Lax representations via extensions and deformations of Lie symmetry algebras

Oleg Morozov

AGH University, Cracow, Poland

Partial differential equation

$$F(x^i, u, u_{x^i}, u_{x^i x^j}, \dots) = 0, \quad i, j, k \in \{1, \dots, n\}$$

Lax representation

$$q_{a,x^k} = T_{ak}(x^i, u, u_{x^i}, u_{x^i x^j}, ..., q_b), \quad a, b \in \mathbb{N},$$

such that

$$(q_{a,x^k})_{x^m} = (q_{a,x^m})_{x^k} \quad \iff \quad F = 0.$$

Wahlquist-Estabrook forms

$$\tau_a = dq_a - T_{ak}(x^i, u, u_{x^i}, u_{x^i x^j}, ..., q_b) dx^k$$

such that

$$d\tau_a \equiv \eta_a^b \wedge \tau_b \mod F = 0.$$

Example 1. Liouville's equation:

$$u_{tx} = e^u$$

Lax representation

$$\begin{cases} q_t = \frac{1}{2} u_t + \lambda e^{\frac{1}{2}u + q}, \\ q_x = -\frac{1}{2} u_x - \frac{1}{2\lambda} e^{\frac{1}{2}u - q}, \end{cases} (q_t)_x = (q_x)_t \iff u_{tx} = e^u$$

Bäcklund transformation

$$(u_t)_x = (u_x)_t \iff q_{tx} = 0$$

General solution

$$q = F(t) + G(x) \implies u = \ln\left(\frac{2\,\varphi'(t)\,\psi'(x)}{(\varphi(t) + \psi(x))^2}\right),$$
$$\varphi'(t) = 2\,\lambda^2\,\mathrm{e}^{F(t)}, \quad \psi'(x) = \mathrm{e}^{-G(x)}.$$

The problem:

to find internal conditions that suggest existence of a Lax representation for a given PDE.

The main idea:

to apply

- Élie Cartan's theory of Lie pseudo-groups,
- structure theory of infinite-dimensional Lie algebras

to tackle the problem.

Specifically:

- to search for the Wahlquist–Estabrook forms of a Lax representation for a given PDE as the Maurer–Cartan forms of the twisted extension of the symmetry algebra of the PDE,
- the twisted extension = extension generated by non-trivial twisted 2-cocycles of the symmetry algebra.

The (infinitesimal generator of a) symmetry

of a PDE $F(x^i, u, u_{x^i}, u_{x^ix^j}, ...) = 0$ is a function $\varphi(x^i, u, u_{x^i}, u_{x^ix^j}, ...)$ such that for

$$U = u + \varepsilon \, \varphi(x^i, u, u_{x^i}, u_{x^i x^j}, \ldots)$$

there holds

$$F(x^i, U, U_{x^i}, \dots) = o(\varepsilon^2).$$

In other words,

$$\mathbf{E}_{\varphi}(F) \stackrel{\text{def}}{=} \sum_{i_1,\dots i_n} \frac{\partial F}{\partial u_{x^{i_1}\dots x^{i_n}}} D_{x^{i_1}} \circ \dots \circ D_{x^{i_n}}(\varphi) = 0$$

when restricted on $\{F=0\}$.

The symmetry algebra

Infinitesimal generators constitute a Lie algebra with respect to the bracket

$$[\phi, \psi] = \mathbf{E}_{\phi}(\psi) - \mathbf{E}_{\psi}(\phi).$$

Let \mathfrak{g} be a Lie algebra over \mathbb{R} with $H^1(\mathfrak{g}) \neq \{0\}$. Take $\alpha \in H^1(\mathfrak{g})$, so $d\alpha = 0$.

Twisted (deformed, exotic, ...) differential

For $c \in \mathbb{R}$ put

$$d_{c\alpha}\theta = d\theta - c\alpha \wedge \theta.$$

From $d\alpha = 0$ it follows that $d_{c\alpha}^2 = 0$.

Twisted (deformed, exotic, ...) cohomology groups

The cohomology groups

$$H_{c\alpha}^{k}(\mathfrak{g}) = \frac{\ker d_{c\alpha} \colon C^{k}(\mathfrak{g}) \longrightarrow C^{k+1}(\mathfrak{g})}{\operatorname{im} d_{c\alpha} \colon C^{k-1}(\mathfrak{g}) \longrightarrow C^{k}(\mathfrak{g})}$$

are referred to as twisted cohomology groups of g.

Maurer – Cartan structure equations of \mathfrak{g}

Let θ^i be dual forms to the basis $\{v_1, \dots, v_n, \dots\}$ of \mathfrak{g} , that is, $\theta^i(v_j) = \delta^i_j$. Then from $[v_i, v_j] = c^k_{ij} v_k$ it follows that $d\theta^k = -\sum c^k_{ij} \theta^i \wedge \theta^j \tag{*}$

and $d^2\theta^k = d(r.s.h.) = 0$. In opposite direction, suppose that d(r.h.s) = 0 hold for (*) with unspecified θ^i , then $\{c_{ij}^k\}$ are structure

Suppose $H^2_{c_0\alpha}(\mathfrak{g}) \neq \{[0]\}$ for $c_0 \in \mathbb{R}$. Take $\Omega = \sum_{i < j} a_{ij} \theta^i \wedge \theta^j$ such that

 $[\Omega] \in H^2_{c_0\alpha}(\mathfrak{g})$. Equation

constants for a Lie algebra.

$$d\sigma - c_0 \alpha \wedge \sigma = \Omega \tag{**}$$

with unspecified σ is conpatible with the structure equations (*).

Twisted extension

The Lie algebra $\widehat{\mathfrak{g}}$ with the stucture equations (*), (**) is referred to as the **twisted extension** of \mathfrak{g} .

Example 2.

Consider $\mathfrak{h} = \langle v_1, \dots, v_6 \rangle$ with the commutator table

	v_2	v_3	v_4	v_5	v_6
v_1	0	0	0	$-v_5$	$-v_6$
v_2		$-2v_2$	$-v_3$	0	$-v_5$
v_3			$-2v_4$	v_5	$-v_6$
v_4				v_6	0
v_5					0

The structure equations

$$\begin{cases} d\theta^1 &= 0, \\ d\theta^2 &= 2\theta^2 \wedge \theta^3, \\ d\theta^3 &= \theta^2 \wedge \theta^4, \\ d\theta^4 &= 2\theta^3 \wedge \theta^4, \\ d\theta^5 &= \theta^1 \wedge \theta^5 + \theta^2 \wedge \theta^6 - \theta^3 \wedge \theta^5, \\ d\theta^6 &= \theta^1 \wedge \theta^6 + \theta^3 \wedge \theta^6 - \theta^4 \wedge \theta^5. \end{cases}$$

We have $H^1(\mathfrak{h}) = \langle \mathfrak{g}^1 \rangle$. Solve

$$d\left(\sum a_{ij}\,\theta^i\wedge\theta^j\right)-c\,\theta^1\wedge\left(\sum a_{ij}\,\theta^i\wedge\theta^j\right)=0$$

for a_{ij} and c. Solution:

$$c = 2 \implies a_{56} \, \theta^5 \wedge \theta^6 + \underbrace{\sum b_i \left(d\theta^i - 2 \, \theta^1 \wedge \theta^i \right)}_{\text{trivial twisted cocycle}},$$

$$c \neq 2 \implies \underbrace{\sum b_i \left(d\theta^i - c \, \theta^1 \wedge \theta^i \right)}_{\text{trivial twisted cocycle}},$$

_

the second twisted cohomology group

$$H^2_{c\theta^1}(\mathfrak{h}) = \begin{cases} \langle [\theta^5 \wedge \theta^6] \rangle, & c = 2, \\ \{[0]\}, & c \neq 2. \end{cases}$$

Twisted extension

Equation

$$d\sigma = 2\,\theta^1 \wedge \sigma + \theta^5 \wedge \theta^6$$

is compatible with the structure equations of \mathfrak{h} .

Define w by $\theta^i(w) = 0$, $\sigma(w) = 1$, then the twisted extension $\hat{\mathfrak{h}} = \langle v^1, \dots, v^6, w \rangle$ has the commutator table

	v_2	v_3	v_4	v_5	v_6	w
v_1	0	0	0	$-v_5$	$-v_6$	-2w
v_2		$-2v_2$	$-v_3$	0	$-v_5$	0
v_3			$-2 v_4$	v_5	$-v_6$	0
v_4				v_6	0	0
v_5					-w	0
v_6						0

Δ

The main idea (cont'd):

to apply the above trick to the structure equations of the symmetry algebra of the PDE under the study.

For a given PDE the Maurer-Cartan forms and the structure equations of the symmetry algebra can be found by means of É. Cartan's method of equivalence:

- É. Cartan. Œuvres Complètes. Paris: Gauthier Villars, 1953
- P.J. Olver. Equivalence, invariants, and symmetry. Cambridge: CUP, 1995
- M. Fels, P.J. Olver. Acta Appl. Math. **51** (1998), 161–213
- O.M. J. Phys. A: Math. Gen. **35** (2002), 2965–2977
- O.M. J. Math. Sci. 135 (2006), 2680–2694

Example 3. The hyper-CR equation for Einstein–Weyl structures

$$u_{yy} = u_{tx} + u_y u_{xx} - u_x u_{xy}$$

• G.M. Kuz'mina, 1967

Lax representation

$$\begin{cases} v_t = (\lambda^2 - \lambda u_x - u_y) v_x, \\ v_y = (\lambda - u_x) v_x. \end{cases}$$

- V.G. Mikhalev, 1992
- M.V. Pavlov, 2003
- M. Dunajski, 2004

Generators of symmetries

$$\begin{split} & \psi_0 = -2 \, x \, u_x - y \, u_y + 3 \, u, \\ & \psi_1 = -y \, u_x + 2 \, x, \\ & \varphi_0(A) = -A u_t - \frac{1}{2} \, y \, (y u_x - 2x) A'' - A'(x u_x + y u_y - u) + \frac{1}{6} \, y^3 \, A''', \\ & \varphi_1(A) = -y \, A' \, u_x - A \, u_y + x \, A' + \frac{1}{2} \, y^2 \, A'', \\ & \varphi_2(A) = -A \, u_x + y \, A', \\ & \varphi_3(A) = A, \end{split}$$

Non-zero commutators

where A = A(t).

$$\begin{aligned} [\psi_0, \psi_1] &= -\psi_1, \\ [\psi_i, \varphi_k(A)] &= -k \, \varphi_{k+i}(A), \quad k+i \leq 3, \\ [\varphi_i(A), \varphi_j(B)] &= \varphi_{i+j}(A \, B' - B \, A'), \quad k+j \leq 3. \end{aligned}$$

The structure of the Lie algebra:

where $\mathbb{R}_3[h] = \mathbb{R}[h]/(h^4 = 0)$, $\mathfrak{w} = \langle t^i \partial_t \mid i \in \mathbb{N}_0 \rangle$.

Maurer-Cartan forms

Dual forms:
$$\psi_i \mapsto \alpha_i$$
, $\varphi_j(t^k) \mapsto \theta_{jk}$, denote $\Theta = \sum_{k=0}^3 \sum_{m=0}^\infty \frac{1}{m!} h^k t^m \theta_{k,m}$

Structure equations

$$\begin{cases} d\alpha_0 = 0, \\ d\alpha_1 = \alpha_0 \wedge \alpha_1, \\ d\Theta = \Theta_t \wedge \Theta + (h \alpha_0 + h^2 \alpha_1) \wedge \Theta_h \end{cases}$$

(recall that $h^k = 0$ when k > 3).

Cohomology groups

$$H^1(\mathfrak{p}) = \langle \alpha_0 \rangle, \qquad H^2_{c\alpha_0}(\mathfrak{p}) = \left\{ \begin{array}{l} \langle [\alpha_0 \wedge \alpha_1] \rangle, & c = 1, \\ \{[0]\}, & c \neq 1. \end{array} \right.$$

The structure equation of the twisted extension

$$d\sigma = \alpha_0 \wedge \sigma + \alpha_0 \wedge \alpha_1$$

Maurer-Cartan forms

$$\alpha_{0} = dq,
\alpha_{1} = -e^{q} ds,
\theta_{0,0} = r dt,
\theta_{1,0} = r e^{q} (dy + (2s - u_{x}) dt),
\theta_{2,0} = r e^{2q} (dx + (s - u_{x}) dy + (s^{2} - s u_{x} - u_{y}) dt),
\theta_{3,0} = p e^{3q} (du - u_{x} dx - u_{y} dy - u_{t} dt),
\sigma = e^{q} (dv - q ds).$$

Wahlquist-Estabrook form

Consider the linear combination

$$\tau_{0} = \sigma - \theta_{2,0} = e^{q} \left(dv - q \, ds - r \, e^{q} \left(dx + (s - u_{x}) \, dy + (s^{2} - s \, u_{x} - u_{y}) \, dt \right) \right),$$
rename $q = v_{s}, \quad r = v_{x} \, \exp(-v_{s}) \Rightarrow \tau_{0} = e^{v_{s}} \left(dv - v_{s} \, ds - v_{x} \left(dx + (s - u_{x}) \, dy + (s^{2} - s \, u_{x} - u_{y}) \, dt \right) \right).$

This is the Wahlquist–Esrabrook form of the Lax represntation

$$\begin{cases} v_t = (s^2 - s u_x - u_y) v_x, \\ v_y = (s - u_x) v_x. \end{cases}$$

Generalization

Take another linear combination

$$\tau = \sigma - c_0 \,\theta_{0,0} - c_1 \,\theta_{1,0} - c_2 \,\theta_{2,0} =$$

$$e^{-v_s} \left(dv - v_s \, ds - v_x \left(dx + (s - u_x + c_1 \, e^{-v_s}) \, dy \right. \right.$$

$$\left. + (s^2 - s \, u_x - u_y + c_1 \, e^{-v_s} \left(2 \, s - u_x \right) + c_0 \, e^{-2v_s} \right) dt \right) \right)$$

Analysis of compatibility conditions for the system defined by $\tau = 0$ gives $c_0 = c_1 = 1$ \Longrightarrow

Another Lax representation

$$\begin{cases} v_t = (s^2 - s u_x - u_y + e^{-v_s} (2 s - u_x) + e^{-2v_s}) v_x, \\ v_y = (s - u_x + e^{-v_s}) v_x \end{cases}$$

Details: arXiv: 2003.13451

Example 4.

Consider a generalization of the previous example.

Take Witt's algebra

$$\mathfrak{w} = \left\langle v_i = \frac{1}{(i+1)!} t^{i+1} \, \partial_t \mid i \ge -1 \right\rangle.$$

Fix $n \geq 1$, consider the algebra of truncated polynomials of degree n

$$\mathbb{R}_n[h] = \mathbb{R}[h]/(h^{n+1} = 0)$$

and the tensor product

$$\mathbb{R}_n[h] \otimes \mathfrak{w} = \langle h^k \otimes v_i \mid i \ge -1, \ 0 \le k \le n \rangle,$$

$$[h^p \otimes v_i, h^q \otimes v_j] = \begin{cases} h^{p+q} \otimes [v_i, v_j], & p+q \leq n, \\ 0, & p+q > 0. \end{cases}$$

For derivative $h\partial_h$ define

Extension

$$\mathfrak{q}_0 = \langle h \partial_h \rangle \ltimes (\mathbb{R}_n[h] \otimes \mathfrak{w}).$$

Dual forms: $h\partial_h \mapsto \alpha$, $h^k \otimes v_i \mapsto \theta_k^i$, consider $\Theta = \sum_{k=0}^n \sum_{i=0}^\infty \frac{h^k t^i}{i!} \theta_k^i$

Structure equations of \mathfrak{q}_0

$$\begin{cases} d\alpha = 0, \\ d\Theta = h \alpha \wedge \Theta_h + \Theta_t \wedge \Theta. \end{cases}$$

Deformation ([P. Zusmanovich, J. Algebra **268** (2003), 603–635])

Consider $\Psi \in H^2(\mathfrak{q}_0, \mathfrak{q}_0)$,

$$\Psi(h^p \otimes v_i, h^q \otimes v_j) = (j p - i q) h^{p+q} \otimes v_{i+j},$$

define $[\cdot,\cdot]_{\epsilon}=[\cdot,\cdot]+\epsilon\,\Psi(\cdot,\cdot)$, denote the obtained Lie algebra as \mathfrak{q}_{ϵ} .

Structure equations of \mathfrak{q}_{ϵ}

$$\begin{cases} d\alpha = 0, \\ d\Theta = h \alpha \wedge \Theta_h + \Theta_t \wedge (\Theta + \varepsilon \Theta_h). \end{cases}$$

Theorem.

For $n \geq 2$

$$H_{m\alpha}^2(\mathfrak{q}_{\varepsilon}) = \begin{cases} \langle [\Phi_m] \rangle, & m \in \{2, \dots, n\}, \ \varepsilon = -\frac{2}{m}, \\ \{[0]\}, & \text{otherwise,} \end{cases}$$

where

$$\Phi_m = \sum_{r=0}^{\lfloor m/2 \rfloor} (m - 2r) \,\theta_{m-r}^0 \wedge \theta_r^0.$$

Corollary

For each $m \in \{2, ..., n\}$ equation

$$d\sigma = m \alpha \wedge \sigma + \Phi_m$$

is compatible with the structure equations of $\mathfrak{q}_{-2/m}$.

E.g., take n = m = 3, integrate \Longrightarrow

the Lax representation

$$\begin{cases} q_t = u - (u_x^2 + u_y) q_x, \\ q_y = x - u_x q_x \end{cases}$$

for

$$u_{yy} = u_{tx} + (u_y - u_x^2) u_{xx} - 3 u_x u_{xy}.$$

Further generalization

- Take a finite-dimensional commutative associative unital algebra \mathscr{A} , consider $\mathscr{A}\otimes\mathfrak{w}$.
- Take deformations of $\mathscr{A} \otimes \mathfrak{w}$ [P. Zusmanovich, 2003].
- Find (multi-) graded deformations with non-trivial second twisted cohomology group.
- Try to find associated integrable systems.

Example 5.

- Consider $\mathscr{A} = \mathbb{R}[h_1, \dots, h_4]/(h_i^2 = 0, h_i h_j = 0).$
- Take the bi-graded deformation \mathfrak{r} of $\mathscr{A} \otimes \mathfrak{w}$ defined by the following structure equations:

The structure equations of
$$\mathfrak{r}$$

$$\begin{cases}
d\alpha_1 &= 0, \\
d\alpha_2 &= 0, \\
d\beta &= 2\alpha_1 \wedge \beta, \\
d\Theta_0 &= \Theta_{0,t} \wedge \Theta_0, \\
d\Theta_1 &= \Theta_{1,t} \wedge \Theta_0 + \frac{1}{2}\Theta_{0,t} \wedge \Theta_1 + \alpha_1 \wedge \Theta_1, \\
d\Theta_2 &= \Theta_{2,t} \wedge \Theta_0 - \Theta_{0,t} \wedge \Theta_2 + \alpha_2 \wedge \Theta_2, \\
d\Theta_3 &= \Theta_{3,t} \wedge \Theta_0 - \frac{1}{2}\Theta_{0,t} \wedge \Theta_3 + (\alpha_1 + \alpha_2) \wedge \Theta_3 \\
+\Theta_1 \wedge \Theta_2, \\
d\Theta_4 &= \Theta_{4,t} \wedge \Theta_0 - \Theta_{0,t} \wedge \Theta_4 + (2\alpha_1 + \alpha_2) \wedge \Theta_4 + \beta \wedge \Theta_2 \\
+\Theta_{3,t} \wedge \Theta_1 - \Theta_{1,t} \wedge \Theta_3.
\end{cases}$$
The second twisted cohomology group of \mathfrak{r}

$$H^2_{c_1\alpha_1 + c_2\alpha_2}(\mathfrak{r}) = \begin{cases} \langle [\alpha_1 \wedge \alpha_2] \rangle, & c_1 = c_2 = 0, \\
\langle [\alpha_1 \wedge \beta], [\alpha_2 \wedge \beta] \rangle, & c_1 = 2, c_2 = 0, \\
\langle [\theta_{0,0} \wedge \theta_{2,0}], & c_1 = 0, c_2 = 1, \end{cases}$$

$$H^2_{c_1\alpha_1+c_2\alpha_2}(\mathfrak{r}) = \left\{ \begin{array}{ll} \langle [\alpha_1 \wedge \alpha_2] \rangle, & c_1=c_2=0, \\ \langle [\alpha_1 \wedge \beta], [\alpha_2 \wedge \beta] \rangle, & c_1=2, c_2=0, \\ \langle [\theta_{0,0} \wedge \theta_{2,0}], & c_1=0, c_2=1, \\ \{[0]\}, & \text{otherwise.} \end{array} \right.$$

The twisted extension $\hat{\mathfrak{r}}$

$$SE(\widehat{\mathfrak{r}}): \begin{cases} SE(\mathfrak{r}), \\ d\sigma_1 &= \alpha_1 \wedge \alpha_2, \\ d\sigma_2 &= 2\alpha_1 \wedge \sigma_2 + \alpha_1 \wedge \beta, \\ d\sigma_3 &= 2\alpha_1 \wedge \sigma_3 + \alpha_2 \wedge \beta, \\ d\sigma_4 &= \alpha_2 \wedge \sigma_2 + \theta_{0,0} \wedge \theta_{2,0}. \end{cases}$$

The second twisted cohomology group of $\widehat{\mathfrak{r}}$

$$H^{2}_{c_{1}\alpha_{1}+c_{2}\alpha_{2}}(\widehat{\mathfrak{r}}) = \begin{cases} \langle [\theta_{0,0} \wedge \theta_{4,0} + \theta_{1,0} \wedge \theta_{3,0} + \beta \wedge \sigma_{4}], & c_{1} = 2, c_{2} = 1, \\ \{[0]\}, & \text{otherwise.} \end{cases}$$

The second twisted extension \widehat{s}

$$SE(\widehat{\mathfrak{r}}): \begin{cases} SE(\widehat{\mathfrak{r}}), \\ d\sigma_5 = (2\alpha_1 + \alpha_2) \wedge \sigma_5 + \theta_{0,0} \wedge \theta_{4,0} + \theta_{1,0} \wedge \theta_{3,0} + \beta \wedge \sigma_4. \end{cases}$$

The linear combination of σ_5 and horizontal forms $\theta_{i,0}$ gives

The Lax reperesentation

$$\begin{cases} q_t = u - (u_y + u_x u_z) q_z, \\ q_y = z - u_x q_z \end{cases}$$

for

$$u_{yy} = u_{tx} + u_y u_{xz} - u_z u_{xy} - 2 u_x u_{yz} - u_x^2 u_{zz}$$

Conclusion: further generalizations

- Replace $\mathfrak{w} \mapsto ...$
 - $\mapsto \mathfrak{w} \otimes \mathbb{R}[z] \implies \text{equations related to rqsdYM}$
 - L. Martínez Alonso, A.B. Shabat, 2002
 - E.V. Ferapontov, K.R. Khusnutdinova, 2004,
 - M.V. Pavlov, N. Stoilov, 2017,
 - O.M. 2014, 2019,
 - B.S. Kruglikov, O.M., work in progress,
 - $\mapsto \mathfrak{diff}(\mathbb{R}^n) \implies \text{multi-component generalizations of rqsdYM}$
 - B.S. Kruglikov, O.M., 2012,
 - $\mapsto \mathfrak{ham}(\mathbb{R}^2) \Longrightarrow \text{ heavenly equations}$
 - J. Plebański, 1975
 - A.A. Malykh, Y. Nutku, M.B. Sheftel, 2010,
 - B. Doubrov, E.V. Ferapontov, 2010.
- Lie algebras \mapsto Lie–Rinehart algebras.