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Introduction

• Despite being rather abstract Vinogradov’s geometry of PDEs

appears quite natural form the field theory perspective! Co-

variant phase space methods, homlogical methods, Noether

method, etc.)

• Becomes especially attractive in the case of BV-BRST ap-

proach to gauge theories: homological resolutions of the

equation manifold, physical quantities as local BRST coho-

mology classes), distinction between equations (Lagrangian)

and their solutions. For instance:
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• From physics point of view: theories of fundamental interac-

tions (Gravity, YM, Strings, M-Theory, Higher-spin theories

. . . ) are inevitably gauge theories. We are mostly intrested

in Lagrangian gauge theoires!

• BV formalism on jet-bundles: Henneaux, Barnich, Brandt,........

Applies to variational PDEs on jet-bundles. Moreover, an-

alyzing local BRST cohomology has lead byond jet-bundle

objects such as transgression formulas, generalized connec-

tions, etc. Stora, Brand, Baulieu,.....

• Both from the fundamental perspective and applications in

gravity, asymptotic symmetries, holography, higher spin gauge

theories, string field theory, etc. it is highly desierable to

develop a geometrically invariant approach to local gauge

theories, analagous to the Vinogradov approach to PDEs



• Full-scale BV extension of the concept of diffiety remaines
somewhat obscured
- BV is essentially Lagrangian (defined on jet-bundles). One
needs BV extension of not necessarily variational PDEs
- We are often intersted in variational PDEs. How (BV)
Lagrangian is encoded in term of (BV extension of) diffiety?

• It turns out that a bridge between BV formalism and the in-
variant geometrical approach to PDEs becomes manifest us-
ing the Alexandrov-Kontsevich-Schwartz-Zaboronsky 1994 (AKSZ)-
like framework. This was originally proposed as an elegant
BV formulation of topologiacal models. Somewhat simi-
lar approach (in terms of free differential algebras (FDA))
was independently developped by M.Vasiliev in the context of
higher-spin theories. It is also worth mentioning FDA ap-
proach to supergravity by D’Auria, Fre,....



PDEs and jet-bundles

Fiber-bundle F → X (global aspects are not discussed):

base space (independent variables or space-time coordinates):

xa, a = 1, . . . , n.

Fiber: (dependent variables or fields φi)

Jet-bundle:

A point of Jn is a pair (x, [σ]), where [σ] is an equivalence class

of sections σ : X → F such that their partial derivatives at x

coincide to order n.



One can use xi, and values of derivatives as coordinates:

J0(F) : xa, φi, J1(F) : xa, φi, φia , J2(F) xa, φi, φia, φ
i
ab , . . .

Projections:

. . .→ JN(F)→ JN−1(F)→ . . .→ J1(F)→ J0(F) = F

Useful to work with J := J∞ (projective limit).

A local function is a pull-back of a function from JN(F) for some

N . i.e. it depends on only a finite number of the coordinates.

A local function f = f(x, φ, φa, φab . . .) can be evaluated on a

section σ : X → F as

f(σ) := f(x, σ∗(φi), ∂aσ∗(φi), . . .)



Total derivative: (imitates the action of standard partial deriva-

tive)

Da :=
∂

∂xa
+ φia

∂

∂φi
+ φiab

∂

∂φia
+ . . .

Main property:

∂a(f(σ)) = (Daf)(σ) .

Total derivatives generate Cartan distribution.

Similarly one defines local forms. These are forms that can be

obtained by pullback from finite jets.

Space-time differentials dxa. Horizontal differential:

dh ≡ dxaDa , d2
h = 0 .



A system of partial differential equations (PDE) is a collection

of local functions on J

Eµ[φ, x] .

The equation manifold (stationary surface): E ⊂ J singled out

by: (prolonged equation)

Da1 . . . DalEµ = 0 , l = 0,1,2, . . .

understood as the algebraic equations in J .

Da are tangent to E and hence restricts to E. So do the differ-

entials dh and dv. Da|E determine a dim-n involutive distribution

– Cartan distribution.



Definition: [Vinogradov] PDE is a manifold E equipped with an

involutive Cartan distribution C ⊂ TE.

In addition one typically assumes regularity, constant dimension,

and that E is a bundle over the spacetime and can be locally

embedded into a jet-bundle.

PDEs are isomorphic when the respective distributions are.

Differential forms on E form the variational bicomplex of E. Note

that in general Hk,•(dh) 6= 0, e.g. Hn−k,0, degree-k conservation

laws.

For n = 0 PDEs are just usual manifolds.



Towards gauge PDEs

Nonlagrangian version of BV: forget about symplectic structure
and keep Cartan‘, BRST differential, ghost degree. Barnich,

M.G., Semikhatov, Tipunin 2004, Lyakhovich, Sharapov, 2004...

Althogh gaueg PDE it’s a simple notion and examples were in the
literature (mostly in the context of topological models or higher
spin theories) the general concept appeared under the name of
“parent formalism” Barnich, M.G. 2010

Idea: reformulate BV as an AKSZ sigma model. In the case of
PDE the minimal equivalent formulation of this type has diffiety
as a target space. This way one arrives at BV-BRST extensions
of diffieties.

More refined and explicit definition of gauge PDE was in M.G.,

Kotov, 2019. Not a “direct product” of PDE and Q-manifold
concpets



Q-manifolds

Def. Q-manifold (M,Q) is a Z-graded supermanifold M equipped
with the odd nilpotent vector field of degree 1, i.e.

Q2 = 0 , |Q| = 1 , gh(Q) = 1

Example: Odd tangent bundle: (T [1]X, dX). If θa are coordinates

on the fibres of T [1]M in the basis
∂

∂xa
:

dX := θa
∂

∂xa

Example: CE complex (g[1], Q). If g is a Lie algebra then g[1] is
equipped with Q structure. If cα are coordinates on g[1] in the
basis eα then

Q = cαcβU
γ
αβ

∂

∂cγ
, [eα, eβ] = U

γ
αβeγ

φ : (M1, Q1)→ (M2, Q2) is a Q-map if φ∗ ◦Q2 = Q1 ◦ φ∗



Example: (V [1](M), Q) where V (M) Lie algebroid. Indeed generic
Q of degree 1 locally reads as:

Q = cαRα −
1

2
cαcβU

γ
αβ(z)

∂

∂cγ

Rα gives anchor, Uγαβ bracket, Q2 = 0 encodes compatibility.

Gauge PDE in n = 0 (trivial Cartan distribution) is a Q-manifold
(E, Q) that is equivalent to a nonnegatively graded one.

If only ghost degree 0,1 variables are present then it is just a Lie
algebroid.

Proposition: [AKSZ, 1994] Let p ∈ E and Q|p = 0 then TpE is an
L∞ algebra.

Important feature: although this is an intrinsic definition (E is
not embedded into some “jet space”) there are infinitely many
Q-manifolds representing the same gauge PDE.



Equivalence of Q-manifolds:
Idea: restrict to local analysis and suppose that (M,QM) can be
represented as a product Q-manifold:

M = N × T [1]Rk , QM = QN + dT [1]Rk

then (M,QM) and (N,QN) are equivalent. Q-manifold of the
form (T [1]V, dT [1]V is caled contractible.
In coordinates:

QM = QN + vα
∂

∂wα
, QN = qi(φ)

∂

∂φi
.

Often one can find “minimal” Q-manifold describing a given
equation. This gives a minimal model of the respective L∞
algebra.

In general (taking global geometry into account) homotopy equiv-
alence of Q-manifolds.

In the context of gauge theories: wα, vα – are known as “gener-
alized auxiliary fields” Henneaux, 1990 (in the Lagrangian case).



Def. [Kotov, Strobl] Localy trivial bundle π : E →M of Q-manifolds

is called Q-bundle if π is a Q-map. Section σ : M → E is called

Q-section if it’s a Q-map.

In general, π : E →M is not a locally trivial Q-budle.

Indeed, although locally E ∼= M × F (product of manifolds) in

general Q is not a product Q-structure of QF and QM .

Example: let πX : E → X be a fibered bundle then

π = dπX : (T [1]E, dE)→ (T [1]X, dX) is a Q-bundle.

Def. (M,Q) is called an equivalent reduction of (M ′, Q′) if

(M ′, Q′) is a locally trivial Q-bundle over (M,Q) with a con-

tractible fiber and (M ′, Q′) admits a global Q-section.

This generates an equivalence relation for Q-manifolds.



PDE as a Q-bundle

Consider PDE (EX , C), EX is a bundle πX : EX → X over space-

time X, C ⊂ TEX is a Cartan distribution, πX induces an isomor-

phism CpEX → TπX(p)X, p ∈ EX.

In particular, total derivatives Da satifiy dπX(Da) =
∂

∂xa
, where

xa are local coordinates on X.

Algebra of horizontal differential forms can be seen as functions

on C[1]. C gives rise to horizontal differential dh. In coordinates:

dh = θaDa (θa ≡ dxa)

Pulling back (EX , C) to a bundle ET [1]X over T [1]X gives a Q-

bundle π : (ET [1]X , dh)→ (T [1]X, dX)).



This Q-bundle π : (ET [1]X , dh) → (T [1]X, dX)) encodes all the
information about the starting point PDE (EX , C).

For instance, in terms of (EX , C) solution is by definition a section
σ : X → EX which is tangent to C. Seen as a section of ET [1]X σ

is a Q-section and other way around. If ψA are local coordinates
on the fibres the section is parametrized by σA(x) = σ∗(ψA)
Q-map condition dX ◦ σ∗ = σ∗ ◦ dh gives:

∂

∂xa
σA(x) = ΓAa (σ(x), x) , dh = θaDa = θa(

∂

∂xa
+ ΓAa (ψ, x)

∂

∂ψA
)

also known as “unfolded” representation Vasiliev . In particular,
fields of the unfolded form are coordinates on the equation man-
ifold (stationary surface).

Note that Q-bundles originating from PDEs are quite special: Z-
grading (ghost degree) originates from just the space-time form
degree (the only nonzero degree coordinates are θa).



Gauge PDEs

In terms of Q-bundles PDEs can be defined as Q-bundles over
T [1]X with horizontal Z-grading. The extension to the case of
gauge systems is surprisingly straitforward: just forget about hor-
izontality

Def. Gauge pre-PDE is a Q-bundle (ET [1]X , Q) over (T [1]X,dX)

Equivalence of Q-manifolds exends to Q-bundles over T [1]X, giv-
ing the notion of equivalent reduction and equivalence of gauge
pre-PDEs. Notion of gauge pre-PDE is too wide:

gauge PDE: equivalent to nonnegatively graded, realizable in
term of superjet bundle in a regular way. In applications we of-
ten (but not always!) also want gauge PDE to be proper – i.e.
that all the gauge symmetries of the underlying PDE are taken
into account by Q.



Equations of motion and gauge symmetries

Solutions: σ : T [1]X → ET [1]X is a solution if

dX ◦ σ∗ = σ∗ ◦Q

Gauge transformations:

δσ∗ = dX ◦ ε∗σ + ε∗σ ◦Q,

Gauge parameter: ε∗σ : C∞(ET [1]X)→ C∞(T [1]X),

gh(ε∗σ) = −1, ε∗σ(fg) = ε∗σ(f)σ∗(g)± σ∗(f)ε∗σ(g)

Gauge for gauge symmetries . . .



Batalin-Vilkovisky formulation (at the level of equations of mo-

tion)

Fields ΨA (include genuine fields φi, ghosts cα, antighosts πµ,

antifields Pa, . . . ). Jet-bundle with coordinates ΨA
b1...

, xa, θa

Horizontal differential: dh = θaDa

BV-BRST differential: s,gh(s) = 1, s2 = 0, [dh, s] = 0

This can be taken as a definition of gauge theory Barnich, M.G.,

Semikhatov, Tipunin 2004.

In particualr EOMs, gauge symmetries, etc can be expressed in

terms of s and degree.

Independent approach Lyakhovich, Sharapov, 2004



Consider BV jet-bundle as a Q-bundle over T [1]X with Q = dh+s.

If we restrict to bidegree preserving maps – Q-bundle description

of the original gauge theory (almost trivial).

Less trivial – just total degree (form degree + BV ghost numebr)

preserving maps. Follows from Barnich, M.G. 2010.

Formalism encodes BV as a particular case and hence all reason-

able gauge theories. Justifies definition.



Example: Maxwell equation as a gauge PDE

Trivial bundle T [1]X ×M , Fiber coordinates:

C, gh(C) = 1 , Fa|b, Fa|b1b2, . . . Fa|b1...bl . . . gh(F...) = 0

Irreducible tensors, symmetric in second group, traceless:

Qxa = θa, Qθa = 0, QC =
1

2
Fabθ

aθb, QFa|b = θcFa|bc, . . .

Equations of motion (promoting C,F to fields σ∗(C) +Aa(x)θA,

σ∗(F...) = F...(x) M.Vasiliev

∂aAb − ∂bAa = Fa|b , ∂cFa|b = Fa|bc , . . .

taking a trace of the 2nd gives ηbc∂aFb|c = 0.



Parent formulation

Given a gauge PDE (ET [1]X , Q) consider a new one (EP
T [1]X , Q

P ),

where

EPT [1]X = SJ∞(ET [1]X , Q))

QP – prolongation of Q

Proposition: Parent formulation is equivalent to the original.

Local proof Barnich, M.G. 2010. Fully global – work in progress.



Reparametrization invariance and AKSZ sigma

models

Suppose that (ET [1]X , Q) is a locally trivial Q-bundles. Restrict
to local analysis. Then

(ET [1]X , Q) = (T [1]X, dX)× (F,QF )

Gauge PDEs of this type are known as AKSZ sigma models.

In higher dimension: local triviality = reparmetrization invari-
ance (in the context of BRST cohomology this was known as
a posibility to eliminate dh through change of variables, Brandt,

Dragon; Barnich, Brandt, Henneaux (1993)))

In particular, any reparametrization-invariant guage theory (e.g.
gravity) can be locally represented as AKSZ sigma model Barnich,

M.G. 2010



Example: zero-curvature equation

Take ET [1]X = (T [1]X, dX) × (g[1], Q), where g is a Lie algbera

and Q is a CE differential seen as a vector field. If Cα de-

note coordinates on g[1] then QCα = −1
2U

α
βγC

βCγ. Denoting

σ∗(Cα) = Aαa(x)θa we get

dX ◦ σ∗ = σ∗ ◦Q =⇒ dA+
1

2
[A,A] = 0

Gauge transformations:

δA = dε+ [A, ε]

Topological PDE. There exists a finite dimensional BV analog

of diffiety. Example known from AKSZ



Presymplectic structures and BV quantization

Lagrangian induces presymplectic structure σ ∈ Ω(n−1,2)(E) on

the equation manifold.

Crnkovic, Witten, 1987, Hydon 2005, Khavkine 2012, Alkalaev M.G. 2013,

Sharapov 2016

Def. Compatible presymplectic structure on gauge PDE (ET [1]X , Q)

is a vertical 2-form ω on ET [1]X satisfying:

dω = 0 , LQω = 0

Vertical forms are understood as equivalence classes

Defines “Hamiltonian” (or, better, covariant BRST charge) via

iQω = dH , gh(H) = n



Intrinsic action

Action functional on the space of section of (ET [1]X , Q, ω)

S[σ] =
∫
T [1]X

(σ∗(χ)(dX)− σ∗(H))

where χ is a presymplectic potential, i.e. ω = dχ. χ → χ + dρ
adds boundray term.

BV extension (AKSZ-type). Supersection σ̂:

SBV [σ̂] =
∫
T [1]X

(σ̂∗(χ)(dX)− σ̂∗(H))

If e.g. gh(C) = 1 then σ∗(C) = Aa(x)θa while σ̂∗(C) =
0
Ca +

Aaθa +
2
ξabθ

aθb + . . . ,
Interpretation? What this has to do with the gauge PDE in
question? Alkalaev, MG 2013, MG 2016, MG, Kotov, ...



Idea: assume ω regular and take a symplectic quotient. Does
not always work in a naive way in interesting cases.

Refined idea: locally, sections are fiber-valued functions, take:

Smaps(T [1]X,F ) = Smaps(X,Smaps(Tx[1]X,F ))

M = Smaps(Tx[1]X,F )) is finite-dimensional provided F is. Nat-
ural lift of ω to M

ωM =
∫
dnθ ωAB(ψ(θ))dψA(θ) ∧ dψB(θ) , gh(ωM) = −1

Now assume that ωM is regular and take a symplectic quotient.
We have arrived at BV formulation! With BV symplectic struc-
ture ωM(dx)n and BV master action SBV !

State of the art: in “good” situations this BV is equivalent to
the initial gauge theory provided ω arises from Lagrangian. For
the moment only examples....



Scalar field

Usual PDE setting. (E, C) equipped with ω ∈
∧n−1,2(E) such that

dhω = dvω = 0. It follows that locally d = χ+l with χ ∈
∧n−1,1(E)

and l ∈
∧n,0(E). The intrincis action: MG, 2016

S[σ] =
∫
X
σ∗(χ+ l)

Take for instance scalar field:

L =
1

2
ηabφaφb − V (φ)

E is coordinatized by xa, φ, φa, φab, . . . with φabc... traceless.

dhx
a = dxa , dhφ = dxaφa, , dhφa = dxb(φab −

1

n
ηab

∂V

∂φ
) , . . .

The presymplectic potential and 2-form:

χ = (dx)n−1
a φadvφ , ω = (dx)n−1

a dvφ
advφ



The Hamiltonian:

H = (dx)n(φaφ
a − L|E) =

1

2
φaφa + V (φ)

The intrinsic Larangian: Schwinger

Lc = (dx)n
(
φa(∂aφ−

1

2
φa)− V (φ)

)
What about symplectic structure?

σ̂∗(φ) = φ(x) + θaφ1
a(x) + . . . σ̂∗(φa) = φa(x) + θbφ1

a|b(x) + . . .

where gh(φ1
a) = gh(φ1

a|b) = −1 , gh(φ) = gh(φa) = 0. Only for

these coordinates ωM is nondenerate resulting in:

ωM = dφ0 ∧ dφ1
a|a + dφ0

a ∧ dφ1
a , φ1

a|a = ηabφ1
a|b

Correct symplectic structure and set of variables for BV for this

system!



Maxwell

Recall: ET [1]X = T [1]X ×M , Fiber coordinates:

C, gh(C) = 1 , Fa|b, Fa|b1b2, . . . Fa|b1...bl . . . gh(F...) = 0

Qxa = θa, Qθa = 0, QC =
1

2
Fabθ

aθb, QFa|b = θcFa|bc, . . .

Presymplectic structure Alkalaev, M.G. 2013

ω = (θ)(n−2)
ab F a|bdC , indexes rised/lowered with Minkowski metric

Intrinsic action (σ∗(C) = Aa(x)θa, σ∗(Fa|b) = Fa|b(x)):

S[σ] =
∫
dnx(∂aAb)F

a|b −
1

4
Fa|bF

a|b

Presymplectic structure on supermaps gives correct BV form!

ωM = dC ∧
2
F
a|b
ab + dAa ∧

2
F
a|b
b + dFa|b ∧

2
Cab



Einstein gravity

In the example of gravity: Alkalaev, M.G. 2013

χ =
1

2
εabcddω

abeced , σ = dωabdecεabcde
d

“Hamiltonian” (terms involving W cd
ab|e(x) vanish)

H = QAχA = −1

2
ωacω

cbεabcde
ced

Intrinsic action (frame-like GR action):

SC =
∫
χAdψ

A −H =
∫

(dωab + ωacω
cb)εabcde

ced

Familiar Cartan-Weyl action for GR. Generalization for general
n > 2 and Λ 6= 0 is straightforward.

Just like in the case of scalar defines full BV on superjets MG,

Kotov, 2020



Conclusions

• Gauge PDEs as geometric objects. Well suited to work with
diffeomorphims-invariant and topological models. Notion of
equivalence.

• Parent formulation – AKSZ formulation of generic gauge
PDEs. Determines a “canonical” first-order realization in
terms of a jet-bundle associated to the equation manifold

• Comprise “frame-like” formulation of the system. The re-
spective free differential algebra arises from BRST differen-
tial. E.g. the Cartan-Weyl form of gravity arises from a
minimal model of the BRST complex.

• The (BV) and the BV symplectic structure are encoded in
the graded presympletic structure on the gaueg PDE.



• In the case of variational systems unifies Lagrangian and
Hamiltonian BRST formalism, cf. BV/BFV approach of Cat-

taneo et all.

• Gives an invariant approach to study boundary values of
gauge fields. In particular in the AdS/CFT correspondence
context. Bekaert, M.G. 2012. In particular, Fefferman-Graham
construction (and tractor calculus) can be seen as a certain
gauge PDE. M.G. 2012, M.G. Waldron 2011, Bekaert, M.G. Skvortsov

2017

• Sucessful applications in constructing new models of HS the-
ory, e.g. Type-B theory (AdS holographic dual to conformal
spinor on the boundary) M.G. Skvortsov 2018

• Recent construction of Lagrangians for AdS4 higher spin
gravity in terms of presymplectic AKSZ. Sharapov, Skvortsov

2020


