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Analogy between geometry of manifolds and PDEs

T heory of manifolds:

Manifold

de Rham cohomology
of a manifold

Topological coverings

Fundamental group
of a manifold

Theory of PDEs:

Infinite prolongation
of PDE in a jet space

Horizontal de Rham
cohomology of a PDE

Differential coverings
(Backlund transformations)

Fundamental Lie algebra
of a system of PDEs




Differential coverings (I.Krasilshchik, A.Vinogradov)

u = u(x,t) v=v(x,t)
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The preimage of each solution w/(x;) of & is a family
of &, solutions v¥(y;) dependent on a finite number D of
parameters. D is the dimension of the covering.

£1 and &> are connected by a Backlund transformation if
there is £ and a pair of coverings
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It allows to obtain solutions of & from solutions of &4
and vice versa.

E3 = {vt = Vpgpyr — 6’02% + 6avy, o= const}
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The infinite jet space J® = (z;,uf ul,...).

The total derivative operators

o .0
D,. = w —
Lg 8332' +§; o1 u%
are commuting vector fields on J°.
Fa(wi,uk,u{,...)=0, a=1,...,s

€ ={Da;, - ..Dg, (Fo) =0} C J™
Dg, are tangent to £.

For a € £, the Cartan subspace C(E)q C T4€ is spanned
by Da, a,...,Dxn\a c T.E.

Solutions of the PDE correspond to integral submanifolds
of this distribution on &.

A differential covering is a bundle 7: & — &1 such that

Va e & . C(Er)q — C(gl)T(a) IS an isomorphism.

If C(£)q = T,E then differential coverings are topological
coverings.



Topological coverings of M are determined by actions of
the fundamental group m1(M,a) for a € M.

We want to introduce an analogue of m1(M,a) for differ-
ential coverings.

The correspondence between actions of w1 (M, a) and topo-
logical coverings of M is valid only for connected M.
We need a similar notion of ‘connectedness’ for £.

£ is called differentially connected (diff-connected) iff:
1) £ is connected as a topological space,

2) if a function F(:ci,u‘(j,) on & satisfies

Dy (F)=Dz,(F)=...=D,,(F)=0 then F=const.

This notion can be formulated in a coordinate-free way
using the horizontal de Rham cohomology of £.

Almost all PDEs in applications are diff-connected.

In the analytic case, for any £ there is an open dense
U C £ that admits a decomposition into diff~-connected
components.

From now on, £ is supposed to be differentially connected.

There are much more differential coverings than
topological coverings.

So m1(&,a) for a € £ should be not discrete, but a Lie
group.

Differential coverings are studied locally, so one replaces
the Lie group by its Lie algebra.



All manifolds and maps are supposed to be analytic.

With a system £ of PDEs we naturally associate a Lie
algebra w1 (&,a) for every point a € £ from an open dense
subset of £.

w1 (&, a) is called the fundamental algebra of £ at a € £.
More precisely, m1(€,a) is a Lie pro-algebra.

lLocal structure of coverings:

Coverings over £ with fibers W are in 1-to-1 correspon-
dence with actions 71(&€,a) — D(W).

Morphisms of coverings correspond to morphisms of ac-
tions.

There is an algorithm to compute the algebra 71(&€,a) in
terms of generators and relations for any given system &
of PDEs.

In the studied examples, m1(&,a) = 71(E,b) foralla, b € £.
I do not know whether this property holds for arbitrary £.



For a covering 7: &' — & and d €&, a=7(d) €&,
the algebra w1(&’,a’) is isomorphic to a subalgebra of
m1(&,a) of finite codimension.

(This is the analogue of the fact that for a topological
covering 7: M’ — M and o’ € M’, a=7(a’) € M one has
m1(M',a") — w1 (M, a).)

Let £ and &> be connected by a Backlund transformation
&3
T}/ \Tz
&1 %,

a3 € &z, a1 =r71(a3) € &1, a>=12(a3) € &o,

71(€3,a3) — m1(€1,a1), 71(€3,a3) — m1(E2,a2)

Therefore, m1(&1,a1) and w1(E>,a>) have a common
subalgebra of finite codimension.

This is a powerful necessary condition for existence of a
Backlund transformation between &1 and &5.

If £ is a soliton system associated with a Kac-Moody type
Lie algebra K then w1(&,a) is similar to K.

If £ is integrable (like KAV or sine-Gordon)
then dimw1(&,a) = oo.
This can be used as a criterion of integrability.



m1(&E,a) is a Lie pro-algebra, that is, a sequence of
surjective homomorphisms of Lie algebras

+— b4 — b — - — F1 — Fp

Let F'so be the inverse limit of this sequence.

Let L be a Lie algebra.

A homomorphism Fw, — L is called admissible if it is
of the form Fo — Fj, — L for some k > 0.

m1(€,a) = Fso and all homomorphisms are admissible.

In coordinate computations, a Lie algebra similar to Fj
was introduced by H. Wahlquist and F. Estabrook, but
they did not give any coordinate-free meaning to it.

If there is a homomorphism F, — L with dim L < oo then
one has m1(€,a)=Fs — L — D(W) for W = G/H, where
(G is the Lie group of L, and H is any Lie subgroup of G.
Therefore, one obtains a covering of £ with fiber G/H.
Many Backlund transformations can be constructed in
this way.

For the KdV equation uy = ugypr + 6uuy, one has
Fi. = sl>(C[\]) & Ny, dim N, < oo, N is nilpotent
(Fo was computed by H. N. van Eck)

The Backlund transformation of KdV corresponds to the
homomorphism

F, = slo(C[\]) @ N, — slo(C[A]) 2=% s15(C), a € C.

The same holds for the nonlinear Schrodinger equation.



The nonsingular Krichever-Novikov equation

_ 3uz, | (u—e1)(u—ex)(u—e3)
Ut = Uggpr — ——— +
2 Uy Uy

e1, eo, ez are distinct complex numbers.

Fo=0, for k>1onehas Fp. =R N,

where N is finite-dimensional and nilpotent,

and R consists of certain so3(C)-valued functions on the
elliptic curve

C={(1,22,23) €C? | N2 =N =¢;—¢j, i,j=1,2,3}



For the Landau-Lifshitz system, F, = R® Ny for all £ > 0,
where Nk is finite-dimensional and nilpotent
(Fp was computed by G. H. M. Roelofs and R. Martini)

For the n-dimensional generalization of the Landau-Lifshitz
equation (introduced by I. Golubchik and V. Sokolov),

Fy is isomorphic to the Lie algebra of certain
matrix-valued functions on an algebraic curve of genus
14 (n—3)27 =2,

(S. Ig., J. van de Leur, G. Manno, V. Trushkov)

Using 71 (&,a), one can also prove that:

The KAV and the nonsingular Krichever-Novikov equation
are not connected by a Backlund transformation.

The nonlinear Schrodinger equation and Landau-Lifshitz
equation are not connected by a Backlund transformation.



Darboux—Egoroff system from topological field theory

BZ] _BZ](x177xn)7 67,] _6327 7’7]_ yooey 1T,
0Bi; . . " 0B, .
— BBy, iFEiEREG Y l=0, i#j

There is a surjective homomorphism from w1(&,a) to the
following infinite-dimensional Lie algebra

Ak S g[n(C)a

m
£ = { S AR A,
k=0

Aojy 1 Is symmetric, Ayp; is skew-symmetric}

Relations of the corresponding infinite-dimensional Lie
group with the Darboux—Egoroff system were studied by
J. van de Leur in 2001.

Our approach allows to recover the Lie algebra £ in terms
of the intrinsic geometry of the Darboux—Egoroff system.

Let £ be the Witten-Dijkgraaf-Verlinde-Verlinde system
and a € £ be a semi-simple point.

dH C m1(&,a), codim H < oo, H — L.



Let L be a Lie algebra.

Let w be an L-valued differential 1-form on the Cartan
distribution of £.

w is called a zero-curvature representation (ZCR) if it
satisfies the horizontal Maurer-Cartan equation

- 1
d(w) + E[w,w] = 0.
In local coordinates
mn
w = Z Aid:ci, A,L E— L, [l)g;Z -+ Ai7 Dg;j -+ A]] = 0.

i=1
For n =2 a Lax pair is an example of a ZCR.

Let L — gl(V) and G : £ — GL(V) for a vector space V.
The differential 1-form

Gw) =-dG) -G 1+G w-g71

is also a ZCR and is gauge equivalent to w.
GG is called a gauge transformation.

Coverings with fiber W correspond to ZCRs with values
in D(W).



Consider now the formal power series version of these
notions at a point a € £.

Theorem. For any point a € £ from some open dense
subset of £ the following holds.

There is a ZCR ) with values in a Lie pro-algebra F with
the following universality property.

For any ZCR w with values in any Lie algebra L there is
a unique homomorphism . F — L such that w is gauge
equivalent to ¢(£2).

F is defined uniquely up to isomorphism,

and we set m1(€,a) =F.

If F exists then its uniqueness follows from its universality
property.

To prove that F exists,

we first construct a special coordinate system on £ by
means of passive orthonomic forms of PDEs.

This is somewhat similar to finding a Grobner basis for
an ideal of a polynomial ring.

(A modern exposition of passive orthonomic forms of
PDEs can be found in M. Marvan, arXiv:nlin/0605009)

We consider a general ZCR & and simplify it as much as
possible by gauge transformations. Then the coefficients
of w are regarded as generators of a Lie pro-algebra F,
and the equation d(®) + 5[©,&] = 0 provides some Lie
algebra relations for these generators.

As a result, one obtains an algorithm to compute F in
terms of generators and relations.



