Lax representations for Euler equations of ideal hydrodynamics

Oleg Morozov

PART ONE

Lax representations for the Euler equations on a 2D Riemannian manifold

J. Geom. Phys. 206 (2024), 105299

The dynamics of an inviscid incompressible fluid on a Riemannian manifold N is described by the Euler equations

$$\begin{cases} \boldsymbol{v}_t + \nabla_{\boldsymbol{v}} \, \boldsymbol{v} = -\text{grad} \, p, \\ \operatorname{div} \boldsymbol{v} = 0, \end{cases}$$
(1)

where \boldsymbol{v} is the velocity vector of the fluid, p is the pressure, and ∇ is the Levi-Civita connection on N, see [Arnold, Khesin, 1998]. We assume dim N = 2 and consider an open subset $M \subseteq N$ with trivial topology such that there exist *isothermal coordinates* (x, y) on M, [Postnikov, Geometry VI], that is, the Riemannian metric on M has the form $e^h (dx^2 + dy^2)$ for a smooth function h = h(x, y).

For $h \equiv 0$ see [Li, 2001], [M., 2024].

When $h \neq 0$, system (1) in the isothermal coordinates acquires the form

$$\begin{cases} u_t + u \, u_x + v \, u_y + \frac{1}{2} \, h_x \, (u^2 - v^2) + h_y \, u \, v = -e^{-h} \, p_x, \\ v_t + u \, v_x + v \, v_y + \frac{1}{2} \, h_y \, (u^2 - v^2) + h_x \, u \, v = -e^{-h} \, p_y, \\ (e^h \, u)_x + (e^h \, v)_y = 0, \end{cases}$$
(2)

where u and v are the components of the velocity vector $\boldsymbol{v} = u \partial_x + v \partial_y$.

The third equation of system (2) implies the local existence of a stream function ψ such that

$$u = \mathrm{e}^{-h} \,\psi_y, \quad v = -\mathrm{e}^{-h} \,\psi_x.$$

Upon using this substitution and excluding p from the first and second equations of system (2), we obtain the *Euler equation of dynamics of* an inviscid incompressible fluid in vorticity form

$$\Delta \psi_t = \mathbf{J}(\psi, \Delta \psi),\tag{3}$$

where

$$\Delta \psi = \mathrm{e}^{-h} \left(\psi_{xx} + \psi_{yy} \right)$$

is the Laplace operator in the isothermal coordinates and the Jacobi bracket is defined as

$$J(a,b) = e^{-h} (a_x b_y - a_y b_x).$$
(4)

The natural setting of the Euler equation and its Lax representations can be expressed in terms of the Poisson algebra $\mathfrak{p} = C^{\infty}(M)/\mathbb{R}$ of non-constant functions on M, equipped with the Jacobi bracket (4). The map

$$\iota : \mathfrak{p} \to \mathfrak{h}, \ \iota : f \mapsto -\mathrm{e}^{-h} \left(f_y \,\partial_x - f_x \,\partial_y \right)$$

establishes an isomorphism of ${\mathfrak p}$ and the Lie algebra

$$\mathfrak{h} = \mathfrak{svect}(M) = \{ V \in TM \mid L_V \eta = 0 \}$$

of the area-preserving vector fields, where $\eta = e^h dx \wedge dy$ is the Riemannian volume element on M.

We employ the current Lie algebra $\tilde{\mathfrak{p}} = C^{\infty}(\mathbb{R}, \mathfrak{p})$ of smooth functions of $t \in \mathbb{R}$ taking values in the Lie algebra \mathfrak{p} , endowed with the pointwise bracket J, and consider the stream function ψ and the pseudopotential q below as the elements of $\tilde{\mathfrak{p}}$.

The Lie algebra \mathfrak{h} admits the extension by the outer derivation $W \in H^1(\mathfrak{h}, \mathfrak{h})$, where W is a vector field on M such that

 $L_W \eta = \eta.$

We can take

 $W = \mathrm{e}^{-h} \left(P \,\partial_x + Q \,\partial_y \right),$

where P = P(x, y) and Q = Q(x, y) are any two functions such that

$$P_x = Q_y = \frac{1}{2} e^h.$$

Then we have

$$[W,\iota(f)]=\iota(\mathrm{E}(f)),$$

where the differential operator $E \in H^1(\mathfrak{p}, \mathfrak{p})$ has the form

$$E(f) = e^{-h} \left(P f_x + Q f_y \right) - f.$$
(5)

REMARK 1. While the operator $E \in H^1(\mathfrak{p}, \mathfrak{p})$ is not uniquely defined, another choice of the functions P and Q in (5) appends an inner derivation of the Lie algebra \mathfrak{p} to E. \diamond THEOREM 1. Equation (3) admits the family of the Lax representations

$$\begin{cases} q_t = J(\psi, q) + \alpha E(\psi) + \lambda F(\lambda^{-1} \Delta \psi), \\ J(\Delta \psi, q) = -\alpha E(\Delta \psi) + \lambda G(\lambda^{-1} \Delta \psi), \end{cases}$$
(6)

where $\lambda \neq 0$ is a parameter, F and G are arbitrary smooth functions of one variable, and the scaling of q allows one to assume either $\alpha = 0$ or $\alpha = 1$.

Each of the following conditions (i) through (iv) is sufficient for the parameter λ to be non-removable:

(i)
$$\alpha = 1$$
 and $G(s) \neq \text{const} \cdot s$,
(ii) $\alpha = 1$ and $F'(s) \neq \text{const}$,
(iii) $\alpha = 0$ and $s G'(s) \neq \text{const} \cdot G(s)$,
(iv) $\alpha = 0, s G'(s) = C \cdot G(s), C = \text{const}$, and
 $s F''(s) \neq (C-1) \cdot F'(s)$.

PROOF. Straightforward computations show that equation (3) implies the compatibility of system (6). Moreover, when $\alpha + G'(\lambda^{-1}\psi) \neq 0$, the compatibility of system (6) implies equation (3).

To prove the second assertion, we notice that the scaling symmetry $V = t \partial_t - \psi \partial_{\psi}$ of equation (3) does not admit a lift to a symmetry of equations (6) when any one of the conditions (i) through (iv) holds. The action of the prolongation of the diffeomorphism $\exp(\varepsilon V)$ to the bundle $J^3(\pi)$ of the third order jets of the sections of the bundle $\pi : \mathbb{R}^5 \to \mathbb{R}^3$, $\pi : (t, x, y, \psi, q) \mapsto (t, x, y)$, maps equations (6) with $\lambda = 1$ to equations (6) with $\lambda = e^{\varepsilon}$. In accordance with the observations in §§ 3.2, 3.6 of [Krasil'shchik, Vinogradov, 1989], systems (6) with the different constant values of $\lambda \neq 0$ are not equivalent, meaning the parameter λ is non-removable. REMARK 2. Another choice of the functions P and Q in the operator E in (5) can be compensated by the change of the pseudopotential q. Indeed, if functions \hat{P} and \hat{Q} enjoy the condition $\hat{P}_x = \hat{Q}_y = \frac{1}{2}e^h$, then

$$\hat{\mathbf{E}}(\psi) = \mathbf{e}^{-h} \left(\hat{P} \,\psi_x + \hat{Q} \,\psi_y \right) - \psi$$

= $\mathbf{E}(\psi) + \mathbf{e}^{-h} \left(\left(\hat{P} - P \right) \psi_x + \left(\hat{Q} - Q \right) \psi_y \right)$
= $\mathbf{E}(\psi) + \mathbf{J}(\psi, r),$

where r is a function on M such that $r_y = \hat{P} - P$ and $r_x = -\hat{Q} + Q$. The existence of such a function follows from the condition

$$(\hat{P} - P)_x = -(\hat{Q} - Q)_y = 0.$$

Likewise, $\hat{\mathcal{E}}(\Delta \psi) = \mathcal{E}(\Delta \psi) + \mathcal{J}(\Delta \psi, r)$. Therefore, the replacement $P \mapsto \hat{P}, \ Q \mapsto \hat{Q}$ in (5) is equivalent to the replacement $q \mapsto q - r$.

REMARK 3. While Theorem 1 is proven by computations in isothermal coordinates, the forms of equation (3) and its Lax representation (6) do not depend on the choice of local coordinates on a Riemannian manifold under consideration. \diamond

EXAMPLE 1. The unit sphere

$$S = \{(X,Y,Z) \in \mathbb{R}^3 \mid X^2 + Y^2 + Z^2 = 1\}$$

in \mathbb{R}^3 has the local geographic coordinates (φ, θ) such that

$$X = \cos \varphi \, \cos \theta, \ \ Y = \sin \varphi \, \cos \theta, \ \ Z = \sin \theta,$$

 $\varphi \in [0, 2\pi), \ \theta \in (-\pi/2, \pi/2), \ \text{and the local stereographic coordinates}$ $(x, y) \in \mathbb{R}^2$ such that

$$X = \frac{2x}{1 + x^2 + y^2}, \quad Y = \frac{2y}{1 + x^2 + y^2}, \quad Z = \frac{x^2 + y^2 - 1}{1 + x^2 + y^2}$$

The Euclidean metric $dX^2 + dY^2 + dZ^2$ on \mathbb{R}^3 reduces to the metric $d\varphi^2 + \cos^2 \varphi \, d\theta^2$ in the geographical coordinates and to the metric $4 (1 + x^2 + y^2)^{-2} (dx^2 + dy^2)$ in the stereographic coordinates. Therefore, the stereograpic coordinates are isothermal, and the dynamics of an ideal fluid on the unit sphere can be described by equation (3) with the function

$$h(x,y) = \ln \frac{4}{(1+x^2+y^2)^2}.$$

This equation admits the Lax representation (6), where we can put

$$E(f) = \frac{(1+x^2+y^2)}{4} \left(\frac{1}{1+y^2} \left(x + \frac{1+x^2+y^2}{\sqrt{1+y^2}} \arctan \frac{x}{\sqrt{1+y^2}} \right) f_x + \frac{1}{1+x^2} \left(y + \frac{1+x^2+y^2}{\sqrt{1+x^2}} \arctan \frac{y}{\sqrt{1+x^2}} \right) f_y \right) - f.$$

Alternatively, we can use the geographic coordinates to write Euler equation on the sphere in the same form (3), where now

$$\Delta \psi = \frac{1}{\cos \theta} \left(\cos \theta \, \psi_{\theta} \right)_{\theta} + \frac{1}{\cos^2 \theta} \, \psi_{\varphi\varphi}$$

and

$$\mathbf{J}(a,b) = \frac{1}{\cos\theta} \left(a_{\varphi} \, b_{\theta} - a_{\theta} \, b_{\varphi} \right).$$

When the Lax representation (6) is written in the geographic coordinates, we can take

$$\mathcal{E}(f) = \frac{1}{2} \left(\varphi f_{\varphi} + \tan \theta f_{\theta} \right) - f.$$

Furthermore, introducing the coordinate $\chi = \cos \theta$, one obtains equations (3) and (6) with

$$\Delta \psi = \left(\left(1 - \chi^2 \right) \psi_{\chi} \right)_{\chi} + \frac{1}{1 - \chi^2} \psi_{\varphi\varphi},$$

$$\mathbf{J}(a, b) = a_{\varphi} b_{\chi} - a_{\chi} b_{\varphi}$$

and

$$\mathcal{E}(f) = \frac{1}{2} \left(\varphi f_{\varphi} + \chi f_{\chi} \right) - f.$$

REMARK 4. The Euler equation on a rotating sphere in the last coordinate system has the form

$$\Delta \psi_t = \mathcal{J}(\psi, \Delta \psi) + 2\,\Omega\,\psi_{\varphi},$$

where Ω is the relative angular velocity. As shown in [Platzman, 1960], [Bihlo, Popovych, 2011], this equation is equivalent to equation (3) under a certain change of variables.

 \diamond

PART TWO

Lax representations for the 3D Euler-Helmholtz equations

arXiv:2409.05752 [nlin.SI]

Let $\mathfrak{vect}(M)$ be the Lie algebra of the vector fields on an open subset $M \subseteq \mathbb{R}^3$ with trivial topology, and let

$$\mathfrak{svect}(M) = \{ V \in \mathfrak{vect}(M) \mid L_V \eta = 0 \}$$

be the Lie algebra of the volume-preserving vector fields on ${\cal M}$ with the volume element

$$\eta = dx \wedge dy \wedge dz.$$

The three-dimensional Euler equation in the vorticity form, or the 3D Euler–Helmholtz equation, [Arnold, Khesin, 1998], reads

$$\operatorname{curl} \boldsymbol{u}_t = [\boldsymbol{u}, \operatorname{curl} \boldsymbol{u}], \tag{7}$$

where $\boldsymbol{u} = u \,\partial_x + v \,\partial_y + w \,\partial_z \in C^\infty(\mathbb{R}, \mathfrak{spect}(M)).$ The last condition

yields

$$\operatorname{div} \boldsymbol{u} = u_x + v_y + w_z = 0. \tag{8}$$

Equation (8) implies the compatibility of the over-determined system (7).

Two Lax representations for Eq. (7) are presented in [Li, Yurov, 2003]:

$$\begin{cases} \operatorname{curl} \boldsymbol{u}(r) &= \lambda r, \\ r_t &= \boldsymbol{u}(r), \end{cases}$$
(9)

where $r \in C^{\infty}(\mathbb{R} \times M)$, and

$$\begin{cases} [\operatorname{curl} \boldsymbol{u}, \boldsymbol{q}] = \lambda \boldsymbol{q}, \\ \boldsymbol{q}_t = [\boldsymbol{u}, \boldsymbol{q}] \end{cases}$$
(10)

with $\boldsymbol{q} = q_1 \partial_x + q_2 \partial_y + q_3 \partial_z \in C^{\infty}(\mathbb{R}, \mathfrak{vect}(M))$. The parameter λ in system (9) is removable. Indeed, when $\lambda \neq 0$, the change of the pseudopotential $r = \tilde{r}^{\lambda}$ transforms (9) to the form

$$\begin{cases} \operatorname{curl} \boldsymbol{u}(\tilde{r}) &= \tilde{r}, \\ \tilde{r}_t &= \boldsymbol{u}(\tilde{r}). \end{cases}$$

THEOREM 2. The parameter λ in system (10) is non-removable.

PROOF. The symmetry $S = x \partial_x + y \partial_y + z \partial_z + u \partial_u + v \partial_v + w \partial_w$ of equations (7), (8) does not admit a lift to a symmetry of system (10). The prolongation of $\exp(\tau S)$ maps (10) to the same system with λ replaced by $e^{\tau} \lambda$. THEOREM 3. System

$$\begin{cases} [\operatorname{curl} \boldsymbol{u}, \boldsymbol{q}] = \mu \operatorname{curl} \boldsymbol{u}, \\ \boldsymbol{q}_t = [\boldsymbol{u}, \boldsymbol{q}] + \lambda \operatorname{curl} \boldsymbol{u} \end{cases}$$
(11)

with $\boldsymbol{q} \in C^{\infty}(\mathbb{R}, \mathfrak{vect}(M))$ provides a Lax representation for equation (7). When $\mu \neq 0$, the parameter λ is non-removable.

PROOF. Straightforward computations show that equation (7) implies the compatibility of system (11). The proof of the second assertion is similar to the proof of Theorem 2. \Box

The construction of the next Lax representation employs the outer derivation of the Lie algebra $\mathfrak{svect}(M)$. As shown in [Lichnerowicz 1974], [Morimoto1976],

 $H^1(\mathfrak{svect}(M),\mathfrak{svect}(M)) = \langle [\boldsymbol{w}] \rangle,$

where $\boldsymbol{w} \in \mathfrak{vect}(M)$ satisfies $L_{\boldsymbol{w}} \eta = \eta$. We assume

 $\boldsymbol{w} = x\,\partial_x + y\,\partial_y + z\,\partial_z$

in the following theorem.

THEOREM 4. System

$$\begin{cases} [\operatorname{curl} \boldsymbol{u}, \operatorname{curl} \boldsymbol{q}] &= \mu \operatorname{curl} \boldsymbol{u} - [\boldsymbol{w}, \operatorname{curl} \boldsymbol{u}], \\ \operatorname{curl} \boldsymbol{q}_t &= [\boldsymbol{u}, \operatorname{curl} \boldsymbol{q}] + \lambda \operatorname{curl} \boldsymbol{u} + [\boldsymbol{w}, \boldsymbol{u}] \end{cases}$$
(12)

with $\boldsymbol{q} \in C^{\infty}(\mathbb{R}, \mathfrak{vect}(M))$ defines a Lax representation for the 3D Euler-Helmholtz equation (7). The parameter λ is non-removable.

PROOF. Since $\operatorname{curl} \boldsymbol{q} \in C^{\infty}(\mathbb{R}, \mathfrak{svect}(M))$ and $\boldsymbol{w} \notin C^{\infty}(\mathbb{R}, \mathfrak{svect}(M))$, the summands with \boldsymbol{w} in system (12) cannot be eliminated by changing \boldsymbol{q} . The rest of the proof is similar to the proof of Theorem 3. \Box