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G(2)

The group G(2)

o H Hilbert space with Hilbert basis {¢; | i € Z}.
@ For each bounded operator b : H — H, a Z x Z-matrix
[b] = (bjj) by the formula

b(ej) = Z b,-je,-.
i€Z
@ S>(H) ideal of Hilbert Schmidt operators, i.e. A: H — H s.t.
||A||3 := trace(A*A) = trace(|A[?) ZZ |A;? < oo.
i€Z JEZ

@ The relevant group in all cases is

G(2)= {g = (&) € GL(H)

—Id e 52(%)} .

° 0(G(2)) ={g € G(2) | [¢]"[g] = Id}
o If H is complex, U(G(2)) = {g € G(2) | [¢]*[g] = Id}.
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G(2)

The group G(2) 2

o LU-decomposition in G(2): on dense, open subset g = LU

1 0 0
L= 1,4 1 o0 .|

/n+1 n—1 /n+1 n 1

Up—1pn—-1 Upn—1n Up—1n+1
[Ul=|". 0

0 0 Upi1 nt1

Unpn Un n+1
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G(2)

The group G(2) 3

e Gauss- or lwasawa-decomposition: each g € G(2)
g = o(g)b"(g) real case, or g = u(g)b™(g) complex case,

where o(g) € O(G(2)), u(g) € U(G(2)) and

bn—l n—1 bnfln bnfl n+1
[b ()] =] . 0 bon by

0 0 bn+1 n+1

, with all b; >0,/ € Z.
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Hierarchies

Hierarchies 1

General set-up for hierarchies: Lie algebra g

g;, 1 = 1,2, Lie subalgebras of g

g=g1D g

m; the projection of g onto g; induced by this decomposition

go Lie algebra of the Lie subgroup Gy

Set linear independent, commuting elements:

{Filj>1}em

tj flow parameter w.r.t. F;, 0; = (%, t ={t}.
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Hierarchies

Hierarchies 2

@ Search for g»(t) € Gy such that the deformations

Fj = g(t) " Figa(t),j > 1
satisfy for all j; > 1 and j» >

0

87%(? ) [3}2?7‘-2( 11)] [771(3}1) 912] (1)

@ The last equality in (1) follows from [J},J,] = 0.

@ (1): compatible Lax equations, for in practice it implies

0 0

871;-1(”1(%))_8?2(7”(%)) [71(F5), m(FR)] = O,

a set of zero curvature relations.
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Algebras
Pseudo differential operators 1

R k-algebra, k = R or C, 0 k-linear derivation of R.
ROl = {>0 ,a;0",a; € R forall i >0}
Assume {0" | n > 0} R-linear independent. Then

(]

R[0] C R[d,071) = Psd, the pseudo differential operators .

Psd: extension of R[0] with integral operators {0™ | m < 0}.
For all mand ne Z

A"9™ = 9"t and 8P is the unit element.
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Algebras
Pseudo differential operators 2

@ Pseudo differential operators

N
Psd=R[0,0")={p= > pid, pjcR},

j==o0

o Significant class of invertible elements in R[9,07!):

Lemma

Every scalar pseudo differential operator P = < pjaf , with
pm € R*, has an inverse P~1 of the form

Pl=%" qd, withqm=py".

i<—m

o Dressing P € R[0,071) with B € R[9,071)*: BPB~L.
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Algebras
Pseudo differential operators 3

@ Taking roots in Psd:

Lemma

Consider any monic pseudo differential operator
U=0"+ tmid'
i<m

of order m > 1. There is a unique monic pseudo differential
operator of order one

U% =L=0+ ZEH,{T",
i=0

with U = (U%)’". We call Un the m-th root of U.
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Algebras
Pseudo difference operators 1

e Commutative k-algebra R, k =R or C.
e My(R) : Z x Z-matrices, coefficients from R
o A= (aj) € Mz(R):

An—1n—1 dn—-1n @n—1n+1

dn n—1 dn n an n+1

dn+1n—-1 Adn+ln Adn+1 n+1
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Algebras
Pseudo difference operators 2

e To {d(s)|s € Z} in R is associated diag(d(s)):

dn—-1) 0 0
0 din) 0
0 0 d(n+1)

@ Diagonal matrices:

D1(R) = {d = diag(d(s))|d(s) € R for all s € Z}.
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Algebras
Pseudo difference operators 3

o Shift matrix A

o Action of the {A™ | m € Z} on D1(R):
AN"diag(d(s))A™™ = diag(d(s + m)).
e Each A = (aj;) € Mz(R) : decomposes uniquely

A=Y diN, d € Di(R)
i€Z

G.F. Helminck Deco’s of G(2)



Algebras
Pseudo difference operators 4

@ Lower triangular matrices

LT(R)={L|L=> &N t; € Di(R)}

i<N

e Each L = Z,SNZ;Ai,ﬁN € D1(R)*, is invertible.
o Considera Lo =3, 6N 01 € Di(R)*. Then:

Lo = KoAK L,

with Ko = ZISO k,'/\i, ki € @1(:"?)7 ko € @1(R)* and

LT(R)={P|P=>_ piLh,pi € D1(R)}
i<N
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Algebras
Pseudo difference operators 5

o Consider the invertible operator A := A — Id:

Xp—1 Xp — Xn—1
Al xo |)=1] Xn+1— Xn

Xn+1 Xp4-2 — Xp+1

@ For the difference operator A we have

PsA=LT(R)={L|L=Y ;A (; € D1(R)}
i<N

Elements of PsA also called: pseudo difference operators.
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Algebras
Infinite Toda chain 1

@ Particles on a straight line with nearest neighbour interaction:

@ g, is the displacement of the n-th particle, n € Z.
@ Equations of motion in dimensionless form are described by
dq dp o — _ _
dtn e pn nd dtn = e (q" Qn—l) — e (qn+1 qn)’ ne Z
o Put 1 1
an = Ee_(q"_q"—l) and b, := SPn-
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Algebras
Infinite Toda chain 2

@ Introduce the Z x Z-matrices L resp. B by

0

bnfl
dn

0

an
bn

an+1

0
an+1

bn—i—l

e Equations of motion equivalent to:

dL

dt

G.F. Helminck
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_an

=-BL+ LB =]L,B].

an

—dp+1

an+1

0




Algebras
Decompositions in PsA 1

o Consider in LT the Lie subalgebra
LToo:={A= Y aN| all a; € D1(R)}
0<j<N
o We write m>¢ for the projection of LT onto LT>g,
7T>0( Z aj/\j) = Z aj/\j.
—co<j<N 0j<N

e Similarly, we have the Lie subalgebras LT.g, LT<o, LT~ and
the respective projections m.g, T<o and mg.
o A Z x Z-matrix A for which there is an N > 0 such that

A= > aN a € Di(R) (2)
—N<j<N

is called a finite band matrix in Mz(R).
@ This set of matrices is a Lie subalgebra and is denoted by F3B.
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Algebras
Decompositions in PsA 2

@ Inside FB we have the antisymmetric matrices
FB.s(R) = FBos = {X€TFB| XT = —X}
@ There is a natural projection m,s from LT to FB,s
ﬂ'as(z aiN) = Z(aj/\j —Na)),
j<N j>1

with LT<o as a kernel.
o Note that at the infinite Toda chain, we had 7,5(L) = B.
@ This gives the following 3 decompositions of LT:

LT = LT>0 &) LT<0,
LT = LTo0® LT,
LT = FBos & LT,
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Algebras
Decompositions in Psd 1

o First decomposition in Psd:

P = ZP@’ Y P +> P = Pog+ Pso

Jj<0 j=0

o Lie algebra Psd = Psd<g ® Psd>o = g1 @ g2

@ Group corresponding to g;

Gi={g=1+) g, g <R}

Jj<0
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Algebras
Decompositions in Psd 2

@ Second decomposition in Psd:

P = ZP@’ Y P +> P = P+ Pso

Jj<0 Jj>0

o Lie algebra decomposition Psd = Psd<o & Psd~¢

@ Group corresponding to g;

Gi={g=) g g cR gecR}

J<0
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Compatible Lax equations in PsA 1

@ Each decomposition starting point of a compatible set of Lax

equations
e Given R, set {0; | i = 1} of commuting derivations of R
o Example: R =k[tj| i > 1] or R=k][[t; | i = 1]] and
0
0 =0y == ——.
! ti (9t,'

@ Consider the first decomposition in PsA:

LT>0(A) © LT<o(A) = PsAzo @ PsA<o = g1 & g
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Compatible Lax equations in PsA 2

@ Group corresponding to go = PsA_q:

U_={ld+B| B € PsAq}

Basic commuting directions : the {AK | k > 1}
Deformation of A:

L=A+> diN di € Di(R).
i=1

Examples: L = UANU™!, with U € U_.
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Compatible Lax equations in PsA 3

o Let B, :=(L")s0,r > 1.

@ Search for deformations L that satisfy:
O (L52) = [Byy, LF] = [LF2, L], ki and ko > 1.
e Sufficient the Lax equations for L
O (L) = [Biy, £] = [£, L] k1 > 1,

the Lower Triangular Toda (LTT)-hierarchy.

@ For each solution L the zero curvature relations hold:

8k1(Bk2) — 8,(1(23,(1) — [Bkl,B/Q] = 0, kl and k2 2 1.
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Compatible Lax equations in PsA 4

@ Next relevant decomposition in PsA:
LT<o(A) ® LT<o(A) = PsAso @ PsAco = g1 D go.
o Group corresponding to go = PsAco:
P_={dld+B|,d € Di(R)", B € PsAp}.

@ Basic commuting directions : the {AK | k > 1}.

@ Deformation of A:

M =doA+ > dA'™ d; € Dy(R) and do € D1(R)".
i=1

o Examples: M = PAP~1, with P € P_.

G.F. Helminck Deco’s of G(2)



Compatible Lax equations in PsA 5

o Consider the cut-off's C, := (M")so,r > 1.
@ Search for deformations M that satisfy:

O (M) = [Cry, M?] = [M2,MZg], 11 and rp > 1.
e Sufficient Lax equations for M the
afl(M) = [eﬂ?M] = [Ma Mgo]v nz=1l,

the Strict Lower Triangular Toda (SLTT)-hierarchy.

o Consequence: zero curvature relations

on(Cr) —0n(Cr) —[Cr,Cr] =0,r1 and r > 1.
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Compatible Lax equations in PsA 6

@ The last relevant decomposition in PsA:
FBas ® LT<o = PsA,s ® PsAco = g1 @ go.
o Group corresponding to go = PsAco:
P_={dld+B|,d € Di(R)", B € PsAo}.
@ Basic commuting directions : the {A" — A~" | r > 1}.
e Commuting deformations of the {A" — A™"}:
F, = moN\" + i miN ' m; € D1(R) and mo € D1(R)*.
i=1

o Examples: F, = P(A" — A=")P~1, with P € P_.
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Compatible Lax equations in PsA 7

o Consider the cut-off's &, := m,s(M,), r > 1.

@ Search for deformations &, that satisfy:
Brl( ) [Mr278r1] - [7Tas( ) Mrz]vrl and rp =1,

where 75, = |d —m,s is a projection on LTo.
e This is called the Infinite Toda Chain (ITC)-hierarchy.

@ These {—&,} satisfy the zero curvature relations

On(€r) —0n(Er) —[€r,En] =0,rn and rn > 1.
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Compatible Lax equations in PsA 8

o L solution of the LT T-hierarchy, Ay := —(LK) <o, k > 1.

@ Zero curvature relations for the {Ay | k > 1}:
8k1(Ak2) — akz(./lkl) — [~Ak1>-Ak2] =0,k and kp > 1

@ M solution of the SLTT-hierarchy, D, := —(M")<o,r > 1.
@ Zero curvature for the {D, | r > 1}:

on(Dr,) = 0n(Dry) — [Dr, Dr,] =0,nand n > 1

o {J,} solutions of ITC-hierarchy, G, := n5,(F,),r > 1.

@ Zero curvature for the {G, | r > 1}:

8r1(9r2) - arg(grl) - [9r17 9r2] - 07 rn and rn 2 1.
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Compatible Lax equations in PsA 9

o L potential solution LT T-hierarchy, A := —(L*) <0, k > 1.
@ Related Cauchy problem: find a u € U_(R) s.t. forall k >1

Ok(u) = Ayu, (3)

e M potential solution SLTT-hierarchy, D, := —(M")<o,r >
=

1.
o Related Cauchy problem: find a p € P_(R) s.t. forall r > 1
or(p) = Drp, (4)

o {F,} potential solutions ITC-hierarchy
@ Related Cauchy problem: find a g € P_(R) s.t. forall j > 1

9;(&) = mit,as(F))8; (5)

G.F. Helminck Deco’s of G(2)



Algebras
Compatible Lax equations in Psd

@ Decomposition Psd = Psd<o @ Psd>o = g1 ® g2
o Deformation L =0+ Y-, 410~ B = (L¥)x0
e Examples: L=POP~ L, Pc G,P=1d ‘1‘2;;1 pi0~"

@ Assume R has a collection of k-linear derivations
{0k | k > 1}, all commuting with 0

@ Lax equations of the KP hierarchy

O (LR2) = [Byy, LR2] = [LR2, L90], ki and ko > 1.

G.F. Helminck Deco’s of G(2)



Algebras
Compatible Lax equations in Psd 2

@ Decomposition Psd = Psd<p @ Psd>o = g1 © g2

o Consider deformations
M=9d+m +mdt+-..

Examples: M = POP~!,

PeG,P=po+Y - pi0" po€R*

R and {0, | r > 1} as above

Let G, = (M")so,r > 1.

Strict KP hierarchy for M and its powers:

arl(MrQ) = [Cr17 Mr2] = [Mr27 MQOL rrand n >1

G.F. Helminck Deco’s of G(2)



Cauchy
Linearizations 1

@ Linearization of LT T-hierarchy:

Lo = pA,
() = m0(LF)p for all k > 1.

o Linearization of SLT T-hierarchy:

Mip = A
Or(v) = mso(M")1p for all r > 1.

@ Linearization of ITC-hierarchy:

)

Fip= (N —N7) forall j > 1
> 1.

8j(¢) = _Was(:}}')ﬁb for all j

G.F. Helminck Deco’s of G(2)



Cauchy
Linearizations 2

o For suitable ¢, 1), ¢ the linearization implies the Lax equations
03 (Fpd — SN2 — N7E))
= 03(Fp)d + T5(95()) — (9 (9))(N? — A7)
= 03, (F1,) ¢ — Ty Tas(Fj) S + mas(Fj, )(N? — A7)
={03(Fp) — [Fp» mas(F3) 19 = 0.

@ ¢,1, ¢ belong to a PsA-module of perturbations of the

solution of the linearization corresponding to the trivial
solutions of the hierarchies:

L=AM=ATF; =N -\
@ For LTT- and SLTT-hierarchy:
o = 1ho = exp(D _ tA¥)
k=1
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Cauchy
Linearizations 3

@ For ITC-hierarchy:

o0

g0 =exp(Y_ —tu(N = A7)

k=1

@ Appropriate PsA-module for ITC-hierarchy: M(ITC).
e M(ITC) consists of formal products:

N 0o
{l}po ={ Z d_j/\j} exp(z —tj(/\j —/\_j)), where ¢ € PsA.
j=—o j=1

o Elements of M(ITC) are called oscillating matrices.
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Cauchy
Linearizations 4

@ PsA-action on M(ITC):
l1{la}go = {12} .
o Right multiplication with {V — A=/}
{}go(N = A7) = {UN — A7)} 0.
@ Action of the derivations 9; on M(ITC):

N N N
g Y diNYso) ={ D di(d)N}= > diN(N-A7)}o.

j=—o0 j=—o0 j=—o00

M(ITC) is a free PsA-module with generator ¢
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Cauchy
Linearizations 5

e An oscillating matrix ¢ = d¢g, with ¢ = S d;\/, with

i=—00
dm invertible, is called a wave matrix for the matrices {J;},
if it satisfies satisfies the linearization.

@ The {J;} form then a solution of the /TC-hierarchy
@ It even suffices to show:

Proposition

Let ¢ = ¢pgo, with ¢ =S d;N and dpy € D1(R) invertible,
be an oscillating matrix. If it satisfies for all j > 1

9j(¢) = Gj¢, with G; € FBs,
then Gj = —mas(J), where J; := SN — N 9)$ L. In particular

the {F;} form a solution to the ITC-hierarchy and ¢ is a wave
matrix for this solution.
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Cauchy
Linearizations 6

@ To get the oscillating matrices of the LTT- resp.
SLTT-hierarchy, replace ¢g by g, resp. g.

o Wave matrices at the LT T-hierarchy have the form

o0 = {IdAY + 37 diN oo
Jj<N

and lead to a solution £ = GAH~! of the LT T-hierarchy.
o Wave matrices at the SLT T-hierarchy have the form

ibo = {)_ d;iN o, with dy invertible

Jj<N

and lead to a solution M = ¢)A¢)~1 of the SLTT-hierarchy.
@ Similar Propositions hold in the LTT- resp. SLTT-case.
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Cauchy
Linearizations 7

o Linearization of the KP hierarchy:
Ly = ¢z,
() = mo(LF)p for all k >1

@ Linearization of the strict KP hierarchy:

My =4z
Or(¢) = mso(M")y forall r > 1

@  resp. ¢ wave functions of the KP resp. strict KP hierarchy

©= {1+Zaz}exp Ztkz ) all a; € R,

i<0

o ={>_ biz'} exp( Ztkz , all b; € R, by € R*.

i<0
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Cauchy

Geometric construction of solutions 1

@ To get Z x Z-matrices: take a Hilbert space H with Hilbert
basis {e; | i € Z}. For each bounded operator b: H — H, a
7 x Z-matrix [b] = (bj;) by the formula

b ej) = Z b,-je,-.
IEZ

@ Choice of H for 3 PsA-hierarchies:
H= {x—z:x,7 ) | xn € Ror C, Z|X,,|2<oo}

neZ n€Z
@ We put the standard inner product on H
<>_<'|)7>:ZX,,y,,or <>_<’|)7>:ZX,,7,,
nez n€Z

e {€(n)| n € Z} an orthonormal basis of H
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Cauchy

Geometric construction of solutions 2

e For each b € B(H),
b(x) = [b]X = My X,
where [b] is the matrix of b w.r.t. this basis
@ For j > 1, operator norms of My; and My;_,—, satisfy
IMpil| = 1, [IMpj p-ill < 2.

o Choose our parameters t = (t;) out of the space

O(N)={t=(t)| all ;eRor Cand Y _|t;| < oo},
j=1
equipped with the norm [[t[[1 = > 7%, [t;].
o Define analytic maps 712 and 73 from ¢1(N) to GL(J() by

m2(t) = exp(D>_ tiMy;) resp. v3(t) = exp(d_ —t;Mp _p-;)
j=1 j=1
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Cauchy

Geometric construction of solutions 3

e Matrices van 71 2(t) and ~3(t):

o0

[1,2(£)] = exp( Zt, )] =exp(> —ti(N = A7)

i=1

@ Relevant group in all cases

G(2)= {g = (&) € GL(

—Id e 52(9‘()} ,

where the ideal Sy(3) of Hilbert Schmidt operators, consists
of all bounded operators A : H — H such that

All3 := trace(A*A) = trace(|A|?) < oo
2
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Cauchy
Geometric construction of solutions 4

e Each b € B(H) decomposes as b = u_(b) + p4(b), with

0 0 0
[w-(B]=1"" byps O 0 |

bn+1 n—1 bn+1 n 0

bn—l n—1 bn—l n bn—l n+1
[p+(b)] = 0 bnn bn n+1

0 0 bn+1 n+1
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Cauchy
Geometric construction of solutions 5

@ subgroups of G(2):
o U_:={g=Id+u_(g)| g € G2)},
By :={g=ri(g) | g€ G(2)}
Ui ={geBy|gi=1, forallieZ},
B_:={g e G(2)|gj=0forall i <}
BT :={g e B_|gi>0forall i}
0(6(2)) ={g € G(2) | gg" = Id}
Big cell in G(2): Q= U_B; = B_Uy,
Relevant decomposition for LT T-hierarchy: for all g € Q

g =u-(g)-bi(g)

Relevant decomposition for SLTT-hierarchy: for all g € Q

g =b-(g)-ui(g)
e Basic decomposition for ITC-hierarchy: G(2) = BT O(G(2))
e Each g € G(2),g = bT(g).0(g).
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Cauchy
Geometric construction of solutions 6

@ For each g € G(2), the following set is non-empty, open and
dense

{t € t2(N) | m2(t)gm,2(t) 1 € Q).
@ Inthe LTT- and SLTT-case, choose the algebra of coefficients
Re := C°({t € &2(N) | y12(t)gm.2(t) " € Q}),
with the derivations 0; = B%-’ i>1.
@ In the ITC-case we take
Rg := C(41(N)),
with the derivations 0; = 8%, i>1

o Define ®1(t) = u_(v12(t)gv1,2(t)1).[y1,2(2)].
o Define ®5(t) = b_(v1.2(t)gv12(t)71).[v1.2(¢)].
o Define ®3(t) = b (13(t)gv3(t) 1) [r3(t)]-
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Cauchy

Geometric construction of solutions 7

There holds:

(a) Let g € G(2). Then &1 is a wave matrix for the LTT -
hierarchy and for each coset gB, € G(2)/B. there is a Lgp,
in PsA that is a solution of the LTT -hierarchy.

(b) Let g € G(2). Then ®, is a wave matrix for the SLTT -
hierarchy and for each coset gU; € G(2)/U; there is a Mgy,
in Ps/A that is a solution of the SLTT -hierarchy.

(c) Let g € G(2). Then ®3 is a wave matrix for the ITC-
hierarchy and for each coset gO(G(2)) € G(2)/O(G(2)) there
is a set {(Fj)gu, | j = 1} in PsA that forms a solution of the
ITC-hierarchy.
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Cauchy
Geometric construction of solutions 8

o For i € Z, define the subspace
Hj:={> _ ané, € H}.
n<i

e The {J(;} form the basic flag

e Hia CHG T Higr o

corresponding to Id B;.

e To gBy corresponds the flag Fgp, = {W; = gJ{;}:

- gHi—1 C gH; C gHjy1---

o To gU; corresponds the flag Fpp, = {W; = g} and the
basis {f},
fi #0,fi € Wi/ W_1.
@ O(G(2)) is the fixed point set in G(2) of the involution
o(g) =(g7)™L. Thus G(2)/0(G(2)) is a symmetric space.
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Cauchy
Geometric construction of solutions 9

o Hilbert space for KP and strict KP:

H={) anz"|a,€C,> | an|*< o0},

neZ neZ

@ Decomposition H = H_ & H,, where

Ho={) a,z" € H} and H,={> a,z" € H}

n<0 n>0

@ The inner product < - | - > is given by

< Z anz" | Z bpnz™ >= Z apby.

nez meZ neZ

o Relevant Grassmanian : Gr(O(H) = {gH, | g € G(2)}

G.F. Helminck Deco’s of G(2)
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Geometric construction of solutions 10

o Thus Gr(®(H) equals the homogeneous space G(2)/P; with
P1 the stabilizer of Hy in G(2).

@ P; is w.r.t. the decomposition H = H_ & H given by

P ={g= <g“ 0 ) € G(2)}.

&+— &++

@ G(2) acts on the pairs (W, £), where £ is a line in W, by
(W, 0) — (gW, g?).
o The stabilizer P, of the pair (H., < z° >) is given by

{gePi|gis <2®>=<2">}

G.F. Helminck Deco’s of G(2)
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THANK YOU FOR YOUR ATTENTION
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