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Background

• Very often we deal with gauge field theories on manifolds

with boundaries: AdS/CFT, flat space holography, . . .

• The first-principle and probably most fundamental approach

to gauge theories is provided by Batalin-Vilkovisky (BV) for-

malism. Locality is taken care of by merging BV with the

jet-bundle langauge Henneaux, Barnich, Brandt, . . .

• BV on manifolds with boundaries Cattaneo et. all 2012 . . . .

• An alternative based on AKSZ-like representation Barnich

MG, 2003; Bekaert MG 2012.

• More general object: gauge PDE Barnich MG 2010, MG Kotov

2019. Behave well with respect to restriction to submani-

folds/boundaries.



• Aim of this talk: full-scale graded geometry approach to

gauge theories with boundaries and their symmetries.

Other sources of ideas and methods:

- Geometric of PDEs Vinogradov, Tulczyjew, . . .

- Covariant phase-space Kijowski, Tulczyjew; Lee, Wald, . . .

- Unfolded approach in higher spin gauge theory M.Vasiliev

- FDA approach to SUGRA d’Auria, Fre, Castellani, Grassi . . .

- Conformal geometry, tractor calculus Eastwood, Gover, Cap, . . . .

Fefferman-Graham construction.

- BRST first-quantized (L∞) approach to SFT and HS gauge

fields Zwiebach; Thorn, Bochicchio, Bengtsson, Stern, Ouvry, Henneaux,

Teitelboim, . . . . . .

- Fedosov quantization and its variations



Boundary data

Suppose we are given with a local gauge theory on spacetime

X = Σ× R⩾0, Σ = ∂X.

- What geometrical/physical data is induced on Σ?. What is the

first principle and invariant approach to extract it?

More generally: low dimensional strata (corners, submanifolds,

defects, . . . )



Digression: 1d, Σ = pt. No gauge symmetry

specified

Equations of motion:

ψ̇A = V A(ψ(t), t)

The structure induced on Σ is just the phase-space: manifold M

with coordinates ψA which parameterize the initial data for the

dynamics. In this case M is the phase space. In the variational

case M comes equipped with a symplectic structure, giving a

Hamiltonian formulation.

Message: the boundary data is described by a pullback of the

ODE (understood in inrinsic terms) to the boundary.



PDE on Σ× R⩾0. No gauge symmetry specified

A given PDE can be equivalently represented as a fiber-bundle
E → X, base coordinates xµ, fiber coordinates ψA. Solutions are
sections ψA = σA(x) satisfying:

∂

∂xµ
σA(x) = ΓAµ (σ(x), x) ,

where ΓAµ (ψ, x) are coefficients of the flat Ehresmann connection

Γ = dxµΓBµ
∂

∂ψB
on E describing the Cartan distribution. Invariant

definition of PDE due to Vinogradov ; cf. unfolded formulation
by Vasiliev .

The boundary data is obtained by pulling back (E,Γ) to Σ. This
is a new PDE on Σ whose connection is given by a pull-back of
Γ. In coordinates: i∗(Γ) = dxiΓAi

∂

∂ψA
, where xµ = {x0, xi} and Σ

is singled out by x0 = 0.



Gauge PDEs. Toy model X = pt (0-dimensional).

Def. Q-manifold is a Z-graded manifold M equipped with a de-

gree 1 nilpotent vector field Q, gh(Q) = 1.

Standard example: M = T [1]X, Q = θa
∂

∂xa
– de Rham differen-

tial.

Gauge PDE in 0-dim is a Q-manifold equivalent to a nonega-

tively graded one.

Solutions: zero locus, i.e. p ∈M such that Q(p) = 0.

Gauge parameters: vector fields Y , gh(Y ) = −1.

Gauge transformations generated by [Q,Y ]



Equivalence of Q-manifolds

Idea: restrict to local analysis. Let

M = N × T [1]V , Q = QN + dT [1]V

with V a graded space. Then (M,Q) and (N,QN) are equivalent.
Q-manifold (T [1]V, dT [1]V ) is called contractible. In coordinates:

Q = QN + vα
∂

∂wα
, QN = qi(ϕ)

∂

∂ϕi
.

Often one finds a “minimal” equivalent Q-man.
Geometric characterization: let wa be independent functions
such that wa, Qwa are independent, the surface wa = 0 = Qwa is
a Q-submanifold isomorphic to (N,QN). Simple geometric pic-
ture of the homotopy transfer. From gauge theory perspective
wα, vα – are known as “generalized auxiliary fields” Henneaux, 1990;

Barnich, M.G. 2004.



Def. [Kotov, Strobl] Locally trivial bundle π : E → M of Q-
manifolds is called Q-bundle if π is a Q-map. Section σ :M → E

is called Q-section if it’s a Q-map.
In general, π : E →M is not a locally trivial Q-bundle.
Indeed, although locally E ∼= M × F (product of manifolds) in
general Q is not a product Q-structure of some QF and QM .

Example: let πX : E → X be a fiber bundle then
π = dπX : (T [1]E, dE) → (T [1]X, dX) is a Q-bundle.

Def. [MG, Kotov] (N,QN) is called an equivalent reduction of
(M,Q) if (M,Q) is a locally trivial Q-bundle over (N,QN) with
a contractible fiber and (M,Q) → (N,QN) admits a global Q-
section.

This generates an equivalence relation for Q-manifolds.



Gauge PDEs (gPDE)

Def. Gauge PDE (E, T [1]X,Q) is a Q-bundle over T [1]X. In

addition: equivalent to nonnegatively graded.

In local coordinates xµ, θµ, ψA:

Q = θµ
∂

∂xµ
+QA(ψ, x, θ)

∂

∂ψA

Solutions: σ : T [1]X → E is a solution if

dX ◦ σ∗ = σ∗ ◦Q , dXψ
A(x, θ) = QA(ψA(x, θ), x, θ) .

Gauge parameter: Y = Y A(ψ, x, θ)
∂

∂ψA
, gh(Y ) = −1.

Infinitesimal gauge transformations:

δY σ
∗ = σ∗ ◦ [Q,Y ]

In a similar way one defines gauge (for gauge)N symmetries.



Equivalence of gauge PDEs

Def. A sub-gPDE (Ẽ, Q̃, T [1]X) ⊂ (E,Q, T [1]X) (i.e. Ẽ ⊂ E is

a subbundle, Q restricts to Q̃) is called an equivalent reduction

if E is a locally trivial Q-bundle over Ẽ (as bundles over T [1]X)

with a contractible fiber.

In local coordinates: if in adapted coordinates xµ, θµ, ϕi, wa, va

one has Qwa = va and Ẽ is singled out by wa = 0 = va then Ẽ is

an equivalent reduction.

A version of elimination of “generalized auxiliary fields” Henneaux,

1990; Barnich, M.G. 2004; M.G. Kotov 2019.



Example: PDE

Let E0 → X, Γ be a PDE defined in a geometrical way. Extend

it to a bundle E → T [1]X and define Q as a covariant differential:

Q = θµ(
∂

∂xµ
+ΓBµ

∂

∂ψB
) , (θa ≡ dxa)

Q2 = 0 thanks to the flatness of Γ. We arrive at Q-bundle

(E, T [1]X,Q).

Solutions of this gPDE are solutions of the underlying PDE (co-

variantly constant sections).

There are no gauge transformations encoded in the gPDE be-

cuase gh(ψA) = 0

Usual PDEs are gauge PDEs whose grading is horizontal



Example: BV formulation (EOM level)

Let E → X be a fiber-bundle underlying BV (fiber coordinates

are: fileds , ghosts, antifields, ..).

Take as E jets J∞(E) pulled back to T [1]X (horizontal forms

on J∞(E)) and Q = dh + s and the total degree (gh(θµ) = 1).

At least locally, the gauge system determined by (E, T [1]X,Q) is

equivalent to the one encoded in the BV formulation (J∞(E), s).
Barnich, MG 2010

The notion of gauge PDE includes BV at EOM level as a par-

ticular case and hence all reasonable gauge theories. Justifies

definition.



Riemannian geometry as a gauge PDE. Off-shell GR

Take G = S2(T ∗X) ⊕ T [1]X. Take E to be J∞(G) pulled back
to T [1]X. Local trivialization:

xµ, θµ , gab, gab|c, . . . , ξa, ξa|c . . .

In a suitable trivialization:

Q = dX + γ , γgab = ξcgab|c+ ξc|agcb+ ξc|bgac , γξa = ξcξa|c , . . .

E.g. Lagrangians: Hn(Q, localfunctions), n = dimX.

Locally, E = (T [1]X, dX)× (F , q), i.e. Locally-trivial Q-bundle.

If one takes the subbundle of prolonged Einstein equations:

D(a)(Rab −
1

n
gabR) = 0

one gets gPDE which is not a jet-bundle.



Conformal-like off-shell GR

As an example of equivalent gPDEs, extend G by extra coordi-

nate Ω > 0 of degree 0 and extra coordinate λ of degree 1. Take

J∞(G) extended to T [1]X and Q:

Qgbc = ξaDagbc+ gacDbξ
a+ gbaDcξ

a+2λgbc, QΩ = ξaDaΩ+ λΩ ,

Qξb = ξaDaξ
b, Qλ = ξaDaλ , [Q,Da] = 0

Equivalent to off-shell GR. Contractible pairs are D(a)(Ω−1) and

Q(D(a)(Ω− 1)) = ΩD(a)λ+ . . .. Naive equivalent reduction: jets

→ jets



Minimal model for off-shell GR

Γa(bc|d...) form contractible pairs with ξabcd... and gab with symmetric

part of ξab . Resulting minimal model Stora; Barnich, Brandt, Henneaux;

Vasiliev . . . :

Coordinates: xµ, θµ , ξa, ρab, Rab
c
d, Ra(b

c
de), . . . , Ra(b

c
de...), . . .

Qxµ = θµ , Qξa = ρac ξ
c , qρab = ρac ρ

cb+ λξaξb+ ξcξdRabcd ,

QRab
c
d = ξeRa(b

c
de) + ρa

fRfb
c
d+ . . . , . . .

For instance H0(Q) immediately gives Riemannian invariants.

On-shell version: R are totally traceless (only Weyl tensors).



Minimal model for off-shell GR

Sections are parameterized by:

σ∗(ξa) = eaµ(x)θ
µ, σ∗(ρab) = ωabµ (x)θµ, σ∗(Rab

c
d) = Rab

c
d(x), . . .

Equations of motion dX ◦ σ∗ = σ∗ ◦Q:

dXe
a+ ωabe

b = 0 , dXω
ab+ ωacω

cb = ecedRcd
ab , . . .

Cartan structure equations. Taking a total degree “gh+form

degree” is crucial. Frame-like formulations.

On shell version – equivalent form of Einstein equations.

Equivalent reduction to minimal model: jets → non-jets.



Induced gPDE on submanifolds

Let B ⊂ X be a submanifold. T [1]B is naturally a submanifold
in T [1]X. For instance, if x0, xi are coordinates on X, x0, xi and
θ0, θi are adapted coordinates on T [1]X, and B ⊂ X is singled
out by x0 = 0, then T [1]B is singled out by

x0 = 0 , θ0 = 0

Note that dX on T [1]X is tangent to T [1]B ⊂ T [1]X. Denote
i : T [1]B → T [1]X.

Let (E,Q, T [1]X) be a gPDE. Then its pullback i∗E (as a bundle)
to T [1]B is again a gPDE (i∗E,Q, T [1]B). Note that i∗E is
naturally a submanifold in E (x0 = 0 = θ0) and Q is tangent
to i∗E ⊂ E. The same applies to the case where B = ∂X.
(i∗E,Q, T [1]B) describes a theory of “boundary values” of the
fields described by (E,Q, T [1]X).



Example: 1d AKSZ sigma model

Let (M, q) be a BFV extended phase space of a first order con-
strained system with constraints Tα = 0. The BRST differential:

q = cα {Tα, · }+ Tα
∂

∂Pα
+ . . . = {ΩBFV , · }

Consider gPDE E = T [1]R⩾0 × (M, q), Q = θ
∂

∂t
+ q.

Fields are: λα = σ∗(cα), za(t) = σ∗(za). Note that σ∗(Pα) = 0
because gh(Pα) = −1. Equations of motion and gauge transfor-
mations

ża = {za, Tα}λα , Tα = 0 ,

δY λ
α = ϵ̇+ . . . , δY z

a = {za, Tα} ϵα, Y = ϵα(t)
∂

∂cα

Boundary data: a gauge PDE in 0-dim. In this case: the BFV
phase space of the system.



gPDE of bondary conditions

Let X be a manifold with boundary, B = ∂X. gPDE of bound-

ary conditions (EB, Q, T [1]B) is a sub-gPDE of (i∗E,Q, T [1]B).

The extra constraints are boundary conditions for fields, ghosts

(gauge-parameters), etc.

Remark. Even if EB ⊂ i∗E is a nontrivial subbundle it doesn’t

not mean that we have nontrivial boundary conditions. For in-

stance, take EB to be an equivalent reduction of i∗E.



gPDEs with boundaries

Def. gPDE with boundary is (E,Q, T [1]X,EB, T [1]B), where EB ⊂
i∗E is a sub gPDE of i∗E. EB can be regarded as “gPDE of
boundary conditions”.

σ : T [1]X → E is a solution if σ is a solution to E and moreover
σ|T [1]B is a solution to EB.

A gauge parameter is a vertical vector field Y on E such that
gh(Y ) = −1 and Y is tangent to EB.

An infinitesimal gauge transformation of a solution σ : X → E is

δY σ
∗ = σ∗ ◦ [Q,Y ]

It takes solutions to solutions. In particular, restrictions of Y to
EB define gauge symmetries of (EB, Q, T [1]B).



Symmetries

Let (E,Q, T [1]X) be a gPDE. Its symmetry is a vertical vector
field W satisfying [Q,W ] = 0. Usually, one also asks gh(W ) = 0.
Symmetries of the form W = [Q,Y ] are considered trivial

A symmetry transformation of a section σ:

δWσ
∗ = σ∗ ◦W in components: δψA(x, θ) =WA(ψ(x, θ), x, θ)

For W = [Q,Y ] this indeed gives gauge transformations.

At least locally, the above def. is equivalent to the standard def.
of symmetries in local BV

In the case of gPDE with boundary one in addition requires W
to be tangent to EB, i.e. to preserve boundary conditions.



Asymptotic symmetries

There are various approaches. The common lore is that asymp-
totic symmetries are those gauge-like symmetries that are not
genuine gauge symmetries because their parameters do not sat-
isfy boundary conditions.

More formally, W = [Q,Y ] is an asymptotic symmetry if W is
tangent to EB (preserves boundary conditions). If Y is itself
tangent to EB than W is a trivial asymptotic symmetry.

Note that asymptotic symmetries form a subalgebra of all sym-
metries of (EB, Q, T [1]B) and are a property of i∗E and its sub-
gPDE (EB, Q, T [1]B).

Note also that if EB = i∗E there are no nontrivial asymptotic
symmetries, i.e. they indeed arise from nontrivial boundary con-
ditions.



Asymptotically simple GR as gPDE with boundaries

Penrose’s approach:
(X̃, g̃) is an asymptotically simple spacetime if there exists space-
time (X, g) with boundary B = ∂X and a function Ω > 0 such
that:
- X̃ is the interior of X
- g = Ω2g̃ on X̃
- Ω = 0 on B and Ω > 0 in the interior
- completeness condition
If in addition g̃ is Einstein near B then (X̃, g̃) is said asymptoti-
cally flat if Λ = 0 (- AdS if Λ < 0 or - dS if Λ > 0).

It is clear that i∗g is defined up to a conformal factor. If i∗g is
nondegenerate B gets a conformal structure.

Asymptotically simple GR leads to a manifold with boundary.
From the field-theory perspective (X, g) is a particular solution
of a gauge theory on a manifold with boundary.



Conformal-like on-shell GR on X

Fields gab,Ω. On the boundary

Ω = 0, QΩ = 0, DaΩ ̸= 0

Field-theoretical realization of the asymptotically flat spacetime.

In particular, the physical metric (which diverges on the bound-

ary) is g̃ab = Ω−2gab.

The respective gPDE formulation:

Qgbc = ξaDagbc+ gacDbξ
a+ gbaDcξ

a+2λgbc, QΩ = ξaDaΩ+ λΩ .

Qξb = ξaDaξ
b, Qλ = ξaDaλ

along with [Da, Q] = 0



Einstein equations on g̃ can be rewritten in terms of g,Ω as:

D(a)Fbc = 0, Ωρ+
gab

2
DaΩDbΩ = −

Λ

(n− 1)(n− 2)
,

where

Fbc ≡ DbDcΩ− ΓdbcDdΩ+ΩPbc+ ρgbc,

ρ ≡ −
1

n
gbc(DbDcΩ− ΓdbcDdΩ+ PbcΩ)

Fbc = 0 is the celebrated almost Einstein equations Eastwood,

Gover, . . . . For a fixed gab it admits nonvanishing solution only if

gab is conformally Einstein. Emergence of tractor bundles.



Minimal model for the induced boundary gPDE

Recall that asymptotic symmetries are determined by boundary

gPDE so let us concentrate on it. The strategy is then:

1. obtain a minimal model (maximal equivalent reduction) of

the boundary gPDE

2. In addition, impose a suitable version of the BMS boundary

conditions

3. Find asymptotic symmetries

The equivalent reduction in the sector of gab, ξ
a, λ is similar to

the one for conformal geometry and is known in the literature

Boulanger . Explains the emergence of Cartan formulation of con-

formal geometry and tractor calculus in the approach developed

by Herfray .



Minimal model for boundary data (the case of Λ = 0)

QξA = ξBρB
A − ξAλ, Qλ = ξAλA,

QρA
B = ρA

CρC
B + λAξ

B − λBξA+
1

2
ξCξDWB

ACD

QλA = ρABλ
B − λλA+

1

2
ξCξDCACD + ξuξDCAuD,

QCA = CBρB
A+ λuξA − λAξu+

1

2
ξCξDWA

ΩCD,

Qλu = CAλA − λλu+
1

2
ξCξDCΩCD + ξuξDCΩuD,

Qξu = −ξuλ− ξACA, Q(curvatures) = . . . .

The index split is a = (u,Ω, A), A = 1, . . . , d−2. With curvatures
set to zero this defines CE for iso(n−1,1). First relations define
so(n− 1,1) ⊂ iso(n− 1,1).

Somewhat similar systems: Nguyen, Salzer; Herfray



BMS symmetries

Simplest vacuum solution: all vanish except for σ∗(ξA) = eAαdy
α

(define a degenerate metric) and σ∗(ξu) = euαdy
α (define a vector

field in the kernel of the metric). Conformal Carrollian geometry.

BMS boundary conditions (define sub-gPDE of the minimal model):

ξA − eA = 0, ξu − θu = 0 , λ = 0

along with Q(above conditions) = 0. The solution for the non-
trivial “gauge parameter” Y reads:

Y = ϵu
∂

∂ξu
+ ϵA

∂

∂ξA
+ . . .

where ϵu = (uλ̄+ T (y)) and ϵA = ϵA(y) are components of BMS
vector field ϵBMS = (uλ̄ + T (y))

∂

∂u
+ ϵA(y)

∂

∂yA
in the adapted

coordinate system yA, u on B.



Boundary data for matter fields

PDE for matter fields coupled to gravity:

P̃ (ϕ̃(a), g̃ab(c)) = 0 , QGR is tangent to D(a)P̃ = 0 ,

QGRϕ̃ = ξaDaϕ̃+ . . .

Uplifting to conformal-like GR. In terms of ϕ = Ω−wϕ̃:

Qϕ = −wλϕ+ ξaDaϕ+ . . .

Now D(a)P̃ = 0 is Q-invariant. Taking minimal k such that P =

ΩkP̃ does not contain negative powers of Ω, gives a boundary

data for P̃ .



Example:

Λ < 0 w =
dimB

2
− 1

and scalar ϕ. Result in conformally-coupled scalar on the bound-
ary+ subleading.

More generally: gauge theoretical realisation of Fefferman-Graham

construction. GJMS conformal-invariant operators. For more
general linear ϕ and flat backgrond the gPDE approach is known
Bekaert, MG, 2012. Relation to Fefferman-Graham construction
Bekaert, MG, Skvortsov 2017.

For Λ = 0, ϕ scalar, and flat background reproduces Nguyen;

Bekaert Oblak; Herfray; Donnay et all, . . . .

More generally: any matter (possibly gauge) coupled to gravity
gives a conformal (conformal Carrollian) boundary gPDE. It is
usually interesting only if w is special (critical).



Lagrangian theories

If (E,Q, T [1]X) is a gPDE, a possible Lagrangians is encoded in

a compatible presymplectic structures:

dω = 0 , LQω ∼ 0 , gh(ω) = n− 1

It follows there exists L, gh(L) = n:

iQω+ dL ∼ 0

This defines an AKSZ-like action Alkalaev MG 2013, MG 2016, 2022,. . .

S[σ] =
∫
T [1]X

(σ∗(χ)(dX) + σ∗(L)) , ω = dχ

Local BV formalism beyond jet bundles



Variational symmetries

A symmetryW , [Q,W ] = 0 is called variational if LWω+dLQα ∼ 0

for some α. The associated Hamiltonian is defined as

iWω − LQα− dHW ∈ I ∼ 0 , QHW = 0 ,

This gives a (generalised) Noether theorem. If gh(W ) = −k then

gh(HW ) = n− 1− k and the conserved charge can be defined as

HW[σ] =
∫
T [1]C

σ∗(HW )

where C is a submanifold of codimension k+1. HW is invariant

under deformations of C provided ∂C is intact and σ is a solu-

tion. k = 0 conserved charges, k > 0 lower degree conservation

laws (e.g. surface charges). Abbot, Deser,.. BRST cohomology

approach Barnich, Brandt.



Conservation laws associated to asymptotic

symmetries

Boundary terms in the action are important! Presymplectic po-
tential χ, ω = dχ is compatible with the boundary conditions if
χ|EB = 0. In this case the action

S[σ] =
∫
T [1]X

(σ∗(χ)(dX) + σ∗(H))

is differentiable.

The conserved current associated to W = [Q,Y ] can be taken to
be HW = iY χ and hence vanishes for genuine gauge symmetries
(for which Y is tangent to EB).

Compatible with the alternative definition of asympototic sym-
metries as those gauge-like symmetries whose associated charges
vanish Brown, Henneaux; Banados; . . .



Conclusions

- Geometrical (in the sense of geometry of PDEs) and BV-BRST

extended version of the covariant phase space formalism

- Shown to be instrumental in the study of asymptotic symme-

tries of gravity

- Known to unify Lagrangian BV and Hamiltonian BFV into a

unified AKSZ-like formalism (presymplectic gauge PDEs). Re-

duces to De Donder-Weyl covariant Hamiltonian formalism in the

simplest cases.

- Gives a first principle derivation of the conformal geometry/tractor

calculus approach to BMS by Herfray . Earlier: conformal bound-

ary calculus Gover, Waldron



- Gives a field-theoretical realization of the Fefferman-Graham con-
struction (Λ < 0) as well as its conformal Carollian analog (Λ =
0).

- Earlier simplified version of the approach Bekaert, MG 2012, 2013

is very instrumental in studying holography for higher-spin fields.
Mixed-symmetry generalization Chekmenev, MG

- Possible applications for flat-space HS holography. One of the
main motivation.

Open:

constructing full-scale graded-geometrical theory of (general-
ized) symmetries and conservation laws in gauge theories with
lower-dimensional strata.

Possible applications to flat space HS holography.


