
Differential invariants of Kundt spacetimes

Eivind Schneider (joint with Boris Kruglikov)

Department of Mathematics
University of Hradec Králové
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Introduction

The equivalence problem of Lorentzian manifolds under the Lie pseudogroup action of
local diffeomorphisms is an important problem in mathematics and physics, and there
are several approaches for solving it:

Scalar polynomial curvature invariants are obtained by complete contractions of the
Riemann tensor, its covariant derivatives and their tensor products.

Cartan invariants are obtained from the structure functions of the absolute parallelism
on the reduced frame bundle, and their derivatives.

Rational scalar differential invariants are rational invariants of the Lie pseudogroup of
local diffeomorphisms acting on the space of jets of metrics. The
invariants are generated by a finite number of differential invariants and
invariant derivations.

We will use the last approach to solve the equivalence problem for the degenerate
Kundt spacetimes, a class of metrics that can not be separated by the first approach.



Separating generic metrics
Lychagin and Yumaguzhin (2015) showed that the rational invariants for Lorentzian
metrics on an n-dimensional manifold can be generated in the following way.

Let g be a Lorentzian metric, and Ric: TM → TM be the corresponding Ricci
operator. We construct n invariants

Ii = Tr(Rici), i = 1, ..., n.

For a generic metric g, the invariants I1, . . . , In are independent functions and can be
chosen as coordinates. We can write g in these coordinates:

g = GijdI
idIj .

Two generic metrics can be distinguished by simply comparing the corresponding
functions Gij(I

1, . . . , In).

The functions Ii, Gij can be thought of as restrictions of functions on J3(S2T ∗M) to
the (prolongation of) a particular section g. From these we can generate all other
invariants by algebraic operations and differentiations with respect to I1, . . . , In.



Kundt spacetimes

A Lorentzian metric g on an n-dimensional manifold M is a Kundt metric if there
exists a vector field ` such that

‖`‖2g = 0, ∇g
`` = 0, Tr(∇g`) = 0, ‖∇g`sym‖2g = 0, ‖∇g`alt‖2g = 0,

where ∇g is the Levi-Civita connection given by g. We call g a degenerate Kundt
metric if, in addition,

I The Riemann tensor Riem is aligned and of algebraically special type II, and

I ∇g(Riem) is aligned and of algebraically special type II.

For any Kundt metric, there exist local coordinates u, x1, ..., xn−2, v in which g takes
the form

g = du
(
dv +H(u, x, v) du+Wi(u, x, v) dx

i
)
+ hij(u, x) dx

idxj .

In these coordinates, ` = ∂v, and g is a degenerate Kundt metric if and only if
(Wi)vv = 0 and Hvvv = 0.



The equivalence problem

We say that two Kundt metrics g and g̃ on M are (locally) equivalent if there exists a
local diffeomorphism ϕ : U ⊂M →M such that ϕ∗(g̃) = g.

Important task: To recognize equivalent Kundt metrics and distinguish inequivalent
ones.

One of the standard ways is to use polynomial curvature invariants, i.e. total
contractions of the curvature tensor and its covariant derivatives. However, not all
spacetimes are separated by such invariants. In particular, in dimension n = 4 the
degenerate Kundt spacetimes are exactly those that can not separated by polynomial
curvature invariants (Coley, Hervik, Pelavas 2009).

Therefore we must use other invariants!



Shape-preserving transformations
To simplify the problem, we will use the coordinates in which g takes the form

g = du
(
dv +H(u, x, v) du+Wi(u, x, v) dx

i
)
+ hij(u, x) dx

idxj . (1)

Then we must also restrict to diffeomorphisms preserving this form. For n = 4, this
pseudogroup of diffeomorphisms was found by Pravda, Pravdova, Coley and Milson
(2002).

Theorem
The transformations preserving the form of (1) are given by

(u, xi, v) 7→
(
C(u), Ai(u, x),

v

C ′(u)
+B(u, x)

)
, det[Ai

xj ] 6= 0, C ′(u) 6= 0.

The Lie algebra g corresponding to this Lie pseudogroup consists of the vector fields

c(u)∂u + ai(u, x)∂xi +
(
b(u, x)− c′(u)v

)
∂v.



The normalized Kundt spacetimes as sections of a bundle
The Kundt metrics of form (1) can be considered as sections of a bundle

π : M × F →M

where F ⊂ RN with N =
(
n
2

)
. Let u, x1, ..., xn−2, v be coordinates on M and

hij ,Wi, H be coordinates on RN , with 1 ≤ i ≤ j ≤ n− 2. The domain F ⊂ RN is
defined by the requirement that the matrix [hij ] is positive definite.

The vector fields of g can be lifted to F ×M by requiring the lifts to preserve the
horizontal symmetric form

G = du
(
dv +H du+Wi dx

i
)
+ hij dx

idxj .

The lift X̂ of the vector field X = c(u)∂u + ai(u, x)∂xi +
(
b(u, x)− c′(u)v

)
∂v is found

by setting X̂ = X +Aij∂hij
+Bi∂Wi + C∂H , and determining the coefficients from

the equation LX̂G = 0:

X̂ =c∂u + ai∂xi + (b− c′v)∂v − (alihlj∂hij
+ alihli∂hii

)

− (c′Wi + ajiWj + bi + 2ajuhij)∂Wi − (2c′H − c′′v + bu + ajuWj)∂H .



The space of jets

Let Jkπ denote the space of k-jets of sections of π. The choice of coordinates on
F ×M gives a natural set of coordinates on Jkπ. For example, on J1π we use the
following coordinates:

u, xi, v, hij , Wi, H, (hij)u, (hij)xk , (hij)v, (Wi)u, (Wi)xk , (Wi)v, Hu, Hxk , Hv.

If g is a section of π given by hij = h̃ij(u, x, v),Wi = W̃i(u, x, v), H = H̃(u, x, v),
then it prolongs naturally to a section j1g of the bundle J1π →M :

(hij)u =
∂h̃ij
∂u

(u, x, v), (hij)xk =
∂h̃ij
∂xk

(u, x, v), · · · , Hv =
∂H̃

∂v
(u, x, v).

In a similar way g prolongs to a section jkg of the bundle Jkπ →M .

We are not interested in arbitrary sections, but in sections satisfying certain differential
equations.



The PDEs

I For Kundt spacetimes we have

E1 = {(hij)v = 0} ⊂ J1π.

Its prolongation to J2π is given by

E2 = {(hij)v = 0, (hij)uv = 0, (hij)xkv = 0, (hij)vv = 0}.

In a similar way we define Ek ⊂ Jkπ.

I For degenerate Kundt spacetimes we have a sub-PDE Ẽk ⊂ Ek ⊂ Jkπ defined by

Ẽ1 = E1, Ẽ2 = E2 ∩ {(Wi)vv = 0},
Ẽ3 = E3 ∩ {(Wi)vv = 0, (Wi)vvv = 0, Hvvv = 0}.

For k > 3, we define Ẽk ⊂ Jkπ as the prolongation of Ẽ3.



The PDEs

If g is a section of π, then the section jkg of Jkπ →M is contained in Ek if and only
if g is a Kundt metric of the form (1). (The same statement holds for Ẽk and
degenerate Kundt metrics.)

As explained above, any vector field X in g prolongs to a vector field X̂(k) on Jkπ.
The prolonged vector field X̂(k) is tangent to Ek and Ẽk for every k. In other words,
the Lie algebra g consists of symmetries E and Ẽ .

We would like to distinguish sections of π satisfying E or Ẽ under the equivalence
relation given by the Lie algebra g (or the corresponding Lie pseudogroup). Both of
these are of infinite dimension. However, each manifold Ek, Ẽk ⊂ Jkπ is of finite
dimension, and so are g-orbits on these.



Differential invariants

Definition
A differential invariant of order k is a function I on Ek (or Ẽk) which is constant on
g-orbits.

I The differential invariants are solutions to the system

X̂(k)(I) = 0, X ∈ g.

The rational differential invariants of order k form a field whose transcendence degree
is equal to the codimension of a generic orbit in Ek (or Ẽk). The following statement
follows from the global version of the Lie-Tresse theorem (Kruglikov, Lychagin 2016).

Theorem
The algebra of rational differential invariants separates orbits in general position in E∞
and Ẽ∞. It is generated by a finite number of differential invariants and invariant
derivations.



Distinguishing metrics

A differential invariant I is a function on Ek. By restricting it to a section g of π, we
obtain a function on M :

Ig = I ◦ jkg.

Now assume that we have n invariants I1, ..., In that are independent when restricted
to g, i.e.

dI1g ∧ · · · ∧ dIng 6= 0.

Then I1g , ..., I
n
g can be used as coordinates on M , and we can write g in these

coordinates:
g = Kij(I

1
g , ..., I

n
g )dI

i
gdI

j
g .

Two metrics that are written in these invariant coordinates can be compared directly.
They are equivalent if and only if the functions Kij(I

1
g , ..., I

n
g ) are equal.



Invariants for general Kundt metrics

For generic Kundt metrics we may take the invariants

Ii = Tr(Rici)

for i = 1, . . . , n, where Ric is the Ricci operator. We have

d̂I1 ∧ · · · ∧ d̂In 6= 0

on a Zariski open set in E3. Here d̂ is the horizontal differential. It is defined on a
function f ∈ C∞(Ek) by d̂f ◦ jkg = d(f ◦ jkg), or in coordinates by

d̂f = Du(f)du+Dxi(f)dxi +Dv(f)dv.

On this Zariski open set, d̂I1, ..., d̂In form an invariant horizontal coframe. There is
also a dual frame of invariant derivations ∂̂i = ADu +Bj

iDxj + CDv, defined by

d̂Ii(∂̂j) = δij .



Invariants for general Kundt metrics

We can express the horizontal symmetric form

G = du
(
dv +H du+Wi dx

i
)
+ hij dx

idxj .

as
G = Kij d̂I

id̂Ij ,

where Kij = G(∂̂i, ∂̂j) are rational differential invariants of order 3.

Theorem
The algebra of rational differential invariants is generated by Ii,Kij and the invariant

derivations ∂̂i.



Invariants for degenerate Kundt metrics

The above approach does not work for degenerate Kundt metrics, because for these
metrics we have

d̂I1 ∧ · · · ∧ d̂In = 0.

In general, only n− 1 of these invariants are horizontally independent (in our adapted
coordinates, we have Dv(I

i) = 0 for all of them).

For n− 1 horizontally independent invariants J1, ..., Jn−1 from the above set, let
∇1, ...,∇n−1 be the G-duals to d̂J1, ..., d̂Jn−1. The invariants can be chosen such
that ∇2, ...,∇n−1 are spacelike vector fields (after restriction to a degenerate Kundt
metric), making the matrix [G(∇i,∇j)]

n−1
i=2 positive definite.

Define the nth derivation by

G(∇1,∇n) = 1, G(∇i,∇n) = 0 for i = 2, ..., n.



Invariants for degenerate Kundt metrics

Let ω1, ..., ωn denote the horizontal coframe dual to ∇1, ...,∇n, defined by
ωi(∇j) = δij . Then we have

G = Lijω
iωj

where Lij = G(∇i,∇j) are differential invariants of order 3. In this case, we have
nontrivial commutation relations [∇i,∇j ] = ckij∇k, where ckij are differential invariants
of order 3.

Theorem
The algebra of differential invariants is generated by the differential invariants Lij , c

k
ij

and the invariant derivations ∇i.



Other choices of generators of invariants

The above approach is very flexible regarding the choice of n invariants or n invariant
derivations. All we require is that d̂I1 ∧ · · · ∧ d̂In is nonvanishing, or that ∇1, ...,∇n

are independent, on generic points.

For any choice of dimension n, exactly one differential invariant of order 1:

Theorem
There is one algebraically independent invariant of first order, and it is given by

I1 = (Wi)v(Wj)vh
ij .

Note that the matrix [hij ] is the inverse to [hij ]. In particular, we have the
determinant of the latter in the denominator of I1.

We will now focus on the low dimensions, n = 3 and n = 4, and find a different set of
generators.



Three-dimensional Kundt spacetimes

We simplify our notation and use coordinates u, x, v, h,W,H on F ×M . Let us start
by giving an invariant horizontal frame.

Theorem
The derivations

∇1 =
Wv

Wvv
Dv, ∇2 =

2

Wv
Dx +

hxWv − 2hWxv

hWvWvv
Dv,

∇3 =
1

Wv
(HvvDx −WvvDu + (Wuv −Hxv)Dv)

are invariant, and they are independent on a Zariski open subset of E2.

The derivations satisfy [X̂(∞),∇i] = 0 for each X ∈ g, and they were found by solving
this system of PDEs.



Three-dimensional Kundt spacetimes
If we let αj denote the elements of the dual horizontal coframe (αj(∇i) = δji ), then
the horizontal symmetric 2-form G written in terms of this coframe will have
coefficients given by G(∇i,∇j). It takes the form

G = I−11

(
(J1α

3 + J2α
2 − I1α1)α3 + 4(α2)2

)
where I1 =

W 2
v
h is the first-order differential invariant from the previous slide and

J1 =
HW 2

vv + (−HvvW +Hxv −Wuv)Wvv +H2
vvh

h
,

J2 =
4Hvvh

2 + 2(Wxv −WWvv)h−Wvhx
h2

are second-order differential invariants. We have d̂I1 ∧ d̂J1 ∧ d̂J2 6= 0.

Theorem
For n = 3 the algebra of differential invariants on E is generated by the differential
invariants I1, J1, J2 and the invariant derivations ∇1,∇2,∇3.



Three-dimensional Kundt spacetimes

We also have the second-order differential invariants

∇3(I1) = 2
HvvWxv −HxvWvv

h
− Wv(Hvvhx −Wvvhu)

h2
,

J3 =
W 2

vv(h
2
u − 2hhuu)

h3
− 2Wvv(HvWvv −HvvWv)hu

h2

− ((HvW −Hx +Wu)W
2
vv −Wv(HvvW −Hxv +Wuv)Wvv + 2H2

vvhWv)hx
h3

+
(−2HxWv + 2HvWx + 2HxvW − 2Hxx + 2Wux)W

2
vv

h2

+
((−2HvvW + 2Hxv − 2Wuv)Wxv − 4HxvHvvh)Wvv + 4H2

vvhWxv

h2

which, together with I1, J1, J2, constitute a transcendence basis for the field of
second-order differential invariants on E2.



Three-dimensional degenerate Kundt spacetimes
Let us now consider degenerate kundt metrics. We still have the invariant I1 =

W 2
v
h .

We define the following functions:

I2a = Hvv, I2b =
Wvhx − 2hWxv

h2
, K2a =

Hxv −Wuv

W
, K2b =

Wvhu − 2hWuv

Wh
.

The functions I2a and I2b are second-order differential invariants on Ẽ2. We also define

Q =
(2I2aK2b + I2bK2a − I2aI2b)W

I1
,

R =
I2bHW

2
v

I1
− (I2bI

2
2a − 2K2a(I2b − 2K2b)I2a + I2bK

2
2a)W

2

4I22a
.

A fourth second-order differential invariant is given by

I2c =
1

Q2

((I21hu(WWv + hu)− (hx(HvW −Hx +Wu)I
2
1 −W 4

v I2bH))I2aI2b
W 2

v

−2 (WvHx + (hu −Wx)Hv +Hxx −Wux + huu) I1I2aI2b

−W 2I1(K2b(I2b −K2b)I2a − 2I2bK
2
2a)

)
.



Three-dimensional degenerate Kundt spacetimes

We have d̂I1 ∧ d̂I2a ∧ d̂I2c 6= 0 on a Zariski open set in Ẽ3. It is possible to express G in
terms of d̂I1, d̂I2a, d̂I2c as before, and in this way find a generating set of invariants.

Alternatively, we may use the following invariant derivations:

∇1 =
I1

I2aI2b
· Q
Wv

Dv, ∇2 =
1

Wv

(
Dx −

K2a

I2a
WDv

)
,

∇3 =
2I2a
I1
· 1

QWv
(K2bWDx − I2bhDu +RDv)

Theorem
The algebra of differential invariants on Ẽ is generated by the differential invariants
I1, I2a, I2c and the invariant derivations ∇1,∇2,∇3.



Four-dimensional degenerate Kundt spacetimes

We have a single first-order invariant:

I1 =
(W1)

2
vh22 − 2(W1)v(W2)vh12 + (W2)

2
vh11

h11h22 − h212
.

There are 12 additional algebraically independent invariants of order 2. Here are two of
them:

I2a = Hvv, I2b =
((W1)x2v − (W2)x1v)

2

h11h22 − h212
.

These three invariants are horizontally independent:

d̂I1 ∧ d̂I2a ∧ d̂I2b 6= 0.

We also have Dv(I1) = Dv(I2a) = Dv(I2b) = 0. We need one invariant I with
Dv(I) 6= 0. In order to find this, we construct a horizontal frame.



Four-dimensional degenerate Kundt spacetimes
The horizontal 1-forms d̂I1, d̂I2a, d̂I2b are independent. By taking an appropriate linear
combination

d̂I1 + a1d̂I2a + a2d̂I2b

where ai are rational functions on Ẽ3, we obtain an invariant horizontal form which is
proportional to du. We turn it into a horizontal vector field by using G and denote the
resulting invariant derivation, which is proportional to Dv, by ∇1. We have three
derivations:

∇1, ∇2 = G−1d̂I2a, ∇3 = G−1d̂I2b.

We complete the horizontal frame by requiring ∇4 to satisfy

G(∇1,∇4) = 1, G(∇2,∇4) = 0, G(∇3,∇4) = 0, G(∇4,∇4) = 0.

Theorem
The derivations ∇1,∇2,∇3,∇4 are invariant, and they are independent on a Zariski
open subset of Ẽ3.



Four-dimensional degenerate Kundt spacetimes

Let us end by finding a fourth absolute invariant which is independent from I1, I2a, I2b.
The invariants G(∇i,∇j) satisfy Dv(G(∇i,∇j)) = 0. We have commutation relations

[∇i,∇j ] = ckij∇k

where ckij are rational differential invariants. Some of these depend on v for generic

degenerate Kundt spacetimes. We have, for example Dv(c
1
23) 6= 0.

Theorem
The differential invariants I1, I2a, I2b, c

1
23 are horizontally independent.
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