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Monge-Ampère equations in 2D:
Classification of SMAE on R2

Conservation Laws
SMAE in 3d

Symplectic Equivalence-1

DEFINITION
Two SMAE ¢!1 = 0 and ¢!2 = 0 are locally equivalent iff
there is exist a local symplectomorphism
F : (T §

M, ≠)! (T §
M, ≠) such that

F
§!1 = !2.

REMARK: L is a generalized solution of ¢F§!1 = 0 iff F (L)
is a generalized solution of ¢! = 0.
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Legendre partial transformation

Figure: Legendre

uq1q1 + uq2q2 = 0 oo //_________

≤≤

vq1q1vq2q2 ° v
2
q1q2 = 1

≤≤
! = dq1 ^ dp2 ° dq2 ^ dp1 !̃ = dp1 ^ dp2 ° dq1 ^ dq2

©§oo
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Lu =
°
q1, q2, uq1 , uq2

¢ © //

≤≤

Lv =
°
q̃1, q̃2, vq̃1 , vq̃2

¢

=
°
q1,°uq2 , uq1 , q2

¢

≤≤

e
q1 cos(q2) oo //_________

q2 arcsin(q2e
°q1)

+
q

e2q1 ° q2
2

with © : T
§R2 ! T

§R2
, (q1, q2, p1, p2) 7! (q1,°p2, p1, q2).
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Figure: Atmosphere structure
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Semi-Geostrophic model

Starting with Shallow water equations with f constant

u̇ + f k£ ẋ +r¡ = 0

and considering typical scales of order

U º 10ms
°1

L º 1000km

f º 10
°4

s
°1

H º 10km

Ro =
|Du
Dt |
|f u| ª

U

fL
= 0.1

the geostrophic approximation u̇ º u̇g is valid, where the

geostrophic wind is defined by

ug = f
°1k£r¡

and Semi-Geostrophic equations as defined by B. Hoskins (75) are

u̇g + f k£ ẋ +r¡ = 0

together with the continuity equation implicit in

¡ =
h0

g

@(a, b)

@(x , y)
.
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Geostrophic coordinates

Introducing the so called geostrophic coordinates, and the Bernoulli

potential

X = x° f
°1k£ ug , ©(X, t) = ¡(x, t) +

f
2

2
|X° x|2

Semi Geostrophic equations reduce to Ẋ = f
°1r?X©

The potential vorticity, conserved quantity, reduces to

qSG :=
1

h

∑
f +

@vg

@x
° @ug

@y
+ f

°1 @(ug , vg )

@(x , y)

∏
=

f

h

@(X , Y )

@(x , y)

or to the equivalent Monge Ampère equations

qSG = gf Hessx

µ
¡ +

1

2
|x|2

∂

1

qSG
=

1

gf

"
©° 1

2

ØØØØ
@©

@X

ØØØØ
2
#

HessX

µ
©° 1

2
|X|2

∂
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Semi-geostrophic Model

In this model f is a constant and the acceleration vector (ẍ , ÿ)
is replaced by the derivative of another vector (the geostrophic

velocity) (ug , vg ) with

ug = °g

f

@h

@y
, vg =

g

f

@h

@x
, (1)

The geostrophic approximation is given by

8
>>><

>>>:

u̇g + g
@h

@x
° ẏ f = 0,

v̇g + g
@h

@y
+ ẋ f = 0,

(2)

Vladimir Roubtsov Talk at Milan, June 15, 2007,
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Potential vorticity

Another important cinematic notion is the potential vorticity:

ª =
1

h

µ
@ẏ

@x
° @ẋ

@y
+ f

∂
(3)

The potential vorticity associated with (1) is written as:

• =
1

h

∑
f +

@vg

@x
° @ug

@y
+

1

f

@(ug , vg )

@(x , y)

∏
(4)
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Vorticity

Figure: Real Potential Vorticity = Cyclons and anti-cyclons, Europe, 15
may 1992
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Geostrophic Transformation

X = x +
g

f 2
@h

@x
, Y = y +

g

f 2
@h

@y
. (5)

The coordinates (X , Y ) are called

geostrophic coordinates:

when f is a constant

Ẋ = ug , Ẏ = vg .

Vladimir Roubtsov Talk at Milan, June 15, 2007,
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Potential Vorticity and MAE

The potential vorticity in the coordinates (5) has a jacobian

form (using (1)):

• =
f

h

@(X , Y )

@(x , y)
=

1

h

∑
f +

@vg

@x
° @ug

@y
+

1

f

@(ug , vg )

@(x , y)

∏
. (6)

This equation can be re-written as

• =
gf

(H ° 1
2 f (x2 + y2))

det Hess (H) , (7)

où

H =
1

2
f (x2 + y

2) + gh

This a departure point of the MAE and the related geometry.

Vladimir Roubtsov Talk at Milan, June 15, 2007,
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Geometric approach -2

The transformation

F : (q1, q2, p1, p2) 7!

(Q1 = q1 + p1, Q2 = q2 + p2) ,

(P1 = p1, P2 = p2)

is a canonical.

The function

f
def
=

1

2
(p2

1 + p
2
2)

is a generating function to F .

Vladimir Roubtsov Talk at Milan, June 15, 2007,
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Geometric approach - 3

The "contactization" of (V, ≠):

(q1, q2, p1, p2) ,! (q1, q2, u, p1, p2) 2 R5

= J
1(D).

A "lift" Fc of the transformation F to the contact space of

1-jets:

Fc : (q1, q2, p1, p2)

7! (Q1 = q1 + p1, Q2 = q2 + p2) ,
µ

V = u +
1

2
(p2

1 + p
2
2), P1 = p1, P2 = p2

∂

The transformation Fc is a contact:

F
§
c (U) = U,

where

U = du ° p1dq1 ° p2dq2.
Vladimir Roubtsov Talk at Milan, June 15, 2007,
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Contact Structure

Figure: Contact structure in R3
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The graph of the geopotential ¡ is a Legendre submanifold

L =

Ω
u = ¡, p1 =

@¡

@q1
, p2 =

@¡

@q2

æ

in J
1(D).

Let ! be an effective 2-form on J
1(D):

! = Edq1 ^ dq2 + B (dq1 ^ dp1 ° dq2 ^ dp2) + (8)

+ Cdq1 ^ dp2 ° Adq2 ^ dp1 + Ddp1 ^ dp2.

The evaluation of the form ! on the graph of ¡ defines a MAE:

¢!(¡) = 0.

Vladimir Roubtsov Talk at Milan, June 15, 2007,
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The Hamiltonian Form

Q̇1 = ° @©

@Q2
, Q̇2 =

@©

@Q1
, (9)

where
d

dt
=

@

@t
+ q̇1

@

@q1
+ q̇2

@

@q2
= (10)

@

@t
+ Q̇1

@

@Q1
+ Q̇2

@

@Q2
.

Vladimir Roubtsov Talk at Milan, June 15, 2007,КЮа
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The map {q1, q2} 7! {Q1,Q2} is a Legendre transformation:

Q1 = √q1 , Q2 = √q2 ,

where

√ = ¡ +
1

2
(q2

1 + q
2
2)

and

q1 = ™Q1 , q2 = ™Q2

with ™ = 1/2(Q2
1 + Q

2
2 )° ©.

Singularities of the application are interpreted as atmospheric wave

fronts (Chynnoweth and Sewell 1989, 1991).

Vladimir Roubtsov Talk at Milan, June 15, 2007,
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Wave fronts

Figure: Wave fronts and legendrian singularities
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The conservation law (the Ertel’s theorem) of the potential vorticity

obtains (using the Hamiltonian representation of the system):

d

dt

µ
@(q1, q2)

@(a, b)

∂
=

d

dt
(1 + ¡q1q1 + ¡q2q2 + det Hess ¡ ) = 0,

This equation is a part of the HyperKähler triple of MAEs (R. and

Roulstone 1997, 2001):

F
§(dl ^ d l̄) = . (11)

≠° 2k[1 + a(p11 + p22) + (a2 ° c
2)(p11p22 ° p

2
12)dq1 ^ dq2]

Vladimir Roubtsov Talk at Milan, June 15, 2007,
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The general family of (elliptic) MAE with constant coefficients
carries all flat balanced models:

1 + ¡q1q1 + a¡q2q2 + (a2 ° c2) detHess¡ = ≥C/f , (12)

Among them are:
The semi-geostrophic model(a = 1, c = 0 with ≥C/f positive);
The L1 Salmon dynamics with a = c = 1;
The

p
3 dynamics of McIntyre - Roulstonefor a = 1, c =

p
3

and ≥C/f < 3/2;
Our classification theorem in 2d gives a classification of all
"almost-balanced"(0 < c <

p
3) models with a uniform

potential vorticity.

Vladimir Roubtsov Talk at Milan, June 15, 2007,
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3d
Navier-Stoks

Figure: Numerical Solution of the semi-geostrophic 3d equation

hessx ,yu +
@2

u

@z2 = hessu (13)

Vladimir Roubtsov Talk at Milan, June 15, 2007,



Sewell-Chynoweth MAO form and its equivalence
I The effective form of (1):

! = dp ^ dq ^ dz + dx ^ dy ^ dr � �dx ^ dy ^ dz ,

(x , y , z , p, q, r)� canonical coordinates system of T ⇤R3.
I This form is a sum of two decomposable 3-forms:

! = dp ^ dq ^ dz + dx ^ dy ^ (dr � �dz).

I �⇤(!) = dp ^ dq ^ dr � dx ^ dy ^ dz where � is the
symplectomorphism

�(x , y , z , p, q, r) = (x , y , r , p, q, �r � z).

I The equation (1) is symplectically equivalent to the equation

hess(u) = 1. (2)



An exact solution of the SG 3D equation

f (x , y , z) =

Z p
xy+yz+zx

a
(b + 4⇠3)1/3d⇠

is a regular solution of (2). Therefore,

L =
n
(x , y , (x + y)↵, (y + z)↵, (z + x)↵, �(x + y)↵� z)

o

is a generalised solution of (1) with

↵ =
1
2
(

b

(xy + yz + zx)
3
2
+ 4)

1
3 .



Hoskins geostrophic coordinate transformation

I The SG equations are used like a good approximation to the
Boussinesq primitive equations when the rate of the flow
momentum is smaller than the Coriolis force, or in other
words, when the Rossby number Ro << 1.

I Potential vorticity is a fundamental concept for understanding
the generation of vorticity in cyclogenesis (the birth and
development of a cyclone), especially along the polar front,
and in analyzing flow in the ocean.

I B. Hoskins (1975) had proposed a remarkable coordinate
transformation ( a passage to geostrophic coordinates in x � y

directions) such that the geostrophic velocity and potential
temperature may be represented in terms of one function both
in the transformed coordinates as in physical ones



8
><

>:

X := x + vg
f = x + 1

f 2
@�
@x

Y := y � ug
f = y + 1

f 2
@�
@y

Z := z ; T := t.



Hoskins geostrophic 3D equation

I Let � := �+ 1
2(u

2
g + v

2
g ) then r� = r� and

I if the potential vorticity is uniform (qg = f ✓0
g N

2) then one
have in the interior of the fluid for any time T = t

1
f 2 (�XX + �YY )�

1
f 4 (�XX�YY � �2

XY ) +
1
N2�ZZ = 1. (3)

I Here (and in what follows) f is the Coriolis parameter taking
as a constant and N is the Brunt - Väisälä frequency:

N =

r
qgg

f ✓0
,

for the uniform potential vorticity qg and the constant
potential temperature ✓0.



Hoskins geostrophic MA effective form : equivalence
I Consider the symplectomorphism

F (x , y , z , p, q, r) = (p, q, z ,�x + f
2
p,�y + f

2
q, r). (4)

I The new canonical coordinate system (x̃ , ỹ , z̃ , p̃, q̃, r̃)
8
><

>:

p̃ := �x + f
2
p; x̃ := p;

q̃ := �y + f
2
q; ỹ := q;

r̃ := r ; z̃ := z

with ⌦̃ = ⌦, provides the following effective form:
I

!̃ =
1
N2 dp̃ ^ dq̃ ^ dr̃ � 1

f 4 dx̃ ^ dỹ ^ dz̃ .

I The Hoskins SG (3) is equivalent to the (1):

hess(u) =
N

2

f 4 =
(qgg)2

f 6(✓0)2
(5)

by the symplectomorphism (4).



HyperKäler triple of MAE

The conservation law of the potential vorticity (the Ertel’s theorem)
obtains (using the Hamiltonian representation of the system):

d

dt

✓
@(q1, q2)

@(a, b)

◆
=

d

dt
(1 + �q1q1 + �q2q2 + det Hess� ) = 0,

This equation is a part of the HyperKähler triple of MAEs (R. and
Roulstone 1997, 2001):
8
><

>:

!I =
⇥
1 + a(p11 + p22) + (a2 � c

2)(p11p22 � p
2
12)dq1

⇤
^ dq2 ,

!J =
⇥
2cp12 + ac(p11p22 � p

2
12)

⇤
dq1 ^ dq2 ,

!K = �c⌦



2D balanced model MAE

I The general family of (elliptic) MAE with constant coefficients
carries all flat balanced models:

1 + �q1q1 + a�q2q2 + (a2 � c
2) det Hess� = ⇣C/f , (6)

Among them are:
I The semi-geostrophic model (a = 1, c = 0 with ⇣C/f

positive);
I The L1 Salmon dynamics with a = c = 1;
I The

p
3 dynamics of McIntyre - Roulstone for a = 1, c =

p
3

and ⇣C/f < 3/2;
Our classification theorem in 2D gives a classification of all
"almost-balanced"(0 < c <

p
3) models with a uniform

potential vorticity.



Dritschel-Viudez MAE
Recently a new approach to modelling stably-stratified geophysical
flows was proposed by Dritschel and Viudez. This approach is
based on the explicit conservation of potential vorticity and uses a
change of variables from the usual primitive variables of velocity
and density to the components of ageostrophic horizontal vorticity
and a Monge-Ampère-like nonlinear equation with non-constant
coefficients arises. The equation changes the type from elliptic to
hyperbolic:

E
�
�xx�zz � �2

xz

�
+ A�xx + 2B�xz + C�xz + D = 0 (8)

with
E = 1 , A = 1 + 'xz , B =

1
2
('zz � 'xx)

C = 1 � 'xz , D = 'xx'zz � '2
xz �$

where ' is a given potential and the dimensionless PV anomaly $
may be also considered as a given quantity.



Integrability of the complex/product structure
I THEOREM (B.Banos, V.R.) 2D Dritschel-Viudez equation is

locally equivalent to a Monge-Ampère equation with constant

coefficients if and only if

(
�' = 2c1
R = c2

I for R > 0, we see that

! + i

p
R ⌦ = du ^ dv

with (
u = x � (c1 � ic2)z � 'z + p

v = �(c1 + ic2)x + 'x + r

I ' = 2c1 and R = c2 > 0 then 2D Dritschel-Viudez equation is
equivalent to Laplace equation

'xx + 'zz = 0

modulo the Legendre transform

F (x , z , p, r) =
1p
R
(x � c1z � 'z , c2z ,�c2x ,�c1x + 'x + r).



The corresponding Monge-Ampère structure

8
><

>:

⌦ = dx ^ dp + dz ^ dr

! = Edp ^ dr + Adp ^ dz + B(dx ^ dp � dz ^ dr)+

+Cdx ^ dr + Ddx ^ dz

The pfaffian is pf(!) = R with R the Rellich’s parameter:

R = AC � ED � B
2 = 1 +$ �

✓
�'

2

◆2

A direct computation gives

d! = d

✓
�'

2

◆
^ ⌦ (9)



Hitchin hypersymplectic geometry-1
I if our 4-dimensional manifold M, endowed with the

Monge-Ampère structure (⌦,!) admits a lagrangian fibration
(main example: M is the cotangent bundle of a smooth
2D�manifold), then it exists a conformal split metric on M

4.
I When the corresponding Monge-Ampère equation is given by

(8), this metric writes as

g = C (dx)2 � 2Bdxdz + A(dz)2 + E/2(dpdx + dqdz), (10)

Using this metric, we get an additional 2-form !̂ defined by
I

!̂(· , ·) = g(A!· , ·) with !(· , ·) = ⌦(A!· , ·)

In coordinates,

!̂ =
�
�2AC + 2B2 + D

�
dx ^ dz � Bdx ^ dp � Cdx ^ dr

+ Adz ^ dp + Bdz ^ dr � dp ^ dr



Underlying hypersymplectic geometry-2

In coordinates,

ω̂ =
(

−2AC + 2B2 + D
)

dx ∧ dz − Bdx ∧ dp − Cdx ∧ dr+

+Adz ∧ dp + Bdz ∧ dr − dp ∧ dr

Introducing Θ =
Ω
√

|R |
, we get an hypersymplectic triple (Θ,ω, ω̂)

satisfying
ω2 = −ω̂2 = ±Θ2

ω ∧ ω̂ = ω ∧Θ = ω̂ ∧Θ = 0
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Underlying hypersymplectic geometry-3

Equivalently, we obtain 3 tensors I , S and T satisfying

I 2 = −1, S2 = 1, T 2 = 1

ST = −TS = −I

TI = −IT = S

IS = −SI = T

Moreover we have

d ω̂ = −d

(

∆ϕ

2

)

∧Ω



Underlying hypersymplectic geometry-4

Hence, when ∆ϕ = 0, then ω and ω̂ are closed and satisfy
ω2 = −ω̂2: they define then an integrable product structure.
Indeed, in the new coordinates:

X =
∫

R(x , z)dx U = x − ϕz + p

Z = z V = z + ϕx + r

we see that


































ω = dU ∧ dV − dX ∧ dZ

ω̂ = −(dU ∧ dV + dX ∧ dZ )

Ω =
1

R
(dX ∧ dU − SdZ ∧ dU + RdZ ∧ dV ) with S =

∫

Rzdx



Underlying hypersymplectic geometry-5

In other words, when ϕ is harmonic, a submanifold

L =
{

(ψZ ,Z ,U,ψU ), (Z ,U) ∈ R2
}

is a generalized solution of 2D - Dritschel Viudez equation if and
only if

ψZZ + RψUU = S



Special case of 2D−diagnostic equation of Driitschel-Viduez

In the following partial case this diagnostic equation which
corresponds to the choice

A = 1, B1 = B2 = 0, C = E = ε2, D = −%, (10)

becomes two-dimensional:

uxx + uzz + uxxuzz − u2
xz = %. (11)

It describes a geostrophically-balanced steady 2D flow which is
closed to the QG models described in other lectures.
The corresponding effective form

ω = dp ∧ dx + dr ∧ dz + dp ∧ dr −%dx ∧ dz

has the Pfaffian pf ω = 1 +%. In the classical notations the
Pfaffian is nothing but the Rellich’s parameter R = AC −DE −B2.



We denote as usually by Π the dimensionless potential vorticity
which relates to the PV anomaly % as

% ≡ Π− 1,

hence we had obtained the following meaning of the Pfaffian for 2D
flow MAE

pf ω = Π.

or, in the case of the 2D diagnostic equation this metric depends
on the potential θ and on the PV anomaly %:

g = (1+θxz)(dx)2−(θzz−θxx)dxdz+(1−θxz)(dz)2+1/2(dpdx+dqdz).



Constant coefficient case-1

Now we will discuss a reducibility of this equation to a normal form
with constant coefficients.
Let us calculate the symplectic invariant for given θ and % and
check the criteria. The direct computation gives that

dw = 1/2d(∆θ) ∧ Ω.

Proposition
If the given potential function θ is a harmonic (∆θ = 0) then the
2D diagnostic equation of Dritschel and Viduez is reducible by a
local symplectomorphism to a MA equation with constant
coefficients.



Constant coefficient case-2

We will check it by a direct computation: the Pfaffian Pf (ω) of the
corresponded effective 2-form ω can be expressed as

pf(ω) = (1 − θ2
xz)− 1/4(θzz − θxx)

2 − (hess θ − ϕ).

Then we can easily verify that this Pfaffian (which is also is the
Rellich invariant of the diagnostic equation with a harmonic
potential θ) is equal to 1 +% = Π. This is exactly the same value
as it was in the above-mentioned 2D model with constant
coefficients.



Constant coefficient case-3

A "Legendre-dual" potential satisfying to hess θ = 1 provides us
also with an example of reducible to constant coefficients MAE
diagnostic equation.
The Pfaffian in this case is equal to 1 − 1/4(∆θ)2 + ϕ. The
Jorgens theorem implies that θ(x , z) = αx2 + 2βxz + γz2 modulo
linear terms with constant α,β, γ,αβ − γ2 = 1/4. The Laplacian
value in this case is 2(α+ γ) and the Pafaffian is equal to

Π− (α+ γ)2 = Π− (α2 + 2β2 + γ2 + 1/2).
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2D- Dritschel-Viudez equation and underlying generalized
complex geometry

Relation (8) implies that 2D- Dritschel Viudez equation is of
divergent type since

d(ω + λΩ) = 0 with λ = −
∆ϕ

2

and to any 2D Monge - AmpГїre equation ∆ω = 0 of divergent
type corresponds an integrable generalized complex structure
Jω : M4 → End(TM ⊕ T ∗M) (B.Banos).
It is defined by:

Jω =









Aω − λ Ω−1

2λω − (1 − R + λ2)Ω λ− A∗
ω











A conservation law of ∆ω = 0 is a 1-form α ∈ Ω1(M4) such that
dα|L = 0 on any generalized solution L.
The Hodge-Lepage-Lychagin theorem implies that α is a
conservation law if and only if dα = f ω + gΩ. The function f is
called a generating function with conjugate g and

L = (f + ig)−1(c) is a generalized solution of ∆ω = 0

It is proved by B/Banos that a function f is a generating function if
and only it is pluriharmonic on (M, Jω), that is

∂ω∂ωf = 0

Example
f (x , z , p, r) = x is a generating function for 2D - Dritschel Viudez
equation with conjugate function

g(x , z , p, r) = ϕx + z + r

take
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Hypercomplex geometry and Von Karman equation
Consider an elliptic Monge-Ampère equation ∆ω = 0 with dω = 0
and Ω ∧ ω = 0. Assume moreover it exists a closed 2-form Θ such
that

Ω ∧Θ = ω ∧Θ = 0

and
4ω = Ω2 +Θ2.

Note that exp(ω − iΩ) and exp(−ω − iΘ) satisfy the conditions of
the above lemma. We suppose also that Θ2 = λ2Ω with λ a non
vanishing function. This implies that ω2 = µ2Ω2 with

µ =

√
1 + λ2

2
.

The triple (ω,Ω,Θ) defines a metric G and an almost
hypercomplex structure (I , J,K ) such that

ω = µG (I ·, ·), Ω = G (J·, ·), Θ = λG (K ·, ·).



Define now the two almost complex structures

I+ =
K + λJ

µ
, I− =

K − λJ

µ
.

From

ω =
Ω+Θ

2
(I−·, ·)

and

ω =
Ω−Θ

2
(I+·, ·)

we deduce that I+ and I− are integrable.



Consider again the Von Karman equation

vxvxx − vyy = 0.

with corresponding primitive and closed form

ω = p1dq2 ∧ dp1 + dq1 ∧ dp2.

Define then Θ by

Θ = dp1 ∧ dp2 + (1 + 4p1)dq1 ∧ dq2.

With the triple (ω,Ω,Θ) we construct I+ and I− defined by

I+ =
1

2









0 −1 1 0
−1/p1 0 0 −1/p1

−(1 + 4p1)/p1 0 0 −1/p1

0 1 + 4p1 −1 0









I− =
1

2









0 −1 −1 0
−1/p1 0 0 1/p1

(1 + 4p1)/p1 0 0 −1/p1

0 −(1 + 4p1) −1 0









It is worth mentioning that I+ and I− are well defined for all
p1 (= 0. But the metric G is definite positive only for p1 < −1

4
.
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