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Partial differential equation
F(z" u,ugi, Uyigi,...) =0, 4,5,k {l,..,n}
.
Lax representation
Qazk = Tak (T Uy Ugi, Ugiqs -5 ), @, b EN,
such that
(Qa,zk)xm = (Qa,xm)mk — F=0.
v
Wahlquist—Estabrook forms
Tq = dqq — Tak(xza Uy Uiy Ugigeiy -+ Qb) da*
such that
dt, =n% A1, mod F =0. )
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Example 1. Liouville’s equation:

Uty = el

Lax representation

1 1
@G = =Zu+Ae2
21 1 1 (Qt)fv:(%c)t < Uz = €

U

Backlund transformation
(ut)x = (um)t — Qtz = 0

General solution
2¢' (V' (z
¢g=Ft)+G@z) = u=I (%)’

O'(t) =222 Y(z) = ¢, o
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The problem:

to find internal conditions that suggest existence of a Lax
representation for a given PDE.

The main idea:
to apply

e Elie Cartan’s theory of Lie pseudo-groups,

@ structure theory of infinite-dimensional Lie algebras

to tackle the problem.

Specifically:
@ to search for the Wahlquist—Estabrook forms of a Lax
representation for a given PDE as the Maurer—Cartan forms of the
twisted extension of the symmetry algebra of the PDE,

o the twisted extension = extension generated by non-trivial twisted
2-cocycles of the symmetry algebra.
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The (infinitesimal generator of a) symmetry
of a PDE F(2%, u, Ui, Uyiys,...) = 0 is a function @ (2%, u, i, Uyiyi, ...)
such that for
U=u+¢e@(@u, g, Ugig, )
there holds
F(2*,U,Uy,...) = o(?).

In other words,

def
Z 81,611 i Zlo"'oDa:in((p):()

7/17
when restricted on {F =0}.
The symmetry algebra

Infinitesimal generators constitute a Lie algebra with respect to the
bracket

[0, 0] = E¢ () — Ey(9).
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Let g be a Lie algebra over R with H'(g) # {0}. Take o € H'(g), so
doc = 0.

Twisted (deformed, exotic, ...) differential
For c € R put

dea® =d0 —ca N O.

From do =0 it follows that d2, = 0.

Twisted (deformed, exotic, ... ) cohomology groups

The cohomology groups

HE (g) = ker d.o: CF(g) — CFl(g)
) = i de: CF1(g) — CF(g)

are referred to as twisted cohomology groups of g.
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Maurer — Cartan structure equations of g

Let 0° be dual forms to the basis {v1,...,vp,...} of g, that is,
0% (v;) = 5; Then from [v;, v;] = cfj vy, it follows that
ok = - kot Aol (%)
1<j
and d?0* = d(r.s.h.) = 0. In opposite direction, suppose that
d(r.h.s) = 0 hold for (*) with unspecified 0¢, then {cfj} are structure
constants for a Lie algebra.

Suppose HZ ,(g) # {[0]} for ¢o € R. Take Q = ; a;;0° A 07 such that
i<j
[Q] € HC20(X

do—coax No = (%)

with unspecified o is conpatible with the structure equations (x).

(g9). Equation

Twisted extension

The Lie algebra g with the stucture equations (x), (xx) is referred to as
the twisted extension of g.
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Example 2.

Consider h = (vy,...,vg) with the commutator table
U2 U3 2 U5 U6
(%1} 0 0 0 —Vs —Ve6
V9 -2 ()] —v3 0 —7Us
(OR} —2 V4 Vs —V6
V4 Vg 0
Vs 0

The structure equations

((do' = 0,

de? = 202073,

de® = 02A04

de* = 203 n04,

do® = 0'A0°+02A006—-03A0°
[ d05 = 01 A06+03A0%—0%A05.
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We have H'(h) = (01). Solve

a(> a0 n0) —co A (D a0 n07) =0
for a;; and c. Solution:

c=2 = az30° A00+D b (do—20" AO),
trivial twi;gsd cocycle

c#2 = ) bi(do'—co' A,

2

TV
trivial twisted cocycle

=

the second twisted cohomology group

[ (05 A0, c=2,
(”)‘{{[O]}, 2
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Twisted extension
Equation
do=20'Ao+0°A0°

is compatible with the structure equations of §.

Define w by 0¢(w) = 0, o(w) = 1, then the twisted extension

H: (v!,...,v% w) has the commutator table

U2 U3 V4 Us Vg w
VU1 0 0 0 —5 —vg || —2w
V2 —2v9 —7U3 0 —7s 0
V3 —2v4 U5 —vg 0
V4 Vg 0 0
U5 —w 0

v | | | | | L 0]

O. Morozov (AGH University) Lax representations via extensions 10 / 26



The main idea (cont’d):

to apply the above trick to the structure equations of the symmetry
algebra of the PDE under the study.

For a given PDE the Maurer—Cartan forms and the structure equations
of the symmetry algebra can be found by means of E. Cartan’s method
of equivalence:

e E. Cartan. (Buvres Completes. Paris: Gauthier - Villars, 1953

e P.J. Olver. Equivalence, invariants, and symmetry. Cambridge:
CUP, 1995

e M. Fels, P.J. Olver. Acta Appl. Math. 51 (1998), 161-213

e O.M. J. Phys. A: Math. Gen. 35 (2002), 29652977

e O.M. J. Math. Sci. 135 (2006), 2680—2694
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Example 3. The hyper-CR equation for Einstein—Weyl structures

Uyy = Uty + Uy Uggy — Ug Ugy

o G.M. Kuz'mina, 1967

Lax representation

{vt = (A2—)\um—uy)vw,
wy = (= ) o

e V.G. Mikhalev, 1992
e M.V. Pavlov, 2003
e M. Dunajski, 2004
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Generators of symmetries
0=—2Tuz —Yyuy +3u,

1= —Yuz+ 2z,

@o(A) = —Auy — %y (yuy, — 2x)A”

(A) — A(zug + yuy —
@1(A)=—yAu, — Auy +z A" + %y2A”,
(4)

u) + %y3 A”’,

Non-zero commutators

[Wo, 11’1] =y,

[cpz() ()] (Pi-i-j(AB/_BA/)a

k+7j<3.
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The structure of the Lie algebra:

p o= <1l)0‘,|1|)1> X (@o(4),...03(4))

|
as X (R3[h] ® 1)

where Rs[h] = R[h]/(h=0), w = (£ |ic Np).

Maurer—Cartan forms

1

3 o)
Dual forms: \; - o, @;(t*) — 6,4, denote © = Z Z ml

k=0 m=0

ek,m

Structure equations

d(X() = 07
doy = g Ao,
d® = G AO+ (hog+h?2o)ABy

(recall that h* = 0 when k > 3).
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Cohomology groups

mo)=(w),  HRe={ " )

The structure equation of the twisted extension

do =g A0+ g A\ &1

Maurer—Cartan forms

(X’O —] dq’ )
x; = —elds,
60’0 = rdt, N
010 = rel(dy+ (2s—ug)dt),
020 = reX(de+ (s—uy)dy+ (s — suy — uy)dt),
050 = pel(du— uyde —uydy — updt), )
o=¢el(dv—qds).
O. Morozov (AGH University) Lax representations via extensions 15 / 26




Wahlquist—Estabrook form
Consider the linear combination
To=0—0g9 =

el (dv—qds —re? (do+ (s — ugz) dy + (s* — sug — uy) dt)),
rename g =vs, T =7vyexp(—vs) =

To = €% (dv —vsds — vy (dz + (5 — ug) dy + (s? — sug — uy) dt)).
This is the Wahlquist—Esrabrook form of the Lax represntation

{vt = (32—suz—uy)vx,

Uy = (8= U

Generalization
Take another linear combination
T=0-cy0pp—c1010—c2020=
eV (dv—vsds — v, (de+ (s —ugy +c1e ) dy
+(s2 — sug —uy +cre % (25 — ug) + cpe" ) dt))
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Analysis of compatibility conditions for the system defined by T = 0
givesscg=c1 =1 —

Another Lax representation

vy = (32 = Sy = iy de e (e = w4 e_zvs) Vg,
il (s —ug +e7%) vy,

Details: arXiv : 2003.13451
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Consider a generalization of the previous example.

Example 4. J

Take Witt’s algebra

o = <v,~ = (i-l—ll)! t1 o, | i > —1>.

Fix n > 1, consider the algebra of truncated polynomials of degree n
Ry [h] = R[A}/(h"*! = 0)

and the tensor product
Ru[h] @ = (hF@v; |i> -1, 0< k< n),

hp+q®[vi7vj]7 p+q§n7
0, p+q>0.

[hp X Ui,hq X Uj] = {
For derivative ho), define

Extension
qo = <h6h> X (Rn[h] X m). J
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o
T

Dual forms: hdp, — «, h* @ v; — Gi:, consider © = Z Z
k=0 i=0

Structure equations of qg

de = 0,
d® = haABOp+0O;A0B.

Deformation (|P. Zusmanovich, J. Algebra 268 (2003), 603—635|)
Consider ¥ € H?(qo, qo),

Y(h? @ v, M @ vj) = (jp—1iq) PT1® vy,
define [+, ] = [,-] + e ¥(+,-), denote the obtained Lie algebra as ¢.

Structure equations of .

da = 0,
de = hOC/\@h+@t/\(@+€@h).
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Theorem.
Forn > 2
2
HT%L“(qE): <[(Dm]>, mG{Z,...,n}, SZ—E,
{[0]}, otherwise,
where
[m/2]
Oy = Y (m—27)00, . A6,
r=0 )
Corollary
For each m € {2,...,n} equation
do=maANo+ O,
is compatible with the structure equations of q_j/p,.

E.g., take n = m = 3, integrate —
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the Lax representation

{Qt = u_(u%“‘uy)(ha
Qy = T —Uz(qy

for

_ %
iy = Wiy =0 (W = W, | Wi = S0 Uy
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Further generalization

o Take a finite-dimensional commutative associative unital algebra
o/, consider &7 ® tv.

o Take deformations of .« ® w |P. Zusmanovich, 2003].

e Find (multi-) graded deformations with non-trivial second twisted
cohomology group.

e Try to find associated integrable systems.

Example 5.
o Consider & = R[hq,...,h4]/(h? =0, h; hj =0).

o Take the bi-graded deformation t of .7 ® v defined by the
following structure equations:
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The structure equations of t©

( doq = 0,
dOCQ = 0,
B = 204 AP,
d®y = g A Oy,
dO; =

SE(v):

dO,

+®1 A 627

+@3,t NG ®1¢ A ©3.

©1,: A Oy + 3 BOp A Oy + x1 A Oy,
O2: NBp — gt A Oz + o A O,
dO3 = ©3; N0y — %@07,5 ANOBs3 + (1 + x2) A O3

By = Oy ABy—0OpsAOs+ (20 + a2) ANOy+ B A O

The second twisted cohomology group of t©

(loa A o]},
2 _J (loa A B, o2 A B,
Hcloq—i-@ocg (t) - <[9070 A 9270],
{[0]},

Cl = C = 0,
C1 = 2, & = 0,
Cl = 0, Cy = 1,
otherwise.
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The twisted extension ©

SE(v),
dop = o N A,
SE(/'C\): dog = 20 Aoy + o AP,
dog = 20 ANo3g+ o AP,
doy = o2 Aog+ 00,0 A02p.

The second twisted cohomology group of ©

2
Hcl 1 +cox2

(/t\) _ <[9070 A 94’0 I 91,0 A 9370 + B A 0'4], c1=2,c0 =1,
{[0]}, otherwise.

g

The second twisted extension

SER): { SE(t),

dos = (2 x1 + (Xz) N 05+ 00,0 A0s0+010A030+ B Aoy
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The linear combination of o5 and horizontal forms 0, gives

The Lax reperesentation
{ g = uU— (Uy+umuz)QZ7
Qy = 22— Uz(qy
for

_ 2
Uyy = Uty + Uy Ugy — Uy Ugy — 2 Uy Uyy — Uy Uy,
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Conclusion: further generalizations

e Replace o +— ...
— 1w ®R[z] = equations related to rqgsdYM
e L. Martinez Alonso, A.B. Shabat, 2002
E.V. Ferapontov, K.R. Khusnutdinova, 2004,
M.V. Pavlov, N. Stoilov, 2017,
0.M. 2014, 2019,
B.S. Kruglikov, O.M., work in progress,
— Diff(R”) — multi-component generalizations of rqsdYM
e B.S. Kruglikov, O.M., 2012,
> ham(R?) = heavenly equations
e J. Plebanski, 1975
e A.A. Malykh, Y. Nutku, M.B. Sheftel, 2010,
e B. Doubrov, E.V. Ferapontov, 2010.

o Lie algebras — Lie—Rinehart algebras.
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