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Monge-Ampére Equations Monge-Ampére equations in 2D:
Classification of SMAE on R?

Conservation Laws
SMAE in 3d

DEFINITION
Two SMAE A,, =0 and A, = 0 are locally equivalent iff

there is exist a local symplectomorphism
F:(T"M,Q) — (T*M, Q) such that

*
F w1 = Wo.

REMARK: L is a generalized solution of Ag«,, = 0 iff F(L)
is a generalized solution of A, = 0.

Vladimir Roubtsov —



Monge-Ampére Equations Monge-Ampére equations in 2D:
Classification of SMAE on R?

Conservation Laws
SMAE in 3d

ot 2 LR
Ugigy T Ugaqo = O“ _______ 1 Va1q1Ya2q2 = Vgiq0 = 1

q>>|<

w = dq1 A\ dp2 — dqa2 A dpy
~ VadmirRowbtsov GENENSEEEESSSS $ $09090909090909090900

@ = dp1 A dpz — dg1 A dgo




Monge-Ampére Equations Monge-Ampére equations in 2D

Classification of SMAE on R?
Conservation Laws
SMAE in 3d

) L (ql q27 Vi VQQ>

< —Ugy, Ugy (72)

Lu = (Q17 qo, Uq17 uCI2>

?/ — | gparcsin(gpe M)

Pt el . +\/e2fh — 3

with ® : T*R? — T*R?, (g1, g2, p1, p2) — (g1, —p2, p1, G2).

- el
e g




Shallow water model
Geostrophic coordinates
Geometric Applications

Meteorological Applications

s

" Météosat 36000km

f

| Ballon-sonde

Figure: Atmosphere structure

Vladimir Roubtsov '



Shallow water model

Meteorological Applications i G

Geometric Applications

Starting with Shallow water equations with f constant
u+rfkxx+Vep=0

and considering typical scales of order

U~ 10ms~1!
L ~ 1000km Du U
Sy B | RO:|Dt‘N—:O.1
f ~10%s | ful fL
H ~ 10km

the geostrophic approximation U ~ U, is valid, where the
geostrophic wind is defined by

u;, = f 'k x Vo
and Semi-Geostrophic equations as defined by B. Hoskins (75) are

Uy +fk xx+ Vo =0



Shallow water model
Geostrophic coordinates
Geometric Applications

Meteorological Applications

Introducing the so called geostrophic coordinates, and the Bernoulli
potential

2
X=x—Fflkxu, <I>(X,t):¢(x,t)—|—%]X—x\2

Semi Geostrophic equations reduce to X = f_lv)%cb
The potential vorticity, conserved quantity, reduces to

1 dvy, Ou 10Uz, V) fo(X,Y)
s sl Ol O
o= |+ 5 - G + 8] = £

or to the equivalent Monge Ampére equations

1
qsc = gf Hessy <¢ + §|X|2)

Vladimir Roubtsov




Shallow water model
Geostrophic coordinates
Geometric Applications

Meteorological Applications

In this model f is a constant and the acceleration vector (X, y)
is replaced by the derivative of another vector (the geostrophic
velocity) (ug, vg) with

g Oh g Oh
“g:_fa_ya e (1)
The geostrophic approximation is given by
: ug+gg—i—yf:0,
< (2)
: \'/g+gg—)/: + xf =0,

S
Vladimir Roubtsov




Shallow water model
Geostrophic coordinates
Geometric Applications

Meteorological Applications

Another important cinematic notion is the potential vorticity:

1 /0y Ox
=_—(—=——-——+4f
et (ax 0 ) 3)
The potential vorticity associated with (1) is written as:

1 [f+ Ovg  Oug - l(‘?(ug, vg)]

h

Ox dy f J(x,y) (4)

Y ——




Shallow water model
Geostrophic coordinates
Geometric Applications

Meteorological Applications

14/6/52 12GMT

Distribution isentropique (320K) du poteniel tourbilion de Rossby-Ertel (PV)
de 14 Mai 1992 , 12h 00 (GMT).

Diapresarticle dAppenzeller et al.
J. Geophys. Res. 101, 1435-1456 (1996),
Fragmentation of stratospheric intrusions'

Figure: Real Potential Vorticity = Cyclons and anti-cyclons, Europe, 15
may 1992

Viadimir Roubtsov (G REEEED




Shallow water model
Geostrophic coordinates
Geometric Applications

Meteorological Applications

X=x+=— Y=y+=>—. (5)
X Yy

The coordinates (X, Y') are called
geostrophic coordinates:
when f is a constant

S e

yRT——— T



Shallow water model

Meteorological Applications B e caefisies

Geometric Applications

The potential vorticity in the coordinates (5) has a jacobian
form (using (1)):

= oty 2
1 Jv, Ou 10(ug, vg)
g 2 O Oker)
Bl e T o) ()
This equation can be re-written as

= gt det Hess (H) , (7)

(H=3F(2+y%)

ou
1
H— izf(x2 + y?) + gh
This a departure point of the MAE and the related geometry.




Shallow water model

Meteorological Applications i G

Geometric Applications

The transformation

B (Q17 a2, pi, p2) =

(Qi=0g1+p1, Q=g+ p2),
(P1=p1, P> =p2)
is a canonical.

The function
def 1

2
is a generating function to F.

(p% + p3)



Shallow water model

Meteorological Applications i G

Geometric Applications

The "contactization" of (V, Q):

(91, q2. p1, p2) = (q1, 92, u, p1, p2) € R’
= Dy
A "lift" F. of the transformation F to the contact space of
1-jets:
Fe: (g1, 92, p1, P2)
— (QL=q1+ p1, @ =q+ p2),

1
(V = u-+ 5(,0% +p35), Pr=p1, P, = Pz)

The transformation F, is a contact:
Fr(U)=U,
where
U= du— p1dq1 — p2dq>.
e 4



Shallow water model
Geostrophic coordinates
Geometric Applications

Meteorological Applications

Figure: Contact structure in R3



Shallow water model

Meteorological Applications i G

Geometric Applications

The graph of the geopotential ¢ is a Legendre submanifold

00 00 }
L= — ¢ SRk SRS
{u ¢, p1 90’ 35

in JY(D).
Let w be an effective 2-form on J1(D):

w = Edgi A dgo + B (dg1 A dpy — dgo A dpo) + (8)

+ Cdqgi A dpo — Adgo A dpy + Ddpy A dps.

The evaluation of the form w on the graph of ¢ defines a MAE:

Au(¢) = 0.

Vladimir Roubtsov




Shallow water model

Meteorological Applications i G

Geometric Applications

: 0P : 0P
R =, 9
Q1 90, Q2 90 (9)
where > - - 5
$:a+q18—m+q28—c72: (10)
0 =) o= 0
— L O+ o —

P N P



Shallow water model

Meteorological Applications i G

Geometric Applications

The map {q1,q2} — {Q1, @} is a Legendre transformation:

Ql = ¢q17 Q2 F5 ¢q27

where .
v=9¢+5(a+ %)
and
g =Vq, o =Vyq,

with W = 1/2(Q% + Q3) — o.
Singularities of the application are interpreted as atmospheric wave
fronts (Chynnoweth and Sewell 1989, 1991).

Vladimir Roubtsov 4



Shallow water model
Geostrophic coordinates
Geometric Applications

Meteorological Applications

Freurs 2. Bxample of a quartet of Legendre transformations. (@) RIM, 6] = &M* on

Figure: Wave fronts and legendrian singularities

Vladimir Roubtsov




Shallow water model

Meteorological Applications i G

Geometric Applications

The conservation law (the Ertel’s theorem) of the potential vorticity
obtains (using the Hamiltonian representation of the system):

d (9(q1,)\
di=% O(a; byt
d
a(l + dg1q1 + Pgog, + detHess o ) =0,

This equation is a part of the HyperKahler triple of MAEs (R. and
Roulstone 1997, 2001):

F*(dInd]) =. (11)

Q — 2k[1 + a(p11 + p22) + (32 — c2)(P11P22 s P%z)dql A dgs]

Vladimir Roubtsov o



Shallow water model

Meteorological Applications i G

Geometric Applications

The general family of (elliptic) MAE with constant coefficients
carries all flat balanced models:

1 o (bChCh =+ a¢Q2CI2 = (32 i C2) det HeSSQb 7 Cc/fa (12)

Among them are:

The semi-geostrophic model(a = 1, ¢ = 0 with ¢/f positive);
The L; Salmon dynamics with a = ¢c =1,

The /3 dynamics of Mclntyre - Roulstonefor a=1,c = v/3
and ¢¢/f < 3/2;

Our classification theorem in 2d gives a classification of all
"almost-balanced" (0 < ¢ < v/3) models with a uniform
potential vorticity.

Vladimir Roubtsov



3d
Perspectives Navier-Stoks

Figure: Numerical Solution of the semi-geostrophic 3d equation

02u
hessy , u + o hessu (13)

Vladimir Roubtsov




Sewell-Chynoweth MAO form and its equivalence

» The effective form of (1):
w=dpANdgANdz+dxANdy ANdr—~ydx N\dy A dz,

(x,v,z,p,q,r)— canonical coordinates system of T*R3.

» This form is a sum of two decomposable 3-forms:
w=dpAdgAdz+dxAdyA(dr—ydz).

» ¢*(w) =dp Adg A dr—dxAdyAdz where ¢ is the
symplectomorphism

Qb(X,_y,Z,P, g, I’) — (X7y7r7p7 q?Wr_Z)°
» The equation (1) is symplectically equivalent to the equation

hess(u) = 1. (2)



An exact solution of the SG 3D equation

(b+4€%)3d¢

VXy+tyz+zx
Fx,y,2) = /

a

is a regular solution of (2). Therefore,

L= {00y, (c+y)an (v + 2)a, (2 + X)a, 1 (x + y)a - 2) |

is a generalised solution of (1) with

b

+4)3.
(xy + yz + zx)

1

3
2



Hoskins geostrophic coordinate transformation

» The SG equations are used like a good approximation to the
Boussinesq primitive equations when the rate of the flow
momentum is smaller than the Coriolis force, or in other
words, when the Rossby number Ro << 1.

» Potential vorticity is a fundamental concept for understanding
the generation of vorticity in cyclogenesis (the birth and
development of a cyclone), especially along the polar front,
and in analyzing flow in the ocean.

» B. Hoskins (1975) had proposed a remarkable coordinate
transformation ( a passage to geostrophic coordinates in x — y
directions) such that the geostrophic velocity and potential
temperature may be represented in terms of one function both
in the transformed coordinates as in physical ones



14/9/82 12GMT

Distribution isentropique (320K) du poteniel tourbillon de Rosshy-Ertel (PV)
de 14 Mai 1992 , 12h 00 (GMT).

Au dessus de IEurope, cette surface (320K) se situe a peu prés a laltitude
de vol des avions long courriers z~ 10 km.

Le petit tourbillon sur les Balkans est une rotation CYCLONIQUE
dans le sens inverse des aiguilles d'une montre.

D'aprés larticle d'Appenzeller et al.,
J. Geophys. Res. 101, 1435-1456 (1996),
Fragmentation of stratospheric intrusions”




Hoskins geostrophic 3D equation

> Let & := ¢+ 5(u2 + v2) then V& = V¢ and

» if the potential vorticity is uniform (g = %NQ) then one
have in the interior of the fluid for any time T =t

1 1 1
ﬁ(d)xx + Pyy) — ﬁ(cbxxcbw — d%y) + mcbzz =1. (3)

» Here (and in what follows) f is the Coriolis parameter taking
as a constant and N is the Brunt - Vaisald frequency:

qg&
N=,|E
foo

for the uniform potential vorticity gz and the constant
potential temperature 6.



Hoskins geostrophic MA effective form : equivalence

» Consider the symplectomorphism

F(x,y,z,p.q,r) = (p,q,z,—x + f°p,—y + fq,r).  (4)
(ﬁ = —Xx + fzp; X 1= p;
G:=-y+fq §:=gq
| 7=

N\

~

r. zZ =2z

with Q = Q, provides the following effective form:

>
~ r . L
W = de/\dq/\dr— ﬁdx/\dy/\dz.
» The Hoskins SG (3) is equivalent to the (1):
N2 (gg8)°
hess(u) = 7 = £5(6o)? (5)

by the symplectomorphism (4).



HyperKaler triple of MAE

The conservation law of the potential vorticity (the Ertel’s theorem)
obtains (using the Hamiltonian representation of the system):

d
a(l + qbqlql + ¢q2q2 -+ det HeSSQb ) = 0,

This equation is a part of the HyperKahler triple of MAEs (R. and
Roulstone 1997, 2001):

p

wy = [1+ a(p11 + p22) + (8% — ?)(pr1p22 — pL)daq1] A dgo
§ wy = [2ep12 + ac(pi1p2z2 — p?,)]| dar A dgo ,
WK = —c




2D balanced model MAE

» The general family of (elliptic) MAE with constant coefficients
carries all flat balanced models:

1+ ¢g1q1 + 3Papay + (8% — c?)detHess¢ = CC/f,  (6)

Among them are:

> The semi-geostrophic model (a =1, ¢ = 0 with (¢ /f
positive);

» The L1 Salmon dynamics with a = ¢ = 1;

» The \/3 dynamics of Mclntyre - Roulstone for a=1,c = /3
and (¢ /f <3/2;
Our classification theorem in 2D gives a classification of all
"almost-balanced" (0 < ¢ < v/3) models with a uniform
potential vorticity.



Dritschel-Viudez MAE

Recently a new approach to modelling stably-stratified geophysical
flows was proposed by Dritschel and Viudez. This approach is
based on the explicit conservation of potential vorticity and uses a
change of variables from the usual primitive variables of velocity
and density to the components of ageostrophic horizontal vorticity
and a Monge-Ampeére-like nonlinear equation with non-constant
coefficients arises. The equation changes the type from elliptic to
hyperbolic:

E(Pux®yy — PL,) + APy +2BP,, + CO,, + D=0  (8)

with
1

2
C:].—QOXZ, D:prxgpzz_gpiz_w

E:]., A:]-—"prz; B = (SOZZ_SOXX)

where ¢ is a given potential and the dimensionless PV anomaly @
may be also considered as a given quantity.



Integrability of the complex/product structure

» THEOREM (B.Banos, V.R.) 2D Dritschel-Viudez equation is
locally equivalent to a Monge-Ampere equation with constant

Agp = 2C1

coefficients if and only if
R = ()

» for R > 0, we see that
w~+ iVRQ =duAdv
with
u=x-—(c1—ic)z—p;+p
{V—(C1+i62)x+sox+r

» ¢ = 2c; and R = ¢ > 0 then 2D Dritschel-Viudez equation is
equivalent to Laplace equation

Oxx T Pzz =0
modulo the Legendre transform
1
F(x,z,p,r) = —=(x — c1Z — @z, 02z, —Cox, —C1X + px + I).

VR



The corresponding Monge-Ampere structure

Q=dxANdp+dzAdr
w= Edp ANdr+ Adp A dz + B(dx A dp — dz A dr)+
+Cdx A dr 4+ Ddx A dz

The pfaffian is pf(w) = R with R the Rellich’s parameter:

2
R:AC—ED—82:1+w—(%>

A direct computation gives

dw:d(%>/\ﬂ (9)



Hitchin hypersymplectic geometry-1

» if our 4-dimensional manifold M, endowed with the
Monge-Ampere structure (€2, w) admits a lagrangian fibration
(main example: M is the cotangent bundle of a smooth
2D—manifold), then it exists a conformal split metric on M*.

» When the corresponding Monge-Ampére equation is given by
(8), this metric writes as

g = C(dx)? — 2Bdxdz + A(dz)? 4+ E/2(dpdx + dqdz), (10)
Using this metric, we get an additional 2-form & defined by
O, ) =g(As-, 1) with w(-,)=Q2(As, )
In coordinates,

&= (—2AC +2B” + D) dx A dz — Bdx A dp — Cdx A dr
+ Adz ANdp+ Bdz A dr — dp A dr



Underlying hypersymplectic geometry-2

In coordinates,
5 = (—2AC +2B* + D) dx A dz — Bdx A dp — Cdx A dr+
+Adz Ndp + Bdz A dr — dp A dr

Introducing © = we get an hypersymplectic triple (©,w,®)

2
VIRl
W2 = —0% = +0°
WA =wANO=0ANO =0

satisfying
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Underlying hypersymplectic geometry-3

Equivalently, we obtain 3 tensors /, S and T satisfying

Moreover we have

?=-1,58=1 T*=1
ST =TS =—|
Tl=—IT=S
IS=-SI=T



Underlying hypersymplectic geometry-4

Hence, when Ay = 0, then w and & are closed and satisfy
w? = —&?: they define then an integrable product structure.
Indeed, in the new coordinates:

X=[R(x,z)dx U=x—¢,+p
Z:Z VZZ—"SOX_I_r

we see that

(w=dUNANdV —dX NdZ

& = —(dU A dV + dX A dZ)

7\

1
Q=
TR

(dX A dU — SdZ A dU + RdZ A dV)  with S = / R, dx



Underlying hypersymplectic geometry-5

In other words, when ¢ is harmonic, a submanifold

L={(vz,Z,U,y), (Z,U) € R?}

is a generalized solution of 2D - Dritschel Viudez equation if and
only if
VYzz + Rbyy =S



Special case of 2D —diagnostic equation of Driitschel-Viduez

In the following partial case this diagnostic equation which
corresponds to the choice

A=1 B =B,=0, C=E=¢, D=—w, (10)
becomes two-dimensional:
Ugs + Uzy + Uy Uyy — u)%z = 1. (11)

It describes a geostrophically-balanced steady 2D flow which is
closed to the QG models described in other lectures.
The corresponding effective form

w=dpANdx+drANdz+dpANdr—wdx A dz

has the Pfaffian pfw = 1+ w. In the classical notations the
Pfaffian is nothing but the Rellich’s parameter R = AC — DE — B?.



We denote as usually by 1 the dimensionless potential vorticity
which relates to the PV anomaly w as

w=1I1-1,

hence we had obtained the following meaning of the Pfaffian for 2D
flow MAE
pfw = T1.

or, in the case of the 2D diagnostic equation this metric depends
on the potential 6 and on the PV anomaly w:

g = (1+0,,)(dx)* — (02— 0xx) dxdz+(1—0y,)(dz)*+1/2(dpdx+dqdz).



Constant coefficient case-1

Now we will discuss a reducibility of this equation to a normal form
with constant coefficients.

Let us calculate the symplectic invariant for given 6 and w and
check the criteria. The direct computation gives that

dw = 1/2d(26) A Q.

Proposition

If the given potential function 6 is a harmonic (A6 = 0) then the
2D diagnostic equation of Dritschel and Viduez is reducible by a
local symplectomorphism to a MA equation with constant
coefficients.



Constant coefficient case-2

We will check it by a direct computation: the Pfaffian Pf(w) of the
corresponded effective 2-form w can be expressed as

pf(w) = (1 —62)) —1/4(0, — 0,)* — (hess 6 — o).

Then we can easily verify that this Pfaffian (which is also is the
Rellich invariant of the diagnostic equation with a harmonic
potential #) is equal to 1 + @ = T1. This is exactly the same value
as it was in the above-mentioned 2D model with constant
coefficients.



Constant coefficient case-3

A "Legendre-dual" potential satisfying to hessd = 1 provides us
also with an example of reducible to constant coefficients MAE
diagnostic equation.

The Pfaffian in this case is equal to 1 — 1/4(A0)? +7g The
Jorgens theorem implies that 0(x, z) = ax? 4+ 28xz + vz> modulo
linear terms with constant o, 3,v, a8 — v? = 1/4. The Laplacian
value in this case is 2(« + ) and the PAfaffian is equal to

N—(a+7)?=N-(a®+26%+~%+1/2).

D= 4w, B, =140y 62450, 6cc)

C
P oA o= Ldboglofn=0;
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2D- Dritschel-Viudez equation and underlying generalized
complex geometry

Relation (8) implies that 2D- Dritschel Viudez equation is of
divergent type since

dlw+A2) =0 with A= _By

2
and to any 2D Monge - Amplire equation A,, = 0 of divergent
type corresponds an integrable generalized complex structure
Jo : M* — End(TM @ T*M) (B.Banos).
It is defined by:




A conservation law of A, = 0 is a 1-form o € Q*(M*) such that
da|; = 0 on any generalized solution L.

The Hodge-Lepage-Lychagin theorem implies that « is a
conservation law if and only if dao = fw + g€2. The function f is
called a generating function with conjugate g -

It is proved by B/Banos that a function f is a generating function if
and only it is pluriharmonic on (M, ],,), that is

ELM'IC Qa,J O4~rrz,zﬂw 00{3 (@"‘4“%%‘)
xample

f(x,z,p,r) = x is a generating function for 2D - Dritschel Viudez
equation with conjugate function

g(x,z,p,r) =@x+z+r
/



Hypercomplex geometry and Von Karman equation

Consider an elliptic Monge-Ampere equation A, = 0 with dw =0
and Q2 A w = 0. Assume moreover it exists a closed 2-form © such
that

QN =wANO =0

and
4o = Q° + O°.

Note that exp(w — i€2) and exp(—w — i©) satisfy the conditions of
the above lemma. We suppose also that ©2 = \?Q with ) a non
vanishing function. This implies that w? = u2Q? with

V14 A2

K= 5

The triple (w, 2, ©) defines a metric G and an almost
hypercomplex structure (/, J, K) such that

w=uG(l,), Q=G(,), ©=AGK-,").



Define now the two almost complex structures

K+ \J K—M\J
/_|_ — s /_ — .
2 H
From Q46
_ | ..
W 2 ( Y )
and a_6
W = 2 (I+.7)

we deduce that /; and /_ are integrable.



Consider again the Von Karman equation
Vi Vix — Vyy = 0.
with corresponding primitive and closed form
w = p1dgz A dp1 + dg1 A dp>.
Define then © by
© = dp1 Adpz + (1 +4p1)dq1 A dgz.
With the triple (w,Q,©) we construct I and /_ defined by

0 —1 1 0
T2l —(14+4p1)/m 0 0 —1/p
0 14+4p; -1 0
0 —1 —1 0
/ :1 —1/p1 0 0 1/p1
B 2 (1+4p1)/p1 0 0 —1/p1
0 (1+4p) -1 0

It is worth mentioning that /. and /_ are well defined for all
L0 Rik the meatric (0 ic Aafinita nacitiva ~aly fAy A o 1
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