sections of ${\mathcal C}$, i.e., derivations of the form

$$\xi^k \overline{D}_{x^k}, \qquad \overline{D}_{x^k} = D_{x^k}|_{\mathcal{E}}.$$
 (20)

The restriction $\mathit{E}_arphiert_arphiert_arphi$ of an evolutionary field is a symmetry of $\mathcal E$ iff

$$E_{\varphi}(F)|_{\mathcal{E}} = 0.$$
⁽²¹⁾

If $\pi_{\infty,0}(\mathcal{E}) = J^0(\pi)$, any symmetry is equivalent to some $E_{\varphi}|_{\mathcal{E}}$ (or to $\varphi|_{\mathcal{E}}$).

Symmetries

Symmetries of $J^\infty(\pi)$ = elements of the $\mathcal{F}(\pi)$ -module of characteristics

$$\varkappa(\pi) = \bigcup_{k \ge 0} \Gamma(\pi_k^*(\pi)).$$
(17)

$$\varkappa(\pi) \ni \varphi = (\varphi^{1}(x, u_{\alpha}), \dots, \varphi^{m}(x, u_{\alpha})) \quad \Rightarrow \quad E_{\varphi} = D_{\alpha}(\varphi^{i})\partial_{u_{\alpha}^{i}} \quad (18)$$

A symmetry of \mathcal{E} is

a derivation X of $\mathcal{F}(\mathcal{E})$ that preserves the Cartan distribution \mathcal{C} , $\mathcal{L}_X \mathcal{C} \Lambda^1(\mathcal{E}) \subset \mathcal{C} \Lambda^1(\mathcal{E}), \qquad \mathcal{L}_X = d \circ X \lrcorner + X \lrcorner \circ d.$ (19)

Trivial symmetries of ${\mathcal E}$ are sections of ${\mathcal C}$, i.e., derivations of the form

$$\xi^k \overline{D}_{x^k}, \qquad \overline{D}_{x^k} = D_{x^k}|_{\mathcal{E}}.$$
(20)

The restriction $E_{arphi}|_{\mathcal{E}}$ of an evolutionary field is a symmetry of \mathcal{E} iff

$$E_{\varphi}(F)|_{\mathcal{E}} = 0.$$
 (21)

If $\pi_{\infty,0}(\mathcal{E}) = J^0(\pi)$, any symmetry is equivalent to some $E_{\varphi}|_{\mathcal{E}}$ (or to $\varphi|_{\mathcal{E}}$).

The Vinogradov C-spectral sequence

$$d(\mathcal{C}^{p}\Lambda^{*}(\mathcal{E})) \subset \mathcal{C}^{p}\Lambda^{*}(\mathcal{E}).$$
(22)

Vinogradov's C-spectral sequence $(E_r^{p,q}(\mathcal{E}), d_r^{p,q})$ originates from

$$\Lambda^{\bullet}(\mathcal{E}) \supset \mathcal{C}\Lambda^{\bullet}(\mathcal{E}) \supset \mathcal{C}^{2}\Lambda^{\bullet}(\mathcal{E}) \supset \mathcal{C}^{3}\Lambda^{\bullet}(\mathcal{E}) \subset \dots$$
(23)

Here all $d_r^{p,q} \colon E_r^{p,q}(\mathcal{E}) \to E_r^{p+r, q+1-r}(\mathcal{E})$ are induced by d,

$$E_0^{p,q}(\mathcal{E}) = \frac{\mathcal{C}^p \Lambda^{p+q}(\mathcal{E})}{\mathcal{C}^{p+1} \Lambda^{p+q}(\mathcal{E})}, \qquad E_1^{p,q}(\mathcal{E}) = \ker d_0^{p,q} / \operatorname{im} d_0^{p,q-1}$$
(24)

Using $\pi_{\mathcal{E}} = \pi_{\infty}|_{\mathcal{E}} \colon \mathcal{E} \to M$, we identify

 $E_0^{p,q}(\mathcal{E}) = \mathcal{C}^p \Lambda^p(\mathcal{E}) \wedge \pi_{\mathcal{E}}^*(\Lambda^q(M)), \quad d_0 = dx^k \wedge \mathcal{L}_{\overline{D}_{x^k}}, \quad d_v = d - d_0$

Variational k-forms of ${\mathcal E}$ are elements of

$$E_1^{k,n-1}(\mathcal{E}) = \ker d_0^{k,n-1} / \operatorname{im} d_0^{k,n-2}$$
 (25)

Presymplectic structures of $\mathcal{E} = d_1$ -closed variational 2-forms. Conservation laws of \mathcal{E} = variational 0-forms.

Kostya Druzhkov

The Vinogradov C-spectral sequence

$$d(\mathcal{C}^{p}\Lambda^{*}(\mathcal{E})) \subset \mathcal{C}^{p}\Lambda^{*}(\mathcal{E}).$$
(22)

Vinogradov's C-spectral sequence $(E_r^{p,q}(\mathcal{E}), d_r^{p,q})$ originates from

$$\Lambda^{\bullet}(\mathcal{E}) \supset \mathcal{C}\Lambda^{\bullet}(\mathcal{E}) \supset \mathcal{C}^{2}\Lambda^{\bullet}(\mathcal{E}) \supset \mathcal{C}^{3}\Lambda^{\bullet}(\mathcal{E}) \subset \dots$$
(23)

Here all $d_r^{p,q} \colon E_r^{p,q}(\mathcal{E}) \to E_r^{p+r, q+1-r}(\mathcal{E})$ are induced by d,

$$E_0^{p,q}(\mathcal{E}) = \frac{\mathcal{C}^p \Lambda^{p+q}(\mathcal{E})}{\mathcal{C}^{p+1} \Lambda^{p+q}(\mathcal{E})}, \qquad E_1^{p,q}(\mathcal{E}) = \ker d_0^{p,q} / \operatorname{im} d_0^{p,q-1}$$
(24)

Using $\pi_{\mathcal{E}} = \pi_{\infty}|_{\mathcal{E}} \colon \mathcal{E} \to M$, we identify $E_0^{p,q}(\mathcal{E}) = \mathcal{C}^p \Lambda^p(\mathcal{E}) \wedge \pi_{\mathcal{E}}^*(\Lambda^q(M)), \quad d_0 = dx^k \wedge \mathcal{L}_{\overline{D}_k}, \quad d_v = d - d_0$

Variational k-forms of $\mathcal E$ are elements of

$$E_1^{k,n-1}(\mathcal{E}) = \ker d_0^{k,n-1} / \operatorname{im} d_0^{k,n-2}$$
 (25)

Presymplectic structures of $\mathcal{E} = d_1$ -closed variational 2-forms. Conservation laws of \mathcal{E} = variational 0-forms.

Invariant reduction mechanism

Let X be a symmetry of the infinite prolongation $\mathcal{E} \subset J^\infty(\pi)$ of F=0,

$$X = E_{\varphi}|_{\mathcal{E}}, \qquad E_{\varphi} = D_{\alpha}(\varphi^{i})\partial_{u_{\alpha}^{i}}$$
(26)

Then X-invariant solutions satisfy the invariant subsystem $\mathcal{E}_X \subset \mathcal{E}$,

$$\mathcal{E}_X: \qquad D_\alpha(F^i) = 0, \qquad D_\alpha(\varphi^j) = 0.$$
(27)

Suppose $\omega \in E_0^{p,q}(\mathcal{E})$ represents an X-invariant element of $E_1^{p,q}(\mathcal{E})$, i.e.,

$$\mathcal{L}_{X}\omega = d_{0}\vartheta, \qquad \vartheta \in E_{0}^{p,q-1}(\mathcal{E})$$
(28)

Then $\vartheta|_{\mathcal{E}_X} \in E_0^{p,q-1}(\mathcal{E}_X)$ represents an element of $E_1^{p,q-1}(\mathcal{E}_X)$, as $d_0 \vartheta|_{\mathcal{E}_X} = 0$ (29)

The reduction is defined up to $E_1^{p,q-1}(\mathcal{E})ert_{\mathcal{E}_{\mathcal{X}}}$ since

$$\mathcal{L}_X(\omega + \operatorname{im} d_0^{p,q-1}) = d_0^{p,q-1}(\vartheta + \operatorname{im} \mathcal{L}_X)$$
(30)

If $E_1^{p,q-1}(\mathcal{E})|_{\mathcal{E}_X} = 0$, the reduction is the homomorphism $\mathcal{R}_X^{p,q} \colon E_1^{p,q}(\mathcal{E})^X \to E_1^{p,q-1}(\mathcal{E}_X)$

Kostya Druzhkov

Invariant reduction mechanism

Let X be a symmetry of the infinite prolongation $\mathcal{E} \subset J^\infty(\pi)$ of F=0,

$$X = E_{\varphi}|_{\mathcal{E}}, \qquad E_{\varphi} = D_{\alpha}(\varphi^{i})\partial_{u_{\alpha}^{i}}$$
(26)

Then X-invariant solutions satisfy the invariant subsystem $\mathcal{E}_X \subset \mathcal{E}$,

$$\mathcal{E}_X: \qquad D_\alpha(F^i) = 0, \qquad D_\alpha(\varphi^j) = 0.$$
(27)

Suppose $\omega \in E_0^{p,q}(\mathcal{E})$ represents an X-invariant element of $E_1^{p,q}(\mathcal{E})$, i.e.,

$$\mathcal{L}_{X}\omega = d_{0}\vartheta, \qquad \vartheta \in E_{0}^{p,q-1}(\mathcal{E})$$
(28)

Then $\vartheta|_{\mathcal{E}_X} \in E_0^{p,q-1}(\mathcal{E}_X)$ represents an element of $E_1^{p,q-1}(\mathcal{E}_X)$, as $d_0 \vartheta|_{\mathcal{E}_X} = 0$ (29)

The reduction is defined up to $E_1^{p,q-1}(\mathcal{E})|_{\mathcal{E}_X}$ since

$$\mathcal{L}_X(\omega + \operatorname{im} d_0^{p,q-1}) = d_0^{p,q-1}(\vartheta + \operatorname{im} \mathcal{L}_X)$$
(30)

If $E_1^{p,q-1}(\mathcal{E})|_{\mathcal{E}_X} = 0$, the reduction is the homomorphism $\mathcal{R}_X^{p,q} \colon E_1^{p,q}(\mathcal{E})^X \to E_1^{p,q-1}(\mathcal{E}_X)$ (31)

Kostya Druzhkov

8 / 30

Ex. Calogero-Bogoyavlenskii-Schiff breaking soliton eq.

$$u_{tx} = 2 u_y u_{xx} + 4 u_x u_{xy} - u_{xxxy} . ag{32}$$

As coordinates on \mathcal{E} , we take all the variables except u_{tx} and its derivatives. Consider the higher symmetry $X = E_{\varphi}|_{\mathcal{E}}$,

$$\varphi = u_{xxx} - 3u_x^2 \tag{33}$$

and the X-invariant conservation laws represented by $\omega_1,\omega_2\in E_0^{0,2}(\mathcal{E}),$

$$\omega_1 = (u_{xxx} - u_x^2)dt \wedge dx + 2u_xu_ydt \wedge dy + u_xdx \wedge dy, \qquad (34)$$

$$\omega_{2} = \left(u_{x}u_{xxx} + \frac{u_{xx}^{2}}{2} - u_{x}^{3}\right)dt \wedge dx + \left(u_{x}^{2}u_{y} + u_{xx}u_{xy}\right)dt \wedge dy + \frac{u_{x}^{2}}{2}dx \wedge dy \quad (35)$$

Directly solving the equations $\mathcal{L}_X \omega_i = d_0 \vartheta_i$ on \mathcal{E} , we obtain, for example, $\vartheta_1 = \varphi \, dy - (u_{5x} - 8u_x u_{xxx} - 5u_{xx}^2 + 4u_x^3) dt$, (36) $\vartheta_2 = \left(u_x u_{xxx} - \frac{u_{xx}^2}{2} - 2u_x^3\right) dy - \left(u_x u_{5x} + \frac{u_{xxx}^2}{2} - 9u_x^2 u_{xxx} - 6u_x u_{xx}^2 + \frac{9}{2}u_x^4\right) dt$

Ex. Calogero-Bogoyavlenskii-Schiff breaking soliton eq.

$$u_{tx} = 2 u_y u_{xx} + 4 u_x u_{xy} - u_{xxxy} . ag{32}$$

As coordinates on \mathcal{E} , we take all the variables except u_{tx} and its derivatives. Consider the higher symmetry $X = E_{\varphi}|_{\mathcal{E}}$,

$$\varphi = u_{\rm xxx} - 3u_{\rm x}^2 \tag{33}$$

and the X-invariant conservation laws represented by $\omega_1,\omega_2\in E_0^{0,2}(\mathcal{E}),$

$$\omega_1 = (u_{xxx} - u_x^2)dt \wedge dx + 2u_xu_ydt \wedge dy + u_xdx \wedge dy, \qquad (34)$$

$$\omega_{2} = \left(u_{x}u_{xxx} + \frac{u_{xx}^{2}}{2} - u_{x}^{3}\right)dt \wedge dx + \left(u_{x}^{2}u_{y} + u_{xx}u_{xy}\right)dt \wedge dy + \frac{u_{x}^{2}}{2}dx \wedge dy \quad (35)$$

Directly solving the equations $\mathcal{L}_X \omega_i = d_0 \vartheta_i$ on \mathcal{E} , we obtain, for example,

$$\vartheta_1 = \varphi \, dy - (u_{5x} - 8 \, u_x \, u_{xxx} - 5 \, u_{xx}^2 + 4 \, u_x^3) dt \,, \tag{36}$$

$$\vartheta_{2} = \left(u_{x}u_{xxx} - \frac{u_{xx}^{2}}{2} - 2u_{x}^{3}\right)dy - \left(u_{x}u_{5x} + \frac{u_{xxx}^{2}}{2} - 9u_{x}^{2}u_{xxx} - 6u_{x}u_{xx}^{2} + \frac{9}{2}u_{x}^{4}\right)dt$$

CBS: the results

The system \mathcal{E}_X is determined by

$$u_{tx} = 2u_y u_{xx} + 4u_x u_{xy} - u_{xxxy} , \qquad (37)$$

$$u_{xxx} - 3u_x^2 = 0. (38)$$

Finally,

the reductions are represented by the one-component horizontal 1-forms

$$\vartheta_1|_{\mathcal{E}_X} = 2g dt, \qquad \vartheta_2|_{\mathcal{E}_X} = g dy, \qquad g = u_X^3 - \frac{u_{XX}^2}{2}, \qquad (39)$$

respectively. Thus $g\in E_1^{0,0}(\mathcal{E}_X)$ is a constant of X-invariant motion.

But this g cannot be obtained through the invariant reduction mechanism. Compatibility complex?

Kostya Druzhkov

CBS: the results

The system \mathcal{E}_X is determined by

$$u_{tx} = 2u_y u_{xx} + 4u_x u_{xy} - u_{xxxy} , \qquad (37)$$

$$u_{xxx} - 3u_x^2 = 0. (38)$$

Finally,

the reductions are represented by the one-component horizontal 1-forms

$$\vartheta_1|_{\mathcal{E}_X} = 2g dt, \qquad \vartheta_2|_{\mathcal{E}_X} = g dy, \qquad g = u_X^3 - \frac{u_{XX}^2}{2}, \qquad (39)$$

respectively. Thus $g \in E_1^{0,0}(\mathcal{E}_X)$ is a constant of X-invariant motion.

But this g cannot be obtained through the invariant reduction mechanism. Compatibility complex?

Kostya Druzhkov

The reduction $\mathcal{R}_X^{\rho,q}$ and the C-spectral sequences

Theorem 1

Let \mathcal{E} be an infinitely prolonged system of differential equations, and let $X = E_{\varphi}|_{\mathcal{E}}$ be its symmetry. Suppose $E_1^{p,q-1}(\mathcal{E}) = E_1^{p+1,q-1}(\mathcal{E}) = 0$. Then on the X-invariant subspace of $E_1^{p,q}(\mathcal{E})$,

$$\mathcal{R}_X^{p+1,\,q} \circ d_1 = -d_1 \circ \mathcal{R}_X^{p,\,q} \tag{40}$$

Theorem 2

Suppose that $X = E_{\varphi}|_{\mathcal{E}}$, $X_1 = E_{\varphi_1}|_{\mathcal{E}}$ are commuting symmetries of an infinitely prolonged system \mathcal{E} . If $E_1^{p,q-1}(\mathcal{E}) = E_1^{p-1,q-1}(\mathcal{E}) = 0$, then on the X-invariant subspace of $E_1^{p,q}(\mathcal{E})$,

$$\mathcal{R}_X^{p-1,\,q} \circ X_1 \lrcorner = -X_1|_{\mathcal{E}_X \lrcorner} \circ \mathcal{R}_X^{p,\,q} \tag{41}$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

The reduction $\mathcal{R}_X^{\rho,q}$ and the C-spectral sequences

Theorem 1

Let \mathcal{E} be an infinitely prolonged system of differential equations, and let $X = E_{\varphi}|_{\mathcal{E}}$ be its symmetry. Suppose $E_1^{p,q-1}(\mathcal{E}) = E_1^{p+1,q-1}(\mathcal{E}) = 0$. Then on the X-invariant subspace of $E_1^{p,q}(\mathcal{E})$,

$$\mathcal{R}_X^{p+1,\,q} \circ d_1 = -d_1 \circ \mathcal{R}_X^{p,\,q} \tag{40}$$

Theorem 2

Suppose that $X = E_{\varphi}|_{\mathcal{E}}$, $X_1 = E_{\varphi_1}|_{\mathcal{E}}$ are commuting symmetries of an infinitely prolonged system \mathcal{E} . If $E_1^{p,q-1}(\mathcal{E}) = E_1^{p-1,q-1}(\mathcal{E}) = 0$, then on the X-invariant subspace of $E_1^{p,q}(\mathcal{E})$,

$$\mathcal{R}_{X}^{p-1,\,q} \circ X_{1} \lrcorner = -X_{1}|_{\mathcal{E}_{X}} \lrcorner \circ \mathcal{R}_{X}^{p,\,q} \tag{41}$$

・ロト ・ 日 ・ ・ ヨ ト ・ 日 ト

Internal Lagrangian formalism

Denote by $\widetilde{E}_{1}^{0,k-1}(\mathcal{E})$ the cohomology group of $0 \to \mathcal{F}(\mathcal{E}) \to \Lambda^{1}(\mathcal{E}) \to \frac{\Lambda^{2}(\mathcal{E})}{\mathcal{C}^{2}\Lambda^{2}(\mathcal{E})} \dots \to \frac{\Lambda^{n}(\mathcal{E})}{\mathcal{C}^{2}\Lambda^{n}(\mathcal{E})} \to \frac{\Lambda^{n+1}(\mathcal{E})}{\mathcal{C}^{2}\Lambda^{n+1}(\mathcal{E})} \to 0$ (42) at $\Lambda^{k}(\mathcal{E})/\mathcal{C}^{2}\Lambda^{k}(\mathcal{E})$. Internal Lagrangians of \mathcal{E} are elements of $\widetilde{E}_{1}^{0,n-1}(\mathcal{E})$. Noether: for $L \in \Lambda_{h}^{n}(\pi)$, there is $\omega_{L} \in \mathcal{C}\Lambda^{1}(\pi) \wedge \pi_{\infty}^{*}(\Lambda^{n-1}(M))$ s.t.

$$\mathcal{L}_{E_{\varphi}}(L) = \langle \mathbb{E}(L), \varphi \rangle + d_h(E_{\varphi \lrcorner} \omega_L), \qquad \varphi \in \varkappa(\pi)$$
(43)

If $\mathrm{E}(L)|_{\mathcal{E}}=0$, then $(L+\omega_L)|_{\mathcal{E}}\Rightarrow$ internal Lagrangian.

$$\tilde{d}_{1}^{0,n-1} \colon \tilde{E}_{1}^{0,n-1}(\mathcal{E}) \to E_{1}^{2,n-1}(\mathcal{E})$$
 (44)

The horizontal cohomology class of $L \in \Lambda_h^n(\pi)$ such that $E(L)|_{\mathcal{E}} = 0$ \Rightarrow a unique internal Lagrangian of $\mathcal{E} \Rightarrow$ presymplectic str. $\Omega \in \ker d_1^{2,n-1}$.

御天 不良天 不良天 二度二

Internal Lagrangian formalism

Denote by $\widetilde{E}_1^{0,k-1}(\mathcal{E})$ the cohomology group of

$$0 \to \mathcal{F}(\mathcal{E}) \to \Lambda^{1}(\mathcal{E}) \to \frac{\Lambda^{2}(\mathcal{E})}{\mathcal{C}^{2}\Lambda^{2}(\mathcal{E})} \dots \to \frac{\Lambda^{n}(\mathcal{E})}{\mathcal{C}^{2}\Lambda^{n}(\mathcal{E})} \to \frac{\Lambda^{n+1}(\mathcal{E})}{\mathcal{C}^{2}\Lambda^{n+1}(\mathcal{E})} \to 0$$
(42)

at $\Lambda^k(\mathcal{E})/\mathcal{C}^2\Lambda^k(\mathcal{E})$. Internal Lagrangians of \mathcal{E} are elements of $\widetilde{E}_1^{0,n-1}(\mathcal{E})$. Noether: for $L \in \Lambda_h^n(\pi)$, there is $\omega_L \in \mathcal{C}\Lambda^1(\pi) \wedge \pi_{\infty}^*(\Lambda^{n-1}(M))$ s.t.

$$\mathcal{L}_{E_{\varphi}}(L) = \langle \mathrm{E}(L), \varphi \rangle + d_{h}(E_{\varphi \sqcup} \omega_{L}), \qquad \varphi \in \varkappa(\pi)$$
(43)

If $E(L)|_{\mathcal{E}} = 0$, then $(L + \omega_L)|_{\mathcal{E}} \Rightarrow$ internal Lagrangian.

$$\widetilde{d}_1^{0,n-1} \colon \widetilde{E}_1^{0,n-1}(\mathcal{E}) \to E_1^{2,n-1}(\mathcal{E}) \tag{44}$$

The horizontal cohomology class of $L \in \Lambda_h^n(\pi)$ such that $\mathrm{E}(L)|_{\mathcal{E}} = 0$ \Rightarrow a unique internal Lagrangian of $\mathcal{E} \Rightarrow$ presymplectic str. $\Omega \in \ker d_1^{2,n-1}$.

通 ト イヨ ト イヨ ト ヨ うくで

Internal Lagrangian formalism

Denote by $\widetilde{E}_1^{0,k-1}(\mathcal{E})$ the cohomology group of

$$0 \to \mathcal{F}(\mathcal{E}) \to \Lambda^{1}(\mathcal{E}) \to \frac{\Lambda^{2}(\mathcal{E})}{\mathcal{C}^{2}\Lambda^{2}(\mathcal{E})} \dots \to \frac{\Lambda^{n}(\mathcal{E})}{\mathcal{C}^{2}\Lambda^{n}(\mathcal{E})} \to \frac{\Lambda^{n+1}(\mathcal{E})}{\mathcal{C}^{2}\Lambda^{n+1}(\mathcal{E})} \to 0$$
(42)

at $\Lambda^k(\mathcal{E})/\mathcal{C}^2\Lambda^k(\mathcal{E})$. Internal Lagrangians of \mathcal{E} are elements of $\widetilde{E}_1^{0,n-1}(\mathcal{E})$. Noether: for $L \in \Lambda_h^n(\pi)$, there is $\omega_L \in \mathcal{C}\Lambda^1(\pi) \wedge \pi_{\infty}^*(\Lambda^{n-1}(M))$ s.t.

$$\mathcal{L}_{E_{\varphi}}(L) = \langle \mathrm{E}(L), \varphi \rangle + d_{h}(E_{\varphi} \lrcorner \omega_{L}), \qquad \varphi \in \varkappa(\pi)$$
(43)

If $\mathrm{E}(L)|_{\mathcal{E}}=0$, then $(L+\omega_L)|_{\mathcal{E}}\Rightarrow$ internal Lagrangian.

$$\widetilde{d}_{1}^{0,n-1} \colon \widetilde{E}_{1}^{0,n-1}(\mathcal{E}) \to E_{1}^{2,n-1}(\mathcal{E})$$
(44)

The horizontal cohomology class of $L \in \Lambda_h^n(\pi)$ such that $E(L)|_{\mathcal{E}} = 0$ \Rightarrow a unique internal Lagrangian of $\mathcal{E} \Rightarrow$ presymplectic str. $\Omega \in \ker d_1^{2,n-1}$.

▲ 王
 シ へ ○

Let L be a Lagrangian s.t. $\mathrm{E}(L)|_{\mathcal{E}}=0$, and let Ω be the presymplectic str.

Noether's theorem

If a variational field E_{φ} preserves the horizontal cohomology class of L, then there is a conservation law $\xi \in E_1^{0,n-1}(\mathcal{E})$ such that for $X = E_{\varphi}|_{\mathcal{E}}$, $X \lrcorner \Omega = d_1 \xi$ (45)

Note: $d_1\xi|_{\mathcal{E}_X} = 0$. For an invariant system \mathcal{E}_X , we can replace (if possible): $\Omega \mapsto \mathcal{R}_X^{2,n-1}(\Omega)$ (46)

Let $I_F(\varphi) = E_{\varphi}(F)$. Then \mathcal{E} is ℓ -normal if for $I_{\mathcal{E}} = I_F|_{\mathcal{E}}$,

$$\nabla \circ l_{\mathcal{E}} = 0 \qquad \Rightarrow \qquad \nabla = 0 \tag{47}$$

Theorem 3

Suppose $X = E_{\varphi}|_{\mathcal{E}}$, $X_1 = E_{\varphi_1}|_{\mathcal{E}}$ are commuting symmetries of an ℓ -normal system \mathcal{E} . Let $\Omega \in E_1^{2, n-1}(\mathcal{E})$ be an X-invariant presymplectic structure, and let $\xi \in E_1^{0, n-1}(\mathcal{E})$ be a conservation law such that $X_1 \sqcup \Omega = d_1 \xi$. Then $X_1|_{\mathcal{E}_X} \sqcup \mathcal{R}_X^{2, n-1}(\Omega) = d_1 \mathcal{R}_X^{0, n-1}(\xi)$ (48)

Let L be a Lagrangian s.t. $\mathrm{E}(L)|_{\mathcal{E}}=0$, and let Ω be the presymplectic str.

Noether's theorem

If a variational field E_{φ} preserves the horizontal cohomology class of L, then there is a conservation law $\xi \in E_1^{0,n-1}(\mathcal{E})$ such that for $X = E_{\varphi}|_{\mathcal{E}}$, $X \lrcorner \Omega = d_1 \xi$ (45)

Note: $d_1\xi|_{\mathcal{E}_X} = 0$. For an invariant system \mathcal{E}_X , we can replace (if possible): $\Omega \mapsto \mathcal{R}_X^{2,n-1}(\Omega)$ (46)

Let $I_F(\varphi) = E_{\varphi}(F)$. Then \mathcal{E} is ℓ -normal if for $I_{\mathcal{E}} = I_F|_{\mathcal{E}}$,

$$\nabla \circ I_{\mathcal{E}} = 0 \qquad \Rightarrow \qquad \nabla = 0 \tag{47}$$

Theorem 3

Suppose $X = E_{\varphi}|_{\mathcal{E}}$, $X_1 = E_{\varphi_1}|_{\mathcal{E}}$ are commuting symmetries of an ℓ -normal system \mathcal{E} . Let $\Omega \in E_1^{2, n-1}(\mathcal{E})$ be an X-invariant presymplectic structure, and let $\xi \in E_1^{0, n-1}(\mathcal{E})$ be a conservation law such that $X_1 \sqcup \Omega = d_1 \xi$. Then $X_1|_{\mathcal{E}_X} \sqcup \mathcal{R}_X^{2, n-1}(\Omega) = d_1 \mathcal{R}_X^{0, n-1}(\xi)$ (48)

Invariant reduction for PDEs without bundle structures

Let Y be a symmetry of \mathcal{E} , and let $\omega \in E_0^{p,q}(\mathcal{E})$ represent a Y-invariant element of $E_1^{p,q}(\mathcal{E})$. Then there exists $\vartheta_Y \in E_0^{p,q-1}(\mathcal{E})$ s.t.

$$\mathcal{L}_{Y}\omega = d_{0}\vartheta_{Y} \tag{49}$$

A reduction is represented by the well-defined restriction of

$$\vartheta_{\mathbf{Y}} - \mathbf{Y} \lrcorner \omega$$
 (50)

to the system for Y-invariant solutions, characterized by the condition that at its points, the vectors of Y lie in the respective Cartan planes.

lan M. Anderson and Mark E. Fels proposed a reduction method, e.g.,

for elements of ker d_0 on \mathcal{E} arising from the invariant part of the zero page $E_0^{p,q}$ on $J^{\infty}(\pi)$. They considered some symmetries that generate flows preserving a fiber (not necessarily vector) bundle structure $\pi \colon E \to M$.

$$\mathcal{L}_Y \omega = 0 \qquad \Rightarrow \qquad (Y \lrcorner \omega)|_{\mathcal{E}} \tag{51}$$

n some cases, this approach \Rightarrow multi-reduction.

Invariant reduction for PDEs without bundle structures

Let Y be a symmetry of \mathcal{E} , and let $\omega \in E_0^{p,q}(\mathcal{E})$ represent a Y-invariant element of $E_1^{p,q}(\mathcal{E})$. Then there exists $\vartheta_Y \in E_0^{p,q-1}(\mathcal{E})$ s.t.

$$\mathcal{L}_{Y}\omega = d_{0}\vartheta_{Y} \tag{49}$$

A reduction is represented by the well-defined restriction of

$$\vartheta_{\mathbf{Y}} - \mathbf{Y} \lrcorner \, \omega \tag{50}$$

to the system for Y-invariant solutions, characterized by the condition that at its points, the vectors of Y lie in the respective Cartan planes.

lan M. Anderson and Mark E. Fels proposed a reduction method, e.g.,

for elements of ker d_0 on \mathcal{E} arising from the invariant part of the zero page $E_0^{p,q}$ on $J^{\infty}(\pi)$. They considered some symmetries that generate flows preserving a fiber (not necessarily vector) bundle structure $\pi: E \to M$.

$$\mathcal{L}_{Y}\omega = 0 \qquad \Rightarrow \qquad (Y \lrcorner \omega)|_{\mathcal{E}} \tag{51}$$

In some cases, this approach \Rightarrow multi-reduction.

Multi-reduction

Proposition. Let $X = E_{\omega}|_{\mathcal{E}}$ and $X_1 = E_{\omega_1}|_{\mathcal{E}}$ be symmetries of an infinitely prolonged system \mathcal{E} such that $[X, X_1] = cX$ for some $c \in \mathbb{R}$. Suppose $\omega \in E_0^{p,q}(\mathcal{E})$ represents an element of $E_1^{p,q}(\mathcal{E})$ that is both X-invariant and X_1 -invariant, and $E_1^{p,q-1}(\mathcal{E}) = 0$. Let $\mathcal{L}_X \omega = d_0 \vartheta$. 1) If $\vartheta|_{\mathcal{E}_{Y}} \Rightarrow X_{1}|_{\mathcal{E}_{Y}}$ -invariant non-trivial element of $E_{1}^{p,q-1}(\mathcal{E}_{X})$, then c=02) If c = 0, then $\vartheta|_{\mathcal{E}_X}$ represents an $X_1|_{\mathcal{E}_X}$ -invariant element of $E_1^{p, q-1}(\mathcal{E}_X)$ **Proof.** There is $\vartheta_1 \in E_0^{p,q-1}(\mathcal{E})$ such that $\mathcal{L}_{X_1}\omega = d_0\vartheta_1$ and hence,

$$c\vartheta - (\mathcal{L}_X\vartheta_1 - \mathcal{L}_{X_1}\vartheta) \in \operatorname{im} d_0.$$
 (53)

Then for the restrictions to \mathcal{E}_X , one has

$$\varepsilon\vartheta|_{\mathcal{E}_{X}}+\mathcal{L}_{X_{1}|_{\mathcal{E}_{X}}}(\vartheta|_{\mathcal{E}_{X}})\in \operatorname{im} d_{0}.$$
(54)

In the case c = 0, the reduction of a conservation law under X and then under X_1 differs from its reduction under X_1 and then under X in sign.

Multi-reduction

Proposition. Let $X = E_{\omega}|_{\mathcal{E}}$ and $X_1 = E_{\omega_1}|_{\mathcal{E}}$ be symmetries of an infinitely prolonged system \mathcal{E} such that $[X, X_1] = cX$ for some $c \in \mathbb{R}$. Suppose $\omega \in E_0^{p,q}(\mathcal{E})$ represents an element of $E_1^{p,q}(\mathcal{E})$ that is both X-invariant and X_1 -invariant, and $E_1^{p,q-1}(\mathcal{E}) = 0$. Let $\mathcal{L}_X \omega = d_0 \vartheta$. 1) If $\vartheta|_{\mathcal{E}_{Y}} \Rightarrow X_{1}|_{\mathcal{E}_{Y}}$ -invariant non-trivial element of $E_{1}^{p,q-1}(\mathcal{E}_{X})$, then c=02) If c = 0, then $\vartheta|_{\mathcal{E}_X}$ represents an $X_1|_{\mathcal{E}_Y}$ -invariant element of $E_1^{p,q-1}(\mathcal{E}_X)$ **Proof.** There is $\vartheta_1 \in E_0^{p,q-1}(\mathcal{E})$ such that $\mathcal{L}_{X_1}\omega = d_0\vartheta_1$ and hence, $d_0(c\vartheta) = \mathcal{L}_{cX}\omega = \mathcal{L}_{[X,X_1]}\omega = \mathcal{L}_X d_0\vartheta_1 - \mathcal{L}_{X_1} d_0\vartheta = d_0(\mathcal{L}_X\vartheta_1 - \mathcal{L}_{X_1}\vartheta)$ (52) Since $E_1^{p, q-1}(\mathcal{E}) = 0$, we get $c\vartheta - (\mathcal{L}_X\vartheta_1 - \mathcal{L}_{X_1}\vartheta) \in \operatorname{im} d_0.$ (53)

Then for the restrictions to \mathcal{E}_X , one has

$$c\vartheta|_{\mathcal{E}_{X}} + \mathcal{L}_{X_{1}|_{\mathcal{E}_{X}}}(\vartheta|_{\mathcal{E}_{X}}) \in \operatorname{im} d_{0}.$$
(54)

In the case c = 0, the reduction of a conservation law under X and then under X_1 differs from its reduction under X_1 and then under X in sign.

Multi-reduction

Proposition. Let $X = E_{\varphi}|_{\mathcal{E}}$ and $X_1 = E_{\varphi_1}|_{\mathcal{E}}$ be symmetries of an infinitely prolonged system \mathcal{E} such that $[X, X_1] = cX$ for some $c \in \mathbb{R}$. Suppose $\omega \in E_0^{p,q}(\mathcal{E})$ represents an element of $E_1^{p,q}(\mathcal{E})$ that is both X-invariant and X_1 -invariant, and $E_1^{p,q-1}(\mathcal{E}) = 0$. Let $\mathcal{L}_X \omega = d_0 \vartheta$. 1) If $\vartheta|_{\mathcal{E}_{Y}} \Rightarrow X_{1}|_{\mathcal{E}_{Y}}$ -invariant non-trivial element of $E_{1}^{p,q-1}(\mathcal{E}_{X})$, then c=02) If c = 0, then $\vartheta|_{\mathcal{E}_X}$ represents an $X_1|_{\mathcal{E}_Y}$ -invariant element of $E_1^{p,q-1}(\mathcal{E}_X)$ **Proof.** There is $\vartheta_1 \in E_0^{p,q-1}(\mathcal{E})$ such that $\mathcal{L}_{X_1}\omega = d_0\vartheta_1$ and hence, $d_0(c\vartheta) = \mathcal{L}_{cX}\omega = \mathcal{L}_{[X,X_1]}\omega = \mathcal{L}_X d_0\vartheta_1 - \mathcal{L}_{X_1} d_0\vartheta = d_0(\mathcal{L}_X\vartheta_1 - \mathcal{L}_{X_1}\vartheta)$ (52) Since $E_1^{p, q-1}(\mathcal{E}) = 0$, we get

$$c\vartheta - (\mathcal{L}_X\vartheta_1 - \mathcal{L}_{X_1}\vartheta) \in \operatorname{im} d_0.$$
 (53)

Then for the restrictions to \mathcal{E}_X , one has

$$c\vartheta|_{\mathcal{E}_{\mathbf{X}}} + \mathcal{L}_{X_1|_{\mathcal{E}_{\mathbf{X}}}}(\vartheta|_{\mathcal{E}_{\mathbf{X}}}) \in \operatorname{im} d_0.$$
(54)

In the case c = 0, the reduction of a conservation law under X and then under X_1 differs from its reduction under X_1 and then under X in sign.

Kostya Druzhkov

Reduction of variational principles

If
$$\omega \in \widetilde{E}_0^{0,k}(\mathcal{E})$$
 represents an X-invariant element of $\widetilde{E}_1^{0,k}(\mathcal{E})$, then
 $\mathcal{L}_X \omega = \widetilde{d}_0 \vartheta$ (55)

for some $\vartheta \in \widetilde{E}_0^{0, k-1}(\mathcal{E})$. If $k = n - 1 \Rightarrow$ the reduction mechanism for X-invariant internal Lagrangians

$$\widetilde{E}_1^{0,n-1}(\mathcal{E})^X \to \widetilde{E}_1^{0,n-2}(\mathcal{E}_X)$$
(56)

If $\widetilde{E}_1^{0,\,n-2}(\mathcal{E})|_{\mathcal{E}_{\boldsymbol{X}}}=0$, the reduction is well-defined.

Let us consider variational principles determined by $\widetilde{E}_1^{0,0}(\mathcal{E}_X)$. In terms of the reduction under a single symmetry, they appear if n = 2.

Denote by $\pi_{\mathcal{E}_{X}}$ the projection $\pi_{\mathcal{E}}|_{\mathcal{E}_{X}}$,

$$\pi_{\mathcal{E}_X} \colon \mathcal{E}_X \to M \tag{57}$$

Suppose $\varrho \in \Lambda^1(\mathcal{E}_X)$ represents an element of $\widetilde{E}_1^{0,0}(\mathcal{E}_X)$, i.e.,

$$d\,\varrho\in\mathcal{C}^2\Lambda^2(\mathcal{E}_X)\tag{58}$$

16 / 30

Reduction of variational principles

If
$$\omega \in \widetilde{E}_0^{0,k}(\mathcal{E})$$
 represents an X-invariant element of $\widetilde{E}_1^{0,k}(\mathcal{E})$, then
 $\mathcal{L}_X \omega = \widetilde{d}_0 \vartheta$ (55)

for some $\vartheta \in \widetilde{E}_0^{0, k-1}(\mathcal{E})$. If $k = n - 1 \Rightarrow$ the reduction mechanism for X-invariant internal Lagrangians

$$\widetilde{E}_1^{0,n-1}(\mathcal{E})^X \to \widetilde{E}_1^{0,n-2}(\mathcal{E}_X)$$
(56)

If $\widetilde{E}_1^{0,\,n-2}(\mathcal{E})|_{\mathcal{E}_{\boldsymbol{X}}}=0$, the reduction is well-defined.

Let us consider variational principles determined by $\widetilde{E}_1^{0,0}(\mathcal{E}_X)$. In terms of the reduction under a single symmetry, they appear if n = 2.

Denote by $\pi_{\mathcal{E}_X}$ the projection $\pi_{\mathcal{E}}|_{\mathcal{E}_X}$,

$$\pi_{\mathcal{E}_{\boldsymbol{X}}} \colon \mathcal{E}_{\boldsymbol{X}} \to \boldsymbol{M} \tag{57}$$

Suppose $\varrho \in \Lambda^1(\mathcal{E}_X)$ represents an element of $\widetilde{E}_1^{0,0}(\mathcal{E}_X)$, i.e.,

$$d\varrho \in \mathcal{C}^2 \Lambda^2(\mathcal{E}_X) \tag{58}$$

Suppose $\varrho \in \Lambda^1(\mathcal{E}_X)$ represents an element of $\widetilde{E}_1^{0,0}(\mathcal{E}_X)$, i.e.,

$$d\varrho \in \mathcal{C}^2 \Lambda^2(\mathcal{E}_X) \tag{59}$$

Let $\gamma \colon \mathbb{R} \times M \to \mathcal{E}_X$ be a mapping such that for every $\tau \in \mathbb{R}$, the map

$$\gamma(\tau) \colon M \to \mathcal{E}_X, \ \gamma(\tau) \colon x \mapsto \gamma(\tau, x)$$
 (60)

is a section of $\pi_{\mathcal{E}_{X}}$. Then $\gamma(au)$ is a path in sections of $\pi_{\mathcal{E}_{X}}$.

Stationary points

A section $\sigma \colon M \to \mathcal{E}_X$ is a *stationary point* of $\varrho + d(\mathcal{F}(\mathcal{E}_X)) \in \widetilde{E}_1^{0,0}(\mathcal{E}_X)$, if

$$\frac{d}{d\tau}\Big|_{\tau=0}\int_{N}\gamma(\tau)^{*}(\varrho)=0$$
(61)

holds for any embedded, compact, 1-dimensional submanifold $N \subset M$ and any path $\gamma(\tau)$ in sections of $\pi_{\mathcal{E}_X}$ such that $\gamma(0) = \sigma$ and each point of the boundary ∂N is fixed.

We assume that each appropriate N is oriented.

Kostya Druzhkov

All solutions of $\pi_{\mathcal{E}_X}$ are stationary points of any element of $\widetilde{E}_1^{0,0}(\mathcal{E}_X)$. Denote by 0_M the zero section $0_M : M \to \mathbb{R} \times M$, $0_M(x) = (0, x)$. Then

$$\frac{d}{d\tau}\Big|_{\tau=0}\int_{N}\gamma(\tau)^{*}(\varrho)=\int_{N}0_{M}^{*}(\partial_{\tau}\,\lrcorner\,\gamma^{*}(d\varrho))$$
(62)

And the variational principle is determined by $d\varrho \in E_1^{2,0}(\mathcal{E}_X)$.

darrho is a field of operators from $\pi_{\mathcal{E}_{m{X}}}$ -vertical vectors to Cartan 1-forms

If \mathcal{E}_X is a finite-dimensional smooth manifold and the field of operators is non-degenerate at each point of \mathcal{E}_X , the variational principle yields only solutions to $\pi_{\mathcal{E}_X}$.

In this case, the restrictions of $d\varrho$ (or $-d\varrho$) to fibers of $\pi_{\mathcal{E}_X}$ are invertible and determine a Poisson bivector.

It maps differentials of constants of X-invariant motion to symmetries

the (local) flow of a vector field corresponding to a constant of X-invariant motion preserves the differential form $d\rho$, and hence, it preserves the kernel of $d\rho$ on \mathcal{E}_X , i.e., the Cartan distribution.

イロト イポト イヨト イヨト

All solutions of $\pi_{\mathcal{E}_X}$ are stationary points of any element of $\widetilde{E}_1^{0,0}(\mathcal{E}_X)$. Denote by 0_M the zero section $0_M : M \to \mathbb{R} \times M$, $0_M(x) = (0, x)$. Then

$$\frac{d}{d\tau}\Big|_{\tau=0}\int_{N}\gamma(\tau)^{*}(\varrho)=\int_{N}0_{M}^{*}(\partial_{\tau}\,\lrcorner\,\gamma^{*}(d\varrho))$$
(62)

And the variational principle is determined by $d\varrho \in E_1^{2,0}(\mathcal{E}_X)$.

$d\varrho$ is a field of operators from $\pi_{\mathcal{E}_X}$ -vertical vectors to Cartan 1-forms

If \mathcal{E}_X is a finite-dimensional smooth manifold and the field of operators is non-degenerate at each point of \mathcal{E}_X , the variational principle yields only solutions to $\pi_{\mathcal{E}_X}$.

In this case, the restrictions of $d\varrho$ (or $-d\varrho$) to fibers of $\pi_{\mathcal{E}_X}$ are invertible and determine a Poisson bivector.

It maps differentials of constants of X-invariant motion to symmetries

the (local) flow of a vector field corresponding to a constant of X-invariant motion preserves the differential form $d\varrho$, and hence, it preserves the kernel of $d\varrho$ on \mathcal{E}_X , i.e., the Cartan distribution.

< A > < E

Consider a system of evolution equations F = 0, where $F \in \varkappa(\pi)$,

$$F^{i} = u_{t}^{i} - f^{i}(x, u, u_{x^{1}}, \dots, u_{x^{n-1}}, \dots), \qquad t = x^{n}$$
(63)

Then $\mathcal{F}(\mathcal{E}) \subset \mathcal{F}(\pi)$ and $E_0^{0,n-1}(\mathcal{E}) \subset \Lambda_h^{n-1}(\pi)$. Put

$$\varkappa(\mathcal{E}) = \varkappa(\pi)|_{\mathcal{E}} \subset \varkappa(\pi)$$
 (64)

and introduce

$$\widehat{\varkappa}(\mathcal{E}) = \widehat{\varkappa}(\pi)|_{\mathcal{E}} \subset \widehat{\varkappa}(\pi) = \operatorname{Hom}_{\mathcal{F}(\pi)}(\varkappa(\pi), \Lambda_h^n(\pi)).$$
(65)

Note that $\varphi \in \varkappa(\mathcal{E}) \subset \varkappa(\pi)$ is a symmetry of \mathcal{E} iff

$$E_{\varphi}(F) = I_{\varphi}(F) \,. \tag{66}$$

Algorithm for conservation laws

Let $X = E_{\varphi}|_{\mathcal{E}}$ be a symmetry of an evolution system $\mathcal{E}, \varphi \in \varkappa(\mathcal{E}) \subset \varkappa(\pi)$. Suppose $\omega \in E_0^{0,n-1}(\mathcal{E})$ represents an X-invariant conservation law. There exist $\psi \in \widehat{\varkappa}(\mathcal{E})$ and a total differential operator $A_1 \colon \varkappa(\pi) \to \Lambda_h^{n-1}(\pi)$ s.t.

$$d_h\omega = \langle \psi, F \rangle + d_h(A_1F) \tag{67}$$

Besides, integrating by parts, we obtain

$$\langle \psi, I_{\varphi}(F) \rangle = \langle I_{\varphi}^{*}(\psi), F \rangle + d_{h}(A_{2}F),$$
 (68)

where $A_2 \colon \varkappa(\pi) o \Lambda_h^{n-1}(\pi)$ is a total differential operator. Next, we obtain

$$d_h(\mathcal{L}_{E_{\varphi}}\omega - \mathcal{L}_{E_{\varphi}}(A_1F) - A_2F) = 0.$$
(69)

Assuming that the de Rham cohomology group $H^{n-1}_{dR}(M)$ is trivial, one can apply the total homotopy formula to find $\widehat{\vartheta} \in \Lambda^{n-2}_h(\pi)$ s.t. on $J^{\infty}(\pi)$,

$$\mathcal{L}_{E_{\varphi}}\omega - \mathcal{L}_{E_{\varphi}}(A_{1}F) - A_{2}F = d_{h}\widehat{\vartheta}.$$
 (70)

Restricting $\widehat{\vartheta}$ to \mathcal{E} , we get a desired ϑ .

20 / 30

Ex. potential Kaup-Boussinesq and its presymplectic str.

$$v_t = -\frac{v_x^2}{2} - \eta_x$$
, $\eta_t = -v_x \eta_x - \frac{1}{4} v_{xxx}$. (71)

Here $u^1 = v$, $u^2 = \eta$, $F^1 = v_t + v_x^2/2 + \eta_x$, $F^2 = \eta_t + v_x \eta_x + v_{xxx}/4$. Consider the symmetry $X = E_{\varphi}|_{\mathcal{E}}$,

$$\varphi^{1} = \frac{v_{xxx}}{3} + 2v_{x}\eta_{x} + \frac{v_{x}^{3}}{3}, \ \varphi^{2} = \frac{\eta_{xxx}}{3} + \frac{v_{x}}{2}v_{xxx} + \frac{v_{xx}^{2}}{4} + v_{x}^{2}\eta_{x} + \eta_{x}^{2}$$
(72)

and the X-invariant presymplectic structure represented by $\omega \in E^{2,1}_0(\mathcal{E}),$

$$\omega = -\bar{\theta}_x^1 \wedge \bar{\theta}^2 \wedge dx + \ldots \wedge dt, \qquad \bar{\theta}_\alpha^i = \theta_\alpha^i|_{\mathcal{E}}$$
(73)

It is generated by the Lagrangian

$$L = \lambda \, dt \wedge dx \,, \quad \lambda = -\frac{1}{2} \Big(v_t \eta_x + v_x \eta_t + v_x^2 \eta_x + \eta_x^2 + \frac{1}{4} v_x v_{xxx} \Big) \quad (74)$$

Applying integration by parts, we find that $\mathcal{L}_X \omega = d_0 \vartheta$ for

$$\vartheta = -\frac{1}{3}\bar{\theta}_{xxx}^{1}\wedge\bar{\theta}^{2} + \frac{1}{3}\bar{\theta}_{xx}^{1}\wedge\bar{\theta}_{x}^{2} - \frac{1}{3}\bar{\theta}_{x}^{1}\wedge\bar{\theta}_{xx}^{2} - \bar{\theta}_{x}^{1}\wedge\frac{1}{2}v_{x}\bar{\theta}_{xx}^{1} - (v_{x}^{2} + 2\eta_{x})\bar{\theta}_{x}^{1}\wedge\bar{\theta}^{2} - 2v_{x}\bar{\theta}_{x}^{2}\wedge\bar{\theta}^{2}.$$
(75)

The system \mathcal{E}_X is given by the infinite prolongation of the pKB and

$$v_{xxx} = -6v_x\eta_x - v_x^3, \qquad \eta_{xxx} = 6v_x^2\eta_x + \frac{3}{2}v_x^4 - \frac{3}{4}v_{xx}^2 - 3\eta_x^2.$$
(76)

Finally, reduction of the presymplectic structure yields $\vartheta|_{\mathcal{E}_X} \in E_1^{2,0}(\mathcal{E}_X)$,

$$\vartheta|_{\mathcal{E}_{X}} = \frac{1}{3}\tilde{\theta}_{xx}^{1} \wedge \tilde{\theta}_{x}^{2} - \frac{1}{3}\tilde{\theta}_{x}^{1} \wedge \tilde{\theta}_{xx}^{2} - \frac{1}{2}\nu_{x}\tilde{\theta}_{x}^{1} \wedge \tilde{\theta}_{xx}^{1}, \qquad \tilde{\theta}_{kx}^{i} = \bar{\theta}_{kx}^{i}|_{\mathcal{E}_{X}}.$$
 (77)

Let us demonstrate how the Noether theorem for invariant solutions works.

$$Y_{\neg}(\vartheta|_{\mathcal{E}_{X}}) = d\left(\frac{1}{3}v_{xx}\eta_{xx} + v_{x}\eta_{x}^{2} + \frac{1}{3}v_{x}^{3}\eta_{x} + \frac{1}{4}v_{x}v_{xx}^{2}\right), \qquad Y = \partial_{x}.$$
 (78)

Then the symmetry Y corresponds to the constant of X-invariant motion

$$\frac{1}{3}v_{xx}\eta_{xx} + v_x\eta_x^2 + \frac{1}{3}v_x^3\eta_x + \frac{1}{4}v_xv_{xx}^2.$$
(79)

Kostya Druzhkov

Applying integration by parts, we find that $\mathcal{L}_X \omega = d_0 artheta$ for

$$\vartheta = -\frac{1}{3}\bar{\theta}_{xxx}^{1}\wedge\bar{\theta}^{2} + \frac{1}{3}\bar{\theta}_{xx}^{1}\wedge\bar{\theta}_{x}^{2} - \frac{1}{3}\bar{\theta}_{x}^{1}\wedge\bar{\theta}_{xx}^{2} - \bar{\theta}_{x}^{1}\wedge\frac{1}{2}v_{x}\bar{\theta}_{xx}^{1} - (v_{x}^{2} + 2\eta_{x})\bar{\theta}_{x}^{1}\wedge\bar{\theta}^{2} - 2v_{x}\bar{\theta}_{x}^{2}\wedge\bar{\theta}^{2}.$$
(75)

The system \mathcal{E}_X is given by the infinite prolongation of the pKB and

$$v_{xxx} = -6v_x\eta_x - v_x^3, \qquad \eta_{xxx} = 6v_x^2\eta_x + \frac{3}{2}v_x^4 - \frac{3}{4}v_{xx}^2 - 3\eta_x^2.$$
(76)

Finally, reduction of the presymplectic structure yields $\vartheta|_{\mathcal{E}_X} \in E_1^{2,0}(\mathcal{E}_X)$,

$$\vartheta|_{\mathcal{E}_{X}} = \frac{1}{3}\tilde{\theta}_{xx}^{1} \wedge \tilde{\theta}_{x}^{2} - \frac{1}{3}\tilde{\theta}_{x}^{1} \wedge \tilde{\theta}_{xx}^{2} - \frac{1}{2}\nu_{x}\tilde{\theta}_{x}^{1} \wedge \tilde{\theta}_{xx}^{1}, \qquad \tilde{\theta}_{kx}^{i} = \bar{\theta}_{kx}^{i}|_{\mathcal{E}_{X}}.$$
 (77)

Let us demonstrate how the Noether theorem for invariant solutions works.

$$Y_{\neg}(\vartheta|_{\mathcal{E}_{X}}) = d\left(\frac{1}{3}v_{xx}\eta_{xx} + v_{x}\eta_{x}^{2} + \frac{1}{3}v_{x}^{3}\eta_{x} + \frac{1}{4}v_{x}v_{xx}^{2}\right), \qquad Y = \partial_{x}.$$
 (78)

Then the symmetry Y corresponds to the constant of X-invariant motion

$$\frac{1}{3}v_{xx}\eta_{xx} + v_x\eta_x^2 + \frac{1}{3}v_x^3\eta_x + \frac{1}{4}v_xv_{xx}^2.$$
(79)

Kostya Druzhkov

22 / 30

On presymplectic reduction

Coordinates on \mathcal{E}_X : $(t, x, v, \eta, v_x, \eta_x, v_{xx}, \eta_{xx})$.

$$\vartheta|_{\mathcal{E}_{X}} = \frac{1}{3}\tilde{\theta}_{xx}^{1} \wedge \tilde{\theta}_{x}^{2} - \frac{1}{3}\tilde{\theta}_{x}^{1} \wedge \tilde{\theta}_{xx}^{2} - \frac{1}{2}v_{x}\tilde{\theta}_{x}^{1} \wedge \tilde{\theta}_{xx}^{1}, \qquad \tilde{\theta}_{kx}^{i} = \bar{\theta}_{kx}^{i}|_{\mathcal{E}_{X}}.$$
 (80)

Taking the quotient by the group action $v \mapsto v + \epsilon_1$, $\eta \mapsto \eta + \epsilon_2$ on \mathcal{E}_X , we get the differential covering

$$(t, x, v, \eta, v_x, \eta_x, v_{xx}, \eta_{xx}) \mapsto (t, x, v_x, \eta_x, v_{xx}, \eta_{xx})$$

$$(81)$$

from \mathcal{E}_X to the quotient system. Then $\vartheta|_{\mathcal{E}_X}$ is the lift of the closed 2-form that has the same expression in the coordinates on the quotient system.

Liouville integrability of the quotient system

This 2-form is non-degenerate on fibers of the quotient system bundle

$$\widetilde{\pi}_{\mathcal{E}_{\mathbf{X}}}: (t, x, v_{\mathbf{X}}, \eta_{\mathbf{X}}, v_{\mathbf{X}\mathbf{X}}, \eta_{\mathbf{X}\mathbf{X}}) \mapsto (t, \mathbf{X})$$
(82)

 \Rightarrow Poisson bivector \Rightarrow Liouville integrability (inherited from \mathcal{E} via ∂_x , ∂_t).

Ex. the nonlinear Schrödinger equation and var. principle

$$u_t = -\frac{v_{xx}}{2} + (u^2 + v^2)v$$
, $v_t = \frac{u_{xx}}{2} - (u^2 + v^2)u$. (83)

Here $u^1=u,\;u^2=v.$ The NLS admits the Noether symmetry $X={\it E}_arphi|_{{\cal E}}$

$$\varphi^1 = u_{xxx} - 6(u^2 + v^2)u_x, \qquad \varphi^2 = v_{xxx} - 6(u^2 + v^2)v_x.$$
 (84)

The Lagrangian of the NLS

$$L = -\frac{1}{2} \left(uv_t - u_t v + \frac{u_x^2 + v_x^2}{2} + \frac{(u^2 + v^2)^2}{2} \right) dt \wedge dx$$
 (85)

gives rise to the presymplectic structure represented by

$$\omega = -\bar{\theta}^1 \wedge \bar{\theta}^2 \wedge dx + \ldots \wedge dt , \qquad \bar{\theta}^i_\alpha = \theta^i_\alpha |_{\mathcal{E}} .$$

We take $(t, x, u, v, u_x, v_x, u_{xx}, v_{xx})$ as coordinates on \mathcal{E}_X . Then $\mathcal{L}_X \omega = d_0 \vartheta$

$$\vartheta = -\bar{\theta}_{xx}^1 \wedge \bar{\theta}^2 + \bar{\theta}_x^1 \wedge \bar{\theta}_x^2 - \bar{\theta}^1 \wedge \bar{\theta}_{xx}^2 + 6(u^2 + v^2) \bar{\theta}^1 \wedge \bar{\theta}^2.$$
(86)

The reduction of the presymplectic structure is $\vartheta|_{\mathcal{E}_X}$.

Reduction of the internal Lagrangian

The reduction of the int. Lagrangian is represented by any $\varrho \in \Lambda^1(\mathcal{E}_X)$ s.t.

$$-d\varrho = \vartheta|_{\mathcal{E}_{\mathbf{X}}} \tag{87}$$

For instance, one can take

$$\begin{split} \varrho &= u \, dv_{xx} - v \, du_{xx} - u_x \, dv_x + 6 \, u^2 \, v \, du - 6 \, uv^2 \, dv + (u_x \, v_{xx} - v_x \, u_{xx}) \, dx \\ &+ \left(- \frac{u_{xx}^2 + v_{xx}^2}{4} + (u^2 + v^2) \left(u u_{xx} + v v_{xx} - (u^2 + v^2)^2 \right) + (u v_x - v u_x)^2 \right) dt \\ \text{Let } \sigma \colon \mathbb{R}^2 \to \mathcal{E}_X \text{ be a section of } \pi_{\mathcal{E}_X} \colon (t, x, u, v, u_x, v_x, u_{xx}, v_{xx}) \mapsto (t, x) \\ \sigma \colon u = a_0(t, x), \, v = b_0(t, x), \, u_x = a_1, \, v_x = b_1, \, u_{xx} = a_2, \, v_{xx} = b_2 \quad (88) \\ \text{Choose a compact submanifold } N^1 \subset \mathbb{R}^2. \text{ It suffices to consider paths} \\ \gamma(\tau) \colon \begin{array}{c} u = a_0 + \tau \delta a_0, \quad u_x = a_1 + \tau \delta a_1, \quad u_{xx} = a_2 + \tau \delta a_2, \\ v = b_0 + \tau \delta b_0, \quad v_x = b_1 + \tau \delta b_1, \quad v_{xx} = b_2 + \tau \delta b_2, \end{array}$$

where $\delta a_i, \delta b_i \in C^{\infty}(\mathbb{R}^2)$ are arbitrary functions that vanish on ∂N .

Reduction of the internal Lagrangian

The reduction of the int. Lagrangian is represented by any $\varrho \in \Lambda^1(\mathcal{E}_X)$ s.t.

$$-d\varrho = \vartheta|_{\mathcal{E}_{\mathbf{X}}} \tag{87}$$

For instance, one can take

$$\begin{split} \varrho &= u \, dv_{xx} - v \, du_{xx} - u_x \, dv_x + 6 \, u^2 \, v \, du - 6 \, uv^2 \, dv + (u_x \, v_{xx} - v_x \, u_{xx}) \, dx \\ &+ \left(- \frac{u_{xx}^2 + v_{xx}^2}{4} + (u^2 + v^2) \left(u \, u_{xx} + v \, v_{xx} - (u^2 + v^2)^2 \right) + (u \, v_x - v \, u_x)^2 \right) dt \\ \text{Let } \sigma \colon \mathbb{R}^2 \to \mathcal{E}_X \text{ be a section of } \pi_{\mathcal{E}_X} \colon (t, x, u, v, u_x, v_x, u_{xx}, v_{xx}) \mapsto (t, x) \\ \sigma \colon u = a_0(t, x), \, v = b_0(t, x), \, u_x = a_1, \, v_x = b_1, \, u_{xx} = a_2, \, v_{xx} = b_2 \end{split}$$
Choose a compact submanifold $N^1 \subset \mathbb{R}^2$. It suffices to consider paths

$$y(\tau): \qquad u = a_0 + \tau \delta a_0, \quad u_x = a_1 + \tau \delta a_1, \quad u_{xx} = a_2 + \tau \delta a_2, \\ v = b_0 + \tau \delta b_0, \quad v_x = b_1 + \tau \delta b_1, \quad v_{xx} = b_2 + \tau \delta b_2,$$
(89)

where $\delta a_i, \delta b_i \in C^{\infty}(\mathbb{R}^2)$ are arbitrary functions that vanish on ∂N .

-

$$\frac{d}{d\tau}\Big|_{\tau=0}\int_{N}\gamma(\tau)^{*}(\varrho)=\int_{N}\sigma^{*}(w\,\lrcorner\,d\varrho)\,,\tag{90}$$

where

$$w = \delta a_0 \partial_u + \delta b_0 \partial_v + \delta a_1 \partial_{u_x} + \delta b_1 \partial_{v_x} + \delta a_2 \partial_{u_{xx}} + \delta b_2 \partial_{v_{xx}}.$$
(91)

At any point of \mathcal{E}_X , $w \lrcorner d\varrho = 0$ iff w = 0. Then $d\varrho = -\vartheta|_{\mathcal{E}_X}$ defines the field of non-degenerate operators from $\pi_{\mathcal{E}_X}$ -vertical vectors to Cartan forms.

Hence,

a section $\sigma \colon \mathbb{R}^2 \to \mathcal{E}_X$ is a stationary point of the reduction of the internal Lagrangian if and only if σ is an X-invariant solution of the NLS.

Liouville integrability

The Poisson bracket is determined by the inverse of $-d\rho$ on fibers of $\pi_{\mathcal{E}_{\mathbf{x}}}$,

$$\mathcal{P} = \partial_{u_{xx}} \wedge \partial_{v} - \partial_{u_{x}} \wedge \partial_{v_{x}} + \partial_{u} \wedge \partial_{v_{xx}} + 6(u^{2} + v^{2})\partial_{u_{xx}} \wedge \partial_{v_{xx}}$$
(92)

The NLS admits the 4-dimensional commutative Lie algebra

X,
$$Y_1 = \partial_x$$
, $Y_2 = \partial_t$, $Y_3 = v \partial_u - u \partial_v + v_x \partial_{u_x} - u_x \partial_{v_x} + v_{xx} \partial_{u_{xx}} - u_{xx} \partial_{v_{xx}} + \dots$
Then \mathcal{E}_X inherits the symmetries $Y_1|_{\mathcal{E}_X}$, $Y_2|_{\mathcal{E}_X}$, $Y_3|_{\mathcal{E}_X}$. They give rise to the mutually Poisson commuting constants of X-invariant motion

$$\begin{split} &I_{1} = u_{x}v_{xx} - v_{x}u_{xx} ,\\ &I_{2} = -\frac{u_{xx}^{2} + v_{xx}^{2}}{4} + (u^{2} + v^{2})(uu_{xx} + vv_{xx} - (u^{2} + v^{2})^{2}) + (uv_{x} - vu_{x})^{2},\\ &I_{3} = -uu_{xx} - vv_{xx} + \frac{3(u^{2} + v^{2})^{2} + u_{x}^{2} + v_{x}^{2}}{2}, \end{split}$$

respectively. Since I_1 , I_2 , I_3 are independent, one can say that \mathcal{E}_X is Liouville integrable, and its integrability is inherited from the NLS via

Kostya Druzhkov

Liouville integrability

The Poisson bracket is determined by the inverse of $-d\rho$ on fibers of $\pi_{\mathcal{E}_{\mathbf{x}}}$,

$$\mathcal{P} = \partial_{u_{xx}} \wedge \partial_{v} - \partial_{u_{x}} \wedge \partial_{v_{x}} + \partial_{u} \wedge \partial_{v_{xx}} + 6(u^{2} + v^{2})\partial_{u_{xx}} \wedge \partial_{v_{xx}}$$
(92)

The NLS admits the 4-dimensional commutative Lie algebra

X,
$$Y_1 = \partial_x$$
, $Y_2 = \partial_t$, $Y_3 = v \partial_u - u \partial_v + v_x \partial_{u_x} - u_x \partial_{v_x} + v_{xx} \partial_{u_{xx}} - u_{xx} \partial_{v_{xx}} + \dots$
Then \mathcal{E}_X inherits the symmetries $Y_1|_{\mathcal{E}_X}$, $Y_2|_{\mathcal{E}_X}$, $Y_3|_{\mathcal{E}_X}$. They give rise to the mutually Poisson commuting constants of X-invariant motion

$$\begin{split} &I_{1} = u_{x}v_{xx} - v_{x}u_{xx} ,\\ &I_{2} = -\frac{u_{xx}^{2} + v_{xx}^{2}}{4} + (u^{2} + v^{2})(uu_{xx} + vv_{xx} - (u^{2} + v^{2})^{2}) + (uv_{x} - vu_{x})^{2},\\ &I_{3} = -uu_{xx} - vv_{xx} + \frac{3(u^{2} + v^{2})^{2} + u_{x}^{2} + v_{x}^{2}}{2}, \end{split}$$

respectively. Since I_1 , I_2 , I_3 are independent, one can say that \mathcal{E}_X is Liouville integrable, and its integrability is inherited from the NLS via invariant reduction.

Kostya Druzhkov

27 / 30

What if a bundle of the form $\pi_{\mathcal{E}_{X}}$ is non-trivial?

For the NLS, the bundle $\pi_{\mathcal{E}_{X}}$ is trivial. Since

$$\{I_1, \} = \partial_x - D_x|_{\mathcal{E}_X}$$
 and $\{I_2, \} = \partial_t - D_t|_{\mathcal{E}_X}$, (93)

a function $f \in \mathcal{F}(\mathcal{E}_X)$ that does not depend on t and x is a constant of X-invariant motion if and only if

$$\{I_1, f\} = \{I_2, f\} = 0.$$
(94)

Thus I_1 and I_2 can be interpreted as Hamiltonians of two commuting vector fields that, together, reproduce \mathcal{E}_X .

However, this interpretation is not invariant.

and plays no significant role in the integrability of \mathcal{E}_X . Moreover, if a bundle of the form $\pi_{\mathcal{E}_X}$ is non-trivial, the corresponding system cannot be restored from a fiber using vector fields of the form (93).

This triviality is essential for the interpretation in terms of Hamiltonians, but not for the invariant reduction mechanism, which is global (on \mathcal{E}).

What if a bundle of the form $\pi_{\mathcal{E}_{X}}$ is non-trivial?

For the NLS, the bundle $\pi_{\mathcal{E}_{\pmb{X}}}$ is trivial. Since

$$\{I_1, \} = \partial_x - D_x|_{\mathcal{E}_X}$$
 and $\{I_2, \} = \partial_t - D_t|_{\mathcal{E}_X}$, (93)

a function $f \in \mathcal{F}(\mathcal{E}_X)$ that does not depend on t and x is a constant of X-invariant motion if and only if

$$\{I_1, f\} = \{I_2, f\} = 0.$$
(94)

Thus I_1 and I_2 can be interpreted as Hamiltonians of two commuting vector fields that, together, reproduce \mathcal{E}_X .

However, this interpretation is not invariant

and plays no significant role in the integrability of \mathcal{E}_X . Moreover, if a bundle of the form $\pi_{\mathcal{E}_X}$ is non-trivial, the corresponding system cannot be restored from a fiber using vector fields of the form (93).

This triviality is essential for the interpretation in terms of Hamiltonians, but not for the invariant reduction mechanism, which is global (on \mathcal{E}).

Some References

- K. Druzhkov, A. Cheviakov, Invariant Reduction for Partial Differential Equations. II: The General Mechanism. (2025) arXiv:2501.09313.
- I. M. Anderson and M. E. Fels, Symmetry reduction of variational bicomplexes and the principle of symmetric criticality, American Journal of Mathematics, vol. 119, no. 3, pp. 609-670, 1997.
- A.M. Vinogradov, I.S. Krasil'schik (eds.), Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Vol. 182, American Mathematical Society, 1999.
- K. Druzhkov, Internal Lagrangians of PDEs as variational principles, J. Geom. Phys. 199 (2024) 105143.
- S. C. Anco, M. L. Gandarias, Symmetry multi-reduction method for partial differential equations with conservation laws, CNSNS, vol. 91, p. 105349, 2020.

・ 何 ト ・ ヨ ト ・ ヨ ト

Thank you!

Kostya Druzhkov

Invariant reduction for PDEs. II: The general mechanism

30 / 30

3