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Summary of the main ideas:

PDE can be regarded as a manifold with a distribution.

Solutions of the PDE correspond to integral submanifolds of the distribution.

Let E1, E2 be manifolds with distributions.

A bundle E2 → E1 is called a di�erential covering
if it maps the distribution of E2 isomorphically to the distribution of E1.

This generalizes the notion of coverings from topology. (A. Vinogradov)

In coordinates, di�erential coverings correspond to Bäcklund transformations,

which are a powerful tool to construct solutions for PDEs.

Topological coverings of a topological space M can be described in terms of

actions of the fundamental group π1(M).

We de�ne fundamental Lie algebras for PDEs such that

di�erential coverings of a PDE can be described in terms of actions of the

fundamental Lie algebra of this PDE.

Fundamental Lie algebras are a new geometric invariant of PDEs.

For many PDEs, these algebras can be computed explicitly.

These algebras help to construct and classify Bäcklund transformations.



Di�erential coverings (A. Vinogradov, I. Krasilshchik)

Example: Miura transformation

KdV =
{
ut = uxxx + 6uux

} u=vx−v2←−−−−−− mKdV =
{
vt = vxxx − 6v2vx

}
This is a map from solutions v(x , t) of mKdV to solutions u(x , t) of KdV.
The preimage of each solution u(x , t) of KdV is a one-parameter family of

solutions v(x , t) of mKdV.

General de�nition of coverings in coordinates:

E1=
{
F
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xi , u

j(xi ),
∂uj

∂xi
, . . .

)
=0
}
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{
G
(
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∂vk
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)
=0
}

uj =ϕ
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)
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k ,
∂vk

∂ys
, . . .

)
The preimage of each solution uj(xi ) of E1 is a family of E2 solutions vk(yi )
dependent on a �nite number D of parameters.

D is the dimension of �bers of the covering.



E1 and E2 are connected by a Bäcklund transformation if there is E3
and a pair of coverings

E3
↙ ↘

E1 E2

This allows to obtain solutions of E2 from solutions of E1:
take a solution of E1, �nd its preimage in E3, and project it to E2.

Example: vt = vxxx − 6v2vx + 6λvx

u=vx−v2+λ

xx

u=−vx−v2+λ

&&

ut=uxxx+6uux ut=uxxx+6uux

Trivial solution

u(x , t)=const
7→ 1-soliton

solution
7→ 2-soliton

solution
7→ . . .



Example: the in�nite prolongation of KdV.

In�nite jet space J∞ = (x , t, u, ux , ut , uxx , uxt , utt , . . . ).

Total derivative operators

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ utx

∂

∂ut
+ uxxx

∂

∂uxx
+ . . .

Dt =
∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ utt

∂

∂ut
+ uxxt

∂

∂uxx
+ . . .

are commuting vector �elds on J∞.

Consider the submanifold E ⊂ J∞ determined by KdV and all its di�erential

consequences

ut=uxxx+6uux , utt=uxxxt+6utux+6uuxt , utx =uxxxx+6u2x+6uuxx , . . .

Dx , Dt are tangent to E and span a 2-dimensional distribution on E .

Solutions of KdV correspond to integral submanifolds of this distribution.



σ = i1 . . . ik uj
σ =

∂kuj

∂xi1 . . . ∂xik

The in�nite jet space J∞ = (xi , u
j , uj

σ, . . . ).

Total derivative operators Dxi =
∂

∂xi
+
∑

σ,j u
j
σi

∂

∂uj
σ

are vector �elds on J∞.

PDE: Fr (xi , u
j , uj

σ, . . . ) = 0, r = 1, . . . , s.

In�nite prolongation of the PDE: E =
{
Dxi1

. . .Dxip
(Fr ) = 0

}
⊂ J∞

Vector �elds Dxi are tangent to E and span the Cartan distribution C(E) on E

Solutions of the PDE correspond to integral submanifolds of this distribution.



An object of the category of PDEs is a pair (E , C(E)),
where E is a manifold and C(E) is a distribution on E ,
such that (E , C(E)) is locally isomorphic to the in�nite prolongation of a PDE.

A morphism τ : (E2, C(E2))→ (E1, C(E1)) is a smooth map τ : E2 → E1

∀ a ∈ E2 τ∗ : TaE2 → Tτ(a)E1 τ∗
(
C(E2)a

)
⊂ C(E1)τ(a)

A morphism τ is a di�erential covering if τ : E2 → E1 is a bundle with

�nite-dimensional �bers and

∀ a ∈ E2 τ∗ : C(E2)a −→ C(E1)τ(a) is an isomorphism.

If C(E)a = TaE then di�erential coverings are topological coverings.

Topological coverings of a manifold M are determined by actions of the

fundamental group π1(M, a) for a ∈ M.

We need an analog of π1(M, a) for di�erential coverings. This analog will be a

Lie algebra, because di�erential coverings are studied locally.



For any analytic PDE E , we naturally de�ne a Lie algebra π1(E , a) for every
point a ∈ E .
π1(E , a) is called the fundamental Lie algebra of E at a ∈ E .

The correspondence (E , a) 7→ π1(E , a) is a functor from the category of PDEs

to the category of Lie algebras.

Coverings over E with �bers W are determined by actions of π1(E , a) on W

(homomorphisms from π1(E , a) to the Lie algebra of vector �elds on W ).

For any covering τ : E ′ → E , the algebra π1(E , a) acts on the �ber τ−1(a).
Morphisms of coverings preserve the action of π1(E , a).

If the PDE satis�es some non-degeneracy conditions, any action of π1(E , a) on
W gives a covering with �ber W on the level of formal power series. Usually

these formal power series converge, so one gets locally an analytic covering.

There is an algorithm to compute the algebra π1(E , a) in terms of generators

and relations. (The number of generators and relations may be in�nite.)



For a topological covering τ : M ′ → M,

a′ ∈ M ′, a=τ(a′) ∈ M, π1(M
′, a′) ↪→ π1(M, a).

For a di�erential covering τ : E ′ → E , a′ ∈ E ′, a=τ(a′) ∈ E ,
π1(E ′, a′) is isomorphic to a subalgebra of π1(E , a) of �nite codimension.

Let E1 and E2 be connected by a Bäcklund transformation

E3
τ1

~~

τ2

  

E1 E2

a3 ∈ E3, a1=τ1(a3) ∈ E1, a2=τ2(a3) ∈ E2,

π1(E3, a3) ↪→ π1(E1, a1), π1(E3, a3) ↪→ π1(E2, a2)

Therefore, π1(E1, a1) and π1(E2, a2) have a common subalgebra of �nite

codimension. This is a powerful necessary condition for existence of a Bäcklund

transformation between E1 and E2.



If E is integrable by zero-curvature representations

(like KdV, sine-Gordon, WDVV), then dimπ1(E , a) =∞.

For the KP equation π1(E , a) = 0, because KP has a di�erent type of

integrability.

But if we add another PDE to KP, we can get π1(E , a) 6= 0.

For a wide class of PDEs, π1(E , a) ∼= π1(E , b) ∀ a, b ∈ E .



In computations, π1(E , a) is the inverse limit of a sequence of surjective

homomorphisms of Lie algebras

· · · → F k+1(E , a)→ F k(E , a)→ · · · → F 1(E , a)→ F 0(E , a)

Actions of F k(E , a) classify (with respect to gauge equivalence) coverings

dependent on jets of order k + p − 1, where p is the order of the PDE E .

In coordinate computations, an algebra similar to F 0(E , a) was introduced for

some PDEs by H. Wahlquist and F. Estabrook. A. Vinogradov noticed (1986)

that this Lie algebra plays a role similar to the fundamental group.

But F 0(E , a) does not have any coordinate-independent meaning.

The explicit structure of F 0(E , a) was computed for many PDEs by

H. van Eck, G. Roelofs, R. Martini.

Examples: for the KdV, NLS, Krichever-Novikov, Landau-Lifshitz equations,

F k(E , a) = L ⊕ Nk , where L is some in�nite-dimensional Lie algebra of

certain matrix-valued functions on an algebraic curve of genus 1 or 0,

Nk is �nite-dimensional and nilpotent.

For the Krichever-Novikov equation, F 0(E , a) = 0.



How to extract algebraic curves from π1(E , a)

Let S(E , a) be the Lie algebra obtained from π1(E , a) by `killing' all solvable

ideals.

A(E , a) =
{
f : S(E , a)→ S(E , a)

∣∣ f ([p1, p2]) = [f (p1), p2]
}

In the above examples, A(E , a) is isomorphic to the algebra of polynomial

functions on an algebraic curve.

Rational curve (genus = 0) for KdV and nonlinear-Schrödinger.

Elliptic curve for Krichever-Novikov and Landau-Lifshitz.

(In the computation, we use some results of D. Demskoi, V. Sokolov.)

Let E1 and E2 be some PDEs from these examples, a1 ∈ E1, a2 ∈ E2.
If the curves A(E1, a1) and A(E2, a2) are not birationally equivalent,
then there is no Bäcklund transformation between E1 and E2.

This solves a classical problem about the classi�cation of some classes of PDEs

with respect to Bäcklund transformations.

A(E , a) provides an invariant meaning for algebraic curves related to PDEs.



An m-component generalization of Landau-Lifshitz was introduced by

I. Golubchik and V. Sokolov.

For this PDE, the Lie algebras F k(E , a) have the following structure

(S. Ig., J. van de Leur, G. Manno, V. Trushkov):

F 0(E , a) is isomorphic to the in�nite-dimensional Lie algebra L of certain

matrix-valued functions on an algebraic curve of genus 1+(m−3)2m−2.
For any k ≥ 1, there is a surjective homomorphism

F k(E , a)→ L⊕ som−1(C) with solvable kernel.



The fundamental group π1(M, a) can be de�ned using only topological

coverings of M (without using loops in M).

g ∈ π1(M, a) gives a transformation gτ : τ
−1(a)→ τ−1(a) for each τ : M̃ → M

For any M1

ϕ
//

τ1

��

M2

τ2

��

M

, one has gτ2 ◦ ϕ = ϕ ◦ gτ1 (1)

g ∈ π1(M, a) is uniquely determined by the collection of transformations{
gτ : τ

−1(a)→ τ−1(a)
∣∣ τ is a covering

}
.

One can de�ne an element of π1(M, a) as a collection of such
transformations satisfying (1).

To de�ne π1(E , a), replace transformations on �bers by vector �elds on �bers.

An element of π1(E , a) is de�ned as a collection of (formal) vector �elds:{
vτ is a vector �eld on τ−1(a)

∣∣ τ is a (formal) di�erential covering of E
}
,

where vτ are in agreement with respect to morphisms of coverings.


