Lie algebras and algebraic curves
responsible for Backlund transformations of PDEs

Sergey Igonin

Utrecht University, the Netherlands



Summary of the main ideas:

PDE can be regarded as a manifold with a distribution.
Solutions of the PDE correspond to integral submanifolds of the distribution.

Let &1, & be manifolds with distributions.
A bundle & — &7 is called a differential covering
if it maps the distribution of & isomorphically to the distribution of &;.

This generalizes the notion of coverings from topology. (A. Vinogradov)

In coordinates, differential coverings correspond to Backlund transformations,
which are a powerful tool to construct solutions for PDEs.

Topological coverings of a topological space M can be described in terms of
actions of the fundamental group 1 (M).

We define fundamental Lie algebras for PDEs such that
differential coverings of a PDE can be described in terms of actions of the
fundamental Lie algebra of this PDE.

Fundamental Lie algebras are a new geometric invariant of PDEs.
For many PDEs, these algebras can be computed explicitly.
These algebras help to construct and classify Backlund transformations.



Differential coverings (A. Vinogradov, |. Krasilshchik)
Example: Miura transformation

u=vyx—v2

KdV = {ut = Uyex + 6uux} —> — mKdV = {vt = Vixx — 6v2vx}

This is a map from solutions v(x, t) of mKdV to solutions u(x, t) of KdV.
The preimage of each solution u(x, t) of KdV is a one-parameter family of
solutions v(x, t) of mKdV.

General definition of coverings in coordinates:
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The preimage of each solution v/(x;) of & is a family of & solutions v¥(y;)
dependent on a finite number D of parameters.
D is the dimension of fibers of the covering.



&1 and & are connected by a Backlund transformation if there is &

and a pair of coverings
&

e pN
& &

This allows to obtain solutions of & from solutions of &;:
take a solution of &1, find its preimage in &3, and project it to &;.

Example: Ve = Vipx — 6V2vy + BAvy

u=vx—v-+

Up = Uyxx + 06Uy Up = Uyxx + 06Uy

Trivial solution . 1-soliton 2-soliton
u(x, t)=const solution solution



Example: the infinite prolongation of KdV.
Infinite jet space J™° = (X, t, u, Uy, Ut, Usx, Uty Utts - - - )-

Total derivative operators

T ox Mgy T Ouy Hex Ou; o Ouy,
T or T Mou T ™ ou, T M au, T M uy

are commuting vector fields on J*.

Consider the submanifold £ C J°° determined by KdV and all its differential
consequences

2
Up = Uyxx +6UUy, Upr = Uxxxt +0Ur Ux +0uly, Utx:Uxxxx+6UX+6UUXX7

Dy, D, are tangent to £ and span a 2-dimensional distribution on £.

Solutions of KdV correspond to integral submanifolds of this distribution.
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The infinite jet space J™ = (x;, /, u{;, cl ).

.. 0 ;0 )
Total derivative operators D,, = 87x, + ZUJ uf,,ﬁ are vector fields on J*.

o

PDE: F,(xj,v/,1/,...)=0, r=1,...,s.
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Infinite prolongation of the PDE: & = { Dy, - Dy, (Fr) = 0} cJ™

Vector fields Dy, are tangent to £ and span the Cartan distribution C(€) on €

Solutions of the PDE correspond to integral submanifolds of this distribution.



An object of the category of PDEs is a pair (£,C(&)),
where £ is a manifold and C(€) is a distribution on &,
such that (£,C(&)) is locally isomorphic to the infinite prolongation of a PDE.

A morphism 7: (&,C(&)) — (&1,C(&1)) is a smooth map 7: & — &
Vae 52 Tx - Tagz — TT(a)gl Tx (C(gz)a) C C(gl)r(a)

A morphism 7 is a differential covering if 7: £&; — &; is a bundle with
finite-dimensional fibers and

Vae & Te: C(E2)a — C(&1)7(a) is an isomorphism.

If C(£)a = T,E€ then differential coverings are topological coverings.

Topological coverings of a manifold M are determined by actions of the
fundamental group m1(M, a) for a € M.

We need an analog of 71(M, a) for differential coverings. This analog will be a
Lie algebra, because differential coverings are studied locally.



For any analytic PDE &, we naturally define a Lie algebra 71 (€, a) for every
point a € £.
m1 (&, a) is called the fundamental Lie algebra of £ at a € £.

The correspondence (£, a) — m1(&, a) is a functor from the category of PDEs
to the category of Lie algebras.

Coverings over & with fibers W are determined by actions of m1(&,a) on W
(homomorphisms from 71(€, a) to the Lie algebra of vector fields on W).

For any covering 7: &' — &, the algebra 71 (&, a) acts on the fiber 771(a).
Morphisms of coverings preserve the action of (&, a).

If the PDE satisfies some non-degeneracy conditions, any action of m1(€, a) on
W gives a covering with fiber W on the level of formal power series. Usually
these formal power series converge, so one gets locally an analytic covering.

There is an algorithm to compute the algebra 71(€, a) in terms of generators
and relations. (The number of generators and relations may be infinite.)



For a topological covering 7: M’ — M,
aeM, a=71(a) e M, m(M',d") — w1 (M, a).

For a differential covering 7: £ — €&, aeé, a=7(a') €&,
m1(E’, a") is isomorphic to a subalgebra of 71(&, a) of finite codimension.

Let &1 and & be connected by a Bicklund transformation

&
N
& &
az € 53, 81:7'1(83) € 51, 22:7'2(23) S 52,

m (&3, a3) — m1 (&1, a1), (&3, a3) — m1 (&2, a2)

Therefore, m1(€1,a1) and m1(&2, a2) have a common subalgebra of finite
codimension. This is a powerful necessary condition for existence of a Biacklund
transformation between & and &.



If £ is integrable by zero-curvature representations
(like KdV, sine-Gordon, WDVV), then dim (&, a) = oo.

For the KP equation 71 (&, a) = 0, because KP has a different type of
integrability.
But if we add another PDE to KP, we can get m1 (&, a) # 0.

For a wide class of PDEs, m1(&,a) = mi (&, b) Va, beé.



In computations, 71(&, a) is the inverse limit of a sequence of surjective
homomorphisms of Lie algebras

o FATY(E a) = FX(E,a) » - = FN(€,a) = FO(€, 3)

Actions of F¥(E, a) classify (with respect to gauge equivalence) coverings
dependent on jets of order k + p — 1, where p is the order of the PDE £.

In coordinate computations, an algebra similar to FO(&, a) was introduced for
some PDEs by H. Wahlquist and F. Estabrook. A. Vinogradov noticed (1986)
that this Lie algebra plays a role similar to the fundamental group.
But F°(&, a) does not have any coordinate-independent meaning.

The explicit structure of F°(&, a) was computed for many PDEs by
H. van Eck, G. Roelofs, R. Martini.

Examples: for the KdV, NLS, Krichever-Novikov, Landau-Lifshitz equations,
FK(E,a) = L ® Ny, where L is some infinite-dimensional Lie algebra of
certain matrix-valued functions on an algebraic curve of genus 1 or 0,

N, is finite-dimensional and nilpotent.

For the Krichever-Novikov equation, F°(&,a) = 0.



How to extract algebraic curves from (&, a)

Let S(&, a) be the Lie algebra obtained from 71 (€, a) by ‘killing” all solvable
ideals.

A€, a) ={f:5(£,a) = S(&.a) | f(lpr, p2]) = [f(p1). p2] }

In the above examples, A(E, a) is isomorphic to the algebra of polynomial
functions on an algebraic curve.

Rational curve (genus = 0) for KdV and nonlinear-Schrédinger.
Elliptic curve for Krichever-Novikov and Landau-Lifshitz.
(In the computation, we use some results of D. Demskoi, V. Sokolov.)

Let & and & be some PDEs from these examples, a; € &, a» € &s.
If the curves A(&1,a1) and A(&, a2) are not birationally equivalent,
then there is no Béacklund transformation between £; and &s.

This solves a classical problem about the classification of some classes of PDEs
with respect to Bicklund transformations.

A(&, a) provides an invariant meaning for algebraic curves related to PDEs.



An m-component generalization of Landau-Lifshitz was introduced by
I. Golubchik and V. Sokolov.

For this PDE, the Lie algebras F¥(&, a) have the following structure
(S. Ig., J.van de Leur, G.Manno, V. Trushkov):

F°(&, a) is isomorphic to the infinite-dimensional Lie algebra L of certain
matrix-valued functions on an algebraic curve of genus 1+(m—3)27m2.
For any k > 1, there is a surjective homomorphism

Fk(E,a) = L @ 50m-1(C) with solvable kernel,



The fundamental group 71 (M, a) can be defined using only topological
coverings of M (without using loops in M).

g € m1(M, a) gives a transformation g, : 7(a) — 7~ *(a) for each 7: M — M

For any M - M, onehas grop=¢pog, (1)

N

g € m(M, a) is uniquely determined by the collection of transformations
{g:77'(a) = 77(a) | 7is a covering }.

One can define an element of 71(M, a) as a collection of such
transformations satisfying (1).

To define m1(€, a), replace transformations on fibers by vector fields on fibers.
An element of 7;(€, a) is defined as a collection of (formal) vector fields:
{ vr is a vector field on 771(a) | 7 is a (formal) differential covering of £ },
where v, are in agreement with respect to morphisms of coverings.



