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The dynamics of an inviscid incompressible fluid on a Riemannian
manifold NV is described by the Euler equations

v + Vyv = —gradp, (1)
dive =0,

where v is the velocity vector of the fluid, p is the pressure, and V is
the Levi-Civita connection on N, see [Arnold, Khesin, 1998]. We
assume dim N = 2 and consider an open subset M C N with trivial
topology such that there exist isothermal coordinates (x,y) on M,
[Postnikov, Geometry VI, that is, the Riemannian metric on M has the
form e’ (dz? + dy?) for a smooth function h = h(z,y).

For h = 0 see [Li, 2001], [M., 2024].

When h # 0, system (1) in the isothermal coordinates acquires the form
U + U Uy + V Uy + %hx (u? —v?) + hyuv = —ehp,,
U4 uvg ooy + 5 hy (U2 —v%) + hpuv = —e " py, (2)
(e u)y + (ehv), =0,

where u and v are the components of the velocity vector v = w9, +v 0,.
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The third equation of system (2) implies the local existence of a
stream function 1 such that

u=e" Yy, v= —e ey,

Upon using this substitution and excluding p from the first and second
equations of system (2), we obtain the Euler equation of dynamics of
an inviscid incompressible fluid in vorticity form

Aty = J(, A), (3)
where
AQ;Z) =e " (wmm + ¢yy)

is the Laplace operator in the isothermal coordinates and the Jacobi
bracket is defined as

J(a,b) = e " (ay by — ay by). 4)
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The natural setting of the Euler equation and its Lax representations
can be expressed in terms of the Poisson algebra p = C*°(M)/R of
non-constant functions on M, equipped with the Jacobi bracket (4).
The map

Lip—bh, o fe —e_h(fyax — fz 0y)

establishes an isomorphism of p and the Lie algebra
h=svect(M)={V € TM | Lyn =0}

of the area-preserving vector fields, where n = e dx A dy is the

Riemannian volume element on M.

We employ the current Lie algebra p = C*°(R, p) of smooth functions of
t € R taking values in the Lie algebra p, endowed with the pointwise
bracket J, and consider the stream function ¥ and the pseudopotential
q below as the elements of p.
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The Lie algebra h admits the extension by the outer derivation
W € H'(b, ), where W is a vector field on M such that

Lwn=n.
We can take
W=e"(P0,+Q0,),
where P = P(z,y) and @ = Q(z,y) are any two functions such that
P, =Qy= %eh.
Then we have
(W, ()] = u(E(f)),
where the differential operator E € H'(p,p) has the form
E(f)=e™(Pfat+Qf) I (5)

REMARK 1. While the operator E € H'(p, p) is not uniquely defined,
another choice of the functions P and @ in (5) appends an inner
derivation of the Lie algebra p to E. o
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THEOREM 1. Equation (3) admits the family of the Lax
representations

@ = J(W,q) +aE@W) +AF(A" Ay),
JAY,q) = —aB(AY)+AGATAY),
where A # 0 is a parameter, F' and G are arbitrary smooth functions of

one variable, and the scaling of ¢ allows one to assume either a« = 0 or
a=1.

(6)

Each of the following conditions (i) through (iv) is sufficient for the
parameter A to be non-removable:
(i) =1 and G(s) # const - s,
(ii) « =1 and F'(s) # const,
(iii) « =0 and sG'(s) # const - G(s),
(iv) a=0, sG'(s) =C-G(s), C = const, and
sF"(s) £ (C—1)- F'(s).
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PROOF. Straightforward computations show that equation (3) implies
the compatibility of system (6). Moreover, when o 4+ G'(A\~14)) # 0, the
compatibility of system (6) implies equation (3).

To prove the second assertion, we notice that the scaling symmetry

V =t0; — 1 0y of equation (3) does not admit a lift to a symmetry of
equations (6) when any one of the conditions (i) through (iv) holds.
The action of the prolongation of the diffeomorphism exp(e V') to the
bundle J3(7) of the third order jets of the sections of the bundle

7: R = R 7 (t,2,9,v,q) — (t,z,y), maps equations (6) with A =1
to equations (6) with A = e°. In accordance with the observations in
§8 3.2, 3.6 of [Krasil’shchik, Vinogradov, 1989, systems (6) with the
different constant values of A # 0 are not equivalent, meaning the
parameter A is non-removable.
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REMARK 2. Another choice of the functions P and () in the operator
E in (5) can be compensated by the change of the pseudopotentlal q.
Indeed, if functions P and @ enjoy the condition P, = Qy el then

B() = e (P, + Q) —
=E() +e " (P—P)u+ (@ — Q) )
= E(W + J(d}’ T)’

where 7 is a function on M such that r, = P—Pandr,=-Q+Q.
The existence of such a function follows from the condition

(P~P)a=—-(Q-Q)y=0.
Likewise, E(A ) = E(A ) 4+ J(A4,r). Therefore, the replacement
P~ P, Q+— @ in (5) is equivalent to the replacement ¢ — ¢ — 7. o
REMARK 3. While Theorem 1 is proven by computations in isothermal
coordinates, the forms of equation (3) and its Lax representation (6) do

not depend on the choice of local coordinates on a Riemannian mani-
fold under consideration. o
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EXAMPLE 1. The unit sphere
S={(X,Y,2)eR® | X2 +Y?2+22=1}
in R? has the local geographic coordinates (¢, 6) such that
X =cosp cosf, Y =sinp cos, Z =sinb,
p€[0,27), 0 € (—m/2,7/2), and the local stereographic coordinates
(z,y) € R? such that
2x 2y 22 +y?—1

ey VT Trery CTirory
The Euclidean metric dX? + dY? + dZ? on R? reduces to the metric
dp? 4 cos® ¢ df? in the geographical coordinates and to the metric
4 (14 2% 4 3?)72 (dz® + dy?) in the stereographic coordinates.
Therefore, the stereograpic coordinates are isothermal, and the
dynamics of an ideal fluid on the unit sphere can be described by
equation (3) with the function

4

(1+22+y2)%
s L7 1

h(z,y) =In



This equation admits the Lax representation (6), where we can put

(1+ 2%+ 9?) 1 1+ 22 + o2 T
E = T arctan ——
=" w2 """ vizy "™ i) "
1 1+2% 442 Y
+—F + ———— arctan —— —J.
e (0 vite) )t

Alternatively, we can use the geographic coordinates to write Euler
equation on the sphere in the same form (3), where now

1 1
(cosO1bg)y + o020 (P

A =
v cos

and

1
J(a,b) = —
(a,5) cosf
When the Lax representation (6) is written in the geographic

coordinates, we can take

E(f) =35 (¢ fo +tand fo) — f.

(apbg — agby,).
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Furthermore, introducing the coordinate x = cos, one obtains
equations (3) and (6) with

1
Ay = ((1 - x?%) wX)x + 1—7962 Yy,

J(a,b) = a, by — ay by,
and

E(f) =35 (e fo+xf)— I

o
REMARK 4. The Euler equation on a rotating sphere in the last
coordinate system has the form

Ay = J(¥, A) +2Q1)y,

where €2 is the relative angular velocity. As shown in [Platzman, 1960),
[Bihlo, Popovych, 2011], this equation is equivalent to equation (3)
under a certain change of variables.

o
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PART TWO

Lax representations for the 3D Fuler-Helmholtz equations

arXiv:2409.05752 [nlin.SI|
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Let vect(M) be the Lie algebra of the vector fields on an open subset
M C R? with trivial topology, and let

svect(M) = {V € vect(M) | Lyn =0}

be the Lie algebra of the volume-preserving vector fields on M with the
volume element

n=dx ANdyAdz.

The three-dimensional Euler equation in the vorticity form, or the 3D
Euler—Helmholtz equation, [Arnold, Khesin, 1998], reads

curlu; = [u, curlul, (7

where 4 = w0, +v 0, + w0, € C°(R, svect(M)). The last condition
yields

divu = u; + vy, +w, = 0. (8)

Equation (8) implies the compatibility of the over-determined system

(7)-
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Two Lax representations for Eq. (7) are presented in [Li, Yurov, 2003]:
curlu(r) = Ar,

{ o= ,U’(T)u (9)

where r € C*(R x M), and
1 =
{ [curlu, g A\g, (10)
q¢ = [U, q]

with ¢ = q1 0y + q2 0y + q3 0, € C*°(R, vect(M)). The parameter A in

system (9) is removable. Indeed, when X # 0, the change of the
pseudopotential r = 7 transforms (9) to the form

curlu(r) = 7,
THEOREM 2. The parameter A in system (10) is non-removable.

PROOF. The symmetry S =20, +y 0y + 20, + u0y + v 0y + w 0y, of
equations (7), (8) does not admit a lift to a symmetry of system (10).
The prolongation of exp(7 S) maps (10) to the same system with A
replaced by e” \. O
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THEOREM 3. System

[curlu,q] = pcurluy, (11)
¢ = [u,q]+ A\curlu

with ¢ € C*°(R, vect(M)) provides a Lax representation for equation
(7). When p # 0, the parameter A is non-removable.

PROOF. Straightforward computations show that equation (7) implies
the compatibilty of system (11). The proof of the second assertion is
similar to the proof of Theorem 2. O

The construction of the next Lax representation employs the outer deri-
vation of the Lie algebra svect(M). As shown in [Lichnerowicz 1974],
|[Morimoto1976|,

H(svect(M), svect(M)) = ([w]),
where w € vect(M) satisfies Ly, 7 = 1. We assume
w=20,+y0y+20,

in the following theorem.
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THEOREM 4. System

[curlu, curlg] = pcurlu — [w,curlul, (12)
curlg; = [u,curlg]+ Acurlu + [w, u]

with ¢ € C*°(R, vect(M)) defines a Lax representation for the 3D

Euler-Helmholtz equation (7). The parameter A is non-removable.

PROOF. Since curlg € C*°(R, svect(M)) and w ¢ C°(R, svect(M)),
the summands with w in system (12) cannot be eliminated by changing
q. The rest of the proof is similar to the proof of Theorem 3. (]
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