Lie algebras associated with PDEs and Bäcklund transformations

Sergey Igonin

Utrecht University, the Netherlands

Most of the results are available in the preprint: S. Igonin, Analogues of coverings and the fundamental group for the category of partial differential equations http://www.math.uu.nl/people/igonin/preprints/ Analogy between geometry of manifolds and PDEs

Theory of manifolds:

Manifold

Theory of PDEs:

Infinite prolongation of PDE in a jet space

de Rham cohomology of a manifold Horizontal de Rham cohomology of a PDE

Topological coverings

Differential coverings (Bäcklund transformations)

Fundamental group of a manifold Fundamental Lie algebra of a system of PDEs

Differential coverings (I.Krasilshchik, A.Vinogradov)

$$u = u(x, t) \qquad v = v(x, t)$$
$$u_t = u_{xxx} + 6uu_x \quad \underbrace{u = v_x - v^2}_{v_x - v_x} \quad v_t = v_{xxx} - 6v^2 v_x$$

$$\mathcal{E}_{1} = \left\{ F_{\alpha} \left(x_{i}, u^{j}, \frac{\partial u^{p}}{\partial x_{s}}, \ldots \right) = 0 \right\} \qquad \mathcal{E}_{2} = \left\{ G_{\beta} \left(y_{i}, v^{k}, \frac{\partial v^{l}}{\partial y_{s}}, \ldots \right) = 0 \right\}$$
$$\mathcal{E}_{1} \leftarrow \mathcal{E}_{2}$$
$$u^{j} = \varphi \left(y_{s}, v^{a}, \frac{\partial v^{b}}{\partial y_{s}}, \ldots \right), \qquad x_{i} = \psi \left(y_{s}, v^{a}, \frac{\partial v^{b}}{\partial y_{s}}, \ldots \right)$$

The preimage of each solution $u^{j}(x_{i})$ of \mathcal{E}_{1} is a family of \mathcal{E}_{2} solutions $v^{k}(y_{i})$ dependent on a finite number D of parameters. D is the *dimension* of the covering.

 \mathcal{E}_1 and \mathcal{E}_2 are connected by a *Bäcklund transformation* if there is \mathcal{E}_3 and a pair of coverings

It allows to obtain solutions of \mathcal{E}_2 from solutions of \mathcal{E}_1 and vice versa.

Example:
$$\mathcal{E}_1 = \mathcal{E}_2 = \left\{ u_t = u_{xxx} + 6uu_x \right\}$$

 $\mathcal{E}_3 = \left\{ v_t = v_{xxx} - 6v^2v_x + 6\alpha v_x, \quad \alpha = \text{const} \right\}$
 $u = v_x - v^2 + \alpha$
 $u = -v_x - v^2 + \alpha$

 $u_t = u_{xxx} + 6uu_x \qquad u_t = u_{xxx} + 6uu_x$

$$\sigma = i_1 \dots i_k, \qquad \qquad u_{\sigma}^j = \frac{\partial^k u^j}{\partial x_{i_1} \dots \partial x_{i_k}}$$

The infinite jet space $J^{\infty} = (x_i, u^k, u_{\sigma}^j, \dots).$

The total derivative operators

$$D_{x_i} = \frac{\partial}{\partial x_i} + \sum_{\sigma,j} u^j_{\sigma i} \frac{\partial}{\partial u^j_{\sigma}}$$

are commuting vector fields on J^{∞} .

$$F_{\alpha}(x_i, u^k, u^j_{\sigma}, \dots) = 0, \quad \alpha = 1, \dots, s$$
$$\mathcal{E} = \{ D_{x_{i_1}} \dots D_{x_{i_r}}(F_{\alpha}) = 0 \} \subset J^{\infty}$$

 D_{x_i} are tangent to \mathcal{E} .

For $a \in \mathcal{E}$, the *Cartan subspace* $\mathcal{C}(\mathcal{E})_a \subset T_a \mathcal{E}$ is spanned by $D_{x_1}|_a, \ldots, D_{x_n}|_a \in T_a \mathcal{E}$.

Solutions of the PDE correspond to integral submanifolds of this distribution on \mathcal{E} .

A differential covering is a bundle $\tau \colon \mathcal{E}_2 \to \mathcal{E}_1$ such that

 $\forall a \in \mathcal{E}_2 \qquad \tau_* \colon \mathcal{C}(\mathcal{E}_2)_a \longrightarrow \mathcal{C}(\mathcal{E}_1)_{\tau(a)}$ is an isomorphism.

If $C(\mathcal{E})_a = T_a \mathcal{E}$ then differential coverings are topological coverings.

Topological coverings of M are determined by actions of the fundamental group $\pi_1(M, a)$ for $a \in M$. We want to introduce an analogue of $\pi_1(M, a)$ for differential coverings.

The correspondence between actions of $\pi_1(M, a)$ and topological coverings of M is valid only for connected M. We need a similar notion of 'connectedness' for \mathcal{E} .

 \mathcal{E} is called *differentially connected* (diff-connected) iff: 1) \mathcal{E} is connected as a topological space, 2) if a function $F(x_i, u_{\sigma}^j)$ on \mathcal{E} satisfies $D_{x_1}(F) = D_{x_2}(F) = \ldots = D_{x_n}(F) = 0$ then F = const.

This notion can be formulated in a coordinate-free way using the horizontal de Rham cohomology of \mathcal{E} .

Almost all PDEs in applications are diff-connected.

In the analytic case, for any \mathcal{E} there is an open dense $U \subset \mathcal{E}$ that admits a decomposition into diff-connected components.

From now on, \mathcal{E} is supposed to be differentially connected.

There are much more differential coverings than topological coverings.

So $\pi_1(\mathcal{E}, a)$ for $a \in \mathcal{E}$ should be not discrete, but a Lie group.

Differential coverings are studied locally, so one replaces the Lie group by its Lie algebra. All manifolds and maps are supposed to be analytic.

With a system \mathcal{E} of PDEs we naturally associate a Lie algebra $\pi_1(\mathcal{E}, a)$ for every point $a \in \mathcal{E}$ from an open dense subset of \mathcal{E} .

 $\pi_1(\mathcal{E}, a)$ is called the *fundamental algebra* of \mathcal{E} at $a \in \mathcal{E}$. More precisely, $\pi_1(\mathcal{E}, a)$ is a *Lie pro-algebra*.

Local structure of coverings:

Coverings over \mathcal{E} with fibers W are in 1-to-1 correspondence with actions $\pi_1(\mathcal{E}, a) \to D(W)$.

Morphisms of coverings correspond to morphisms of actions.

There is an algorithm to compute the algebra $\pi_1(\mathcal{E}, a)$ in terms of generators and relations for any given system \mathcal{E} of PDEs.

In the studied examples, $\pi_1(\mathcal{E}, a) \cong \pi_1(\mathcal{E}, b)$ for all $a, b \in \mathcal{E}$. I do not know whether this property holds for arbitrary \mathcal{E} . For a covering $\tau \colon \mathcal{E}' \to \mathcal{E}$ and $a' \in \mathcal{E}'$, $a = \tau(a') \in \mathcal{E}$, the algebra $\pi_1(\mathcal{E}', a')$ is isomorphic to a subalgebra of $\pi_1(\mathcal{E}, a)$ of finite codimension.

(This is the analogue of the fact that for a topological covering $\tau: M' \to M$ and $a' \in M'$, $a = \tau(a') \in M$ one has $\pi_1(M', a') \hookrightarrow \pi_1(M, a)$.)

Let \mathcal{E}_1 and \mathcal{E}_2 be connected by a Bäcklund transformation

 $a_3 \in \mathcal{E}_3, \qquad a_1 = \tau_1(a_3) \in \mathcal{E}_1, \qquad a_2 = \tau_2(a_3) \in \mathcal{E}_2,$

 $\pi_1(\mathcal{E}_3, a_3) \hookrightarrow \pi_1(\mathcal{E}_1, a_1), \qquad \pi_1(\mathcal{E}_3, a_3) \hookrightarrow \pi_1(\mathcal{E}_2, a_2)$

Therefore, $\pi_1(\mathcal{E}_1, a_1)$ and $\pi_1(\mathcal{E}_2, a_2)$ have a common subalgebra of finite codimension.

This is a powerful necessary condition for existence of a Bäcklund transformation between \mathcal{E}_1 and \mathcal{E}_2 .

If \mathcal{E} is a soliton system associated with a Kac-Moody type Lie algebra K then $\pi_1(\mathcal{E}, a)$ is similar to K.

If \mathcal{E} is integrable (like KdV or sine-Gordon) then dim $\pi_1(\mathcal{E}, a) = \infty$.

This can be used as a criterion of integrability.

 $\pi_1(\mathcal{E}, a)$ is a *Lie pro-algebra*, that is, a sequence of surjective homomorphisms of Lie algebras

$$\cdots \to F_{k+1} \to F_k \to \cdots \to F_1 \to F_0$$

Let F_{∞} be the inverse limit of this sequence. Let L be a Lie algebra.

A homomorphism $F_{\infty} \to L$ is called *admissible* if it is of the form $F_{\infty} \to F_k \to L$ for some $k \ge 0$.

 $\pi_1(\mathcal{E}, a) = F_{\infty}$ and all homomorphisms are admissible.

In coordinate computations, a Lie algebra similar to F_0 was introduced by H. Wahlquist and F. Estabrook, but they did not give any coordinate-free meaning to it.

If there is a homomorphism $F_k \to L$ with dim $L < \infty$ then one has $\pi_1(\mathcal{E}, a) = F_\infty \to L \to D(W)$ for W = G/H, where G is the Lie group of L, and H is any Lie subgroup of G. Therefore, one obtains a covering of \mathcal{E} with fiber G/H. Many Bäcklund transformations can be constructed in this way.

For the KdV equation $u_t = u_{xxx} + 6uu_x$, one has

 $F_k = \mathfrak{sl}_2(\mathbb{C}[\lambda]) \oplus N_k$, dim $N_k < \infty$, N_k is nilpotent (F_0 was computed by H. N. van Eck)

The Bäcklund transformation of KdV corresponds to the homomorphism

$$F_k = \mathfrak{sl}_2(\mathbb{C}[\lambda]) \oplus N_k \to \mathfrak{sl}_2(\mathbb{C}[\lambda]) \xrightarrow{\lambda = \alpha} \mathfrak{sl}_2(\mathbb{C}), \quad \alpha \in \mathbb{C}.$$

The same holds for the nonlinear Schrödinger equation.

The nonsingular Krichever-Novikov equation

$$u_t = u_{xxx} - \frac{3}{2} \frac{u_{xx}^2}{u_x} + \frac{(u - e_1)(u - e_2)(u - e_3)}{u_x}$$

 e_1, e_2, e_3 are distinct complex numbers.

 $F_0 = 0$, for $k \ge 1$ one has $F_k = R \oplus N_k$, where N_k is finite-dimensional and nilpotent, and R consists of certain $\mathfrak{so}_3(\mathbb{C})$ -valued functions on the elliptic curve

$$C = \left\{ \left(\lambda_1, \lambda_2, \lambda_3\right) \in \mathbb{C}^3 \mid \lambda_i^2 - \lambda_j^2 = e_i - e_j, \quad i, j = 1, 2, 3 \right\}$$

For the Landau-Lifshitz system, $F_k = R \oplus \tilde{N}_k$ for all $k \ge 0$, where \tilde{N}_k is finite-dimensional and nilpotent (F_0 was computed by G. H. M. Roelofs and R. Martini)

For the *n*-dimensional generalization of the Landau-Lifshitz equation (introduced by I. Golubchik and V. Sokolov), F_0 is isomorphic to the Lie algebra of certain matrix-valued functions on an algebraic curve of genus $1+(n-3)2^{n-2}$. (S. Ig., J. van de Leur, G. Manno, V. Trushkov)

Using $\pi_1(\mathcal{E}, a)$, one can also prove that:

The KdV and the nonsingular Krichever-Novikov equation are not connected by a Bäcklund transformation.

The nonlinear Schrödinger equation and Landau-Lifshitz equation are not connected by a Bäcklund transformation.

Darboux–Egoroff system from topological field theory

$$\beta_{ij} = \beta_{ij}(x_1, \dots, x_n), \quad \beta_{ij} = \beta_{ji}, \quad i, j = 1, \dots, n,$$

$$\frac{\partial \beta_{ij}}{\partial x_k} = \beta_{ik}\beta_{kj}, \quad i \neq j \neq k \neq i; \quad \sum_{m=1}^n \frac{\partial \beta_{ij}}{\partial x_m} = 0, \quad i \neq j.$$

There is a surjective homomorphism from $\pi_1(\mathcal{E}, a)$ to the following infinite-dimensional Lie algebra

$$\begin{split} \mathfrak{L} &= \left\{ \sum_{k=0}^{m} \lambda^{k} A_{k} \; \middle| \; A_{k} \in \mathfrak{gl}_{n}(\mathbb{C}), \\ A_{2i+1} \text{ is symmetric, } A_{2i} \text{ is skew-symmetric} \right\} \end{split}$$

Relations of the corresponding infinite-dimensional Lie group with the Darboux–Egoroff system were studied by J. van de Leur in 2001.

Our approach allows to recover the Lie algebra \mathfrak{L} in terms of the intrinsic geometry of the Darboux–Egoroff system.

Let \mathcal{E} be the Witten-Dijkgraaf-Verlinde-Verlinde system and $a \in \mathcal{E}$ be a semi-simple point.

$$\exists H \subset \pi_1(\mathcal{E}, a), \quad \text{ codim } H < \infty, \quad H \to \mathfrak{L}.$$

Let L be a Lie algebra.

Let ω be an *L*-valued differential 1-form on the Cartan distribution of \mathcal{E} .

 ω is called a *zero-curvature representation* (ZCR) if it satisfies the horizontal Maurer-Cartan equation

$$\bar{d}(\omega) + \frac{1}{2}[\omega, \omega] = 0.$$

In local coordinates

$$\omega = \sum_{i=1}^{n} A_i dx_i, \qquad A_i \colon \mathcal{E} \to L, \qquad [D_{x_i} + A_i, D_{x_j} + A_j] = 0.$$

For n = 2 a Lax pair is an example of a ZCR.

Let $L \hookrightarrow \mathfrak{gl}(V)$ and $G : \mathcal{E} \to GL(V)$ for a vector space V. The differential 1-form

$$G(\omega) = -\bar{d}(G) \cdot G^{-1} + G \cdot \omega \cdot G^{-1}$$

is also a ZCR and is gauge equivalent to ω . G is called a gauge transformation.

Coverings with fiber W correspond to ZCRs with values in D(W).

Consider now the formal power series version of these notions at a point $a \in \mathcal{E}$.

Theorem. For any point $a \in \mathcal{E}$ from some open dense subset of \mathcal{E} the following holds.

There is a ZCR Ω with values in a Lie pro-algebra F with the following universality property.

For any ZCR ω with values in any Lie algebra L there is a unique homomorphism $\varphi \colon \mathbf{F} \to L$ such that ω is gauge equivalent to $\varphi(\mathbf{\Omega})$.

 ${f F}$ is defined uniquely up to isomorphism,

and we set $\pi_1(\mathcal{E}, a) = F$.

If \mathbf{F} exists then its uniqueness follows from its universality property.

To prove that \mathbf{F} exists,

we first construct a special coordinate system on \mathcal{E} by means of passive orthonomic forms of PDEs.

This is somewhat similar to finding a Gröbner basis for an ideal of a polynomial ring.

(A modern exposition of passive orthonomic forms of PDEs can be found in M. Marvan, arXiv:nlin/0605009)

We consider a general ZCR $\tilde{\omega}$ and simplify it as much as possible by gauge transformations. Then the coefficients of $\tilde{\omega}$ are regarded as generators of a Lie pro-algebra **F**, and the equation $\overline{d}(\tilde{\omega}) + \frac{1}{2}[\tilde{\omega},\tilde{\omega}] = 0$ provides some Lie algebra relations for these generators.

As a result, one obtains an algorithm to compute ${\bf F}$ in terms of generators and relations.