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The Navier-Stokes system

Consider flows of an viscid medium
ρ(ut + uua) + pa − ζuaa − ρgh′ = 0,
ρt + (ρu)a = 0,

ρT (st + usa)− kTaa − ζu2
a = 0.

(1)

on a naturally-parametrised space curve in the three-dimensional
Euclidean space

M = {x = f (a), y = g(a), z = h(a)}.

in a field of constant gravitational force.
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Thermodynamics

A thermodynamic state is a two-dimensional Legendrian manifold
L ⊂ R5(p, ρ, s,T , ε), a maximal integral manifold of the differential
1-form

θ = dε− Tds − pρ−2dρ,

i.e. a manifold such that the first law of thermodynamics θ
∣∣
L

= 0
holds.
Following [1], we require that the quadratic differential form

κ = d(T−1) · dε− ρ−2d(pT−1) · dρ

on the surface L be negative definite,

κ
∣∣
L
< 0,

and the entropy s satisfies the inequality s ≤ s0, where the constant
s0 depends on the nature of a process under consideration.
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Thermodynamics

Consider the projection π : (p, ρ, s,T , ε) 7−→ (p, ρ, s,T ). The
restriction of this map on the state surface L is a diffeomorphism
L̄ = π(L), and the surface L̄ ⊂ R4 is a Lagrangian manifold in the
4-dimensional symplectic space R4 equipped with the structure form

Ω = dθ = ds ∧ dT + ρ−2dρ ∧ dp.

Thus, the thermodynamic state is the Lagrangian submanifold L̄ in
the symplectic space (R4,Ω):{

f (p, ρ, s,T ) = 0,
g(p, ρ, s,T ) = 0,

and [f , g ]|L̄ = 0, (2)

where [f , g ] is the Poisson bracket, and the symmetric differential
form κ is negative definite on this surface.
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Symmetry Lie algebra
We consider a Lie algebra g of point symmetries of the
Navier-Stokes system (1).
Let ϑ : g→ h be the following Lie algebras homomorphism

ϑ : X 7→ X (ρ)∂ρ + X (s)∂s + X (p)∂p + X (T )∂T ,

where h is a Lie algebra generated by vector fields that act on the
thermodynamic variables p, ρ, s and T .
The kernel of the homomorphism ϑ is an ideal gm ⊂ g (geometric
symmetries).
Let also ht be the Lie subalgebra of the algebra h that preserves
thermodynamic state (2).

Theorem
A Lie algebra gsym of symmetries of the Navier-Stokes system E
coincides with

ϑ−1(ht).
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Symmetry Lie algebra

h(a) is arbitrary
X1 = ∂t , X2 = ∂p, X3 = ∂s

h(a) = const
X1 = ∂t , X2 = ∂p, X3 = ∂s ,
X4 = ∂a, X5 = t ∂a + ∂u,
X6 = t ∂t + a ∂a − p ∂p − ρ ∂ρ,
X7 = a ∂a + u ∂u − 2ρ ∂ρ + 2T ∂T

h(a) = λa, λ 6= 0
X1 = ∂t , X2 = ∂p, X3 = ∂s ,
X4 = ∂a, X5 = t ∂a + ∂u,
X6 = t ∂t + 2a ∂a + u ∂u − p ∂p − 3ρ ∂ρ + 2T∂T ,
X7 = t ∂t + (λgt

2

2 + a) ∂a + λgt ∂u − p ∂p − ρ ∂ρ
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Symmetry Lie algebra

h(a) = λa2, λ 6= 0
X1 = ∂t , X2 = ∂p, X3 = ∂s ,
X4 = sin(

√
2λg t) ∂a +

√
2λg cos(

√
2λg t) ∂u,

X5 = cos(
√
2λg t) ∂a −

√
2λg sin(

√
2λg t) ∂u,

X6 = a ∂a + u ∂u − 2ρ ∂ρ + 2T∂T
h(a) = λ1a

λ2 , λ2 6= 0, 1, 2
X1 = ∂t , X2 = ∂p, X3 = ∂s ,

X4 = t ∂t − 2a
λ2−2∂a −

λ2u
λ2−2∂u − p ∂p + λ2+2

λ2−2ρ ∂ρ −
2λ2
λ2−2T ∂T

h(a) = λ1e
λ2a, λ2 6= 0

X1 = ∂t , X2 = ∂p, X3 = ∂s ,
X4 = t ∂t − 2

λ2
∂a − u ∂u − p ∂p + ρ ∂ρ − 2T∂T

h(a) = ln a
X1 = ∂t , X2 = ∂p, X3 = ∂s ,
X4 = t ∂t + a ∂a − p ∂p − ρ ∂ρ
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Symmetry Lie algebra

Let h(a) be an arbitrary function.

The Lie algebra g of point symmetries of the system (1) is
generated by the vector fields

X1 = ∂t , X2 = ∂p, X3 = ∂s .

The pure thermodynamic part h of the system symmetry algebra is

Y1 = ∂p, Y2 = ∂s .

Thus, in this case the system of differential equations E has the
smallest Lie algebra of point symmetries ϑ−1(ht).
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Lifting curves from the plane

Let a curve in the space be defined as a pair of a plane curve
(x(τ), y(τ)) and a ‘lifting’ function z(τ).

Let l(τ) =
τ∫
0

√
x2
θ + y2

θ dθ – the length of the plane curve.

Then the following relation between natural parameter a and the
parameter τ is valid

ha =
zτ√

x2
τ + y2

τ + z2
τ

. (3)

1. h(a) = const
The first way of lifting a plane curve is to translate the whole curve
along z-axis, i.e. if h(a) = const then z(τ) = const.
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Lifting curves from the plane

2. h(a) = λa, λ 6= 0
The second way to lift curve is lifting proportional to the length of
the plane part, i.e. if h(a) = λa then we have the following
differential equitation on the ‘lifting’ function z(τ)(

1− λ2) z2
τ = λ2 (x2

τ + y2
τ

)
,

solving which given 1− λ2 > 0, we get

z(τ) = ± λ√
1− λ2

l(τ) + C ,

where l(τ) – is length of plane projection of curve and C = const.
If λ = ±1, then x(t) = y(t) = const and we have a vertical line.
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Lifting curves from the plane
3. h(a) = λa2, λ 6= 0
The relation between the ‘lifting’ function z(τ) and the length l(τ)
of the plane curve is√

4λz(1− 4λz)− arccos(
√
4λz) = ±4λl(τ).
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Lifting curves from the plane
5. h(a) = λ1e

λ2a

The relation between the ‘lifting’ function z(τ) and the length l(τ)
of the plane curve is

√
1− λ2

2z
2 − 1

2
ln

1 +
√

1− λ2
2z

2

1−
√

1− λ2
2z

2
= ±λ2l(τ).
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Lifting curves from the plane
6. h(a) = ln a
The relation between the ‘lifting’ function z(τ) and the length l(τ)
of the plane curve is√

e2z − 1− arctan
√
e2z − 1 = ±l(τ).
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Thermodynamic states

Let h(a) be a quadratic function h(a) = λa2, and let the
thermodynamic state admit a one-dimensional symmetry algebra

Z = γ1∂p + γ2∂s + γ3(ρ ∂ρ − T ∂T ),

then the Lagrangian surface L̄ can be found from the conditions{
Ω|L̄ = 0,
(ιZΩ)|L̄ = 0,

(4)

which lead to the following PDE system on the internal energy{
γ4ρ ερρ + (γ2 − γ4s)ερs + γ4ερ − γ1ρ

−2 = 0,
(γ2 − γ4s)εss + γ4ρ ερs − γ3 εs = 0.
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Thermodynamic states

Theorem
The thermodynamic states admitting a one-dimensional symmetry
algebra for the case h(a) = λa2 have the form

p =
γ2

γ3
F ′ − F − γ1

γ3
(ln ρ− 1), T =

F ′

ρ
, F = F

(
s +

γ2

γ3
ln ρ

)
,

where F is a function that satisfies the following inequalities:

F ′ > 0, F ′′ > 0,
(γ2F

′ − γ1)F ′′

γ3
− F ′2 > 0.

Anna Duyunova The Navier-Stokes system on a space curve



Thermodynamic states
Let h(a) = const or h(a) = λa. The thermodynamic states
admitting a one-dimensional symmetry algebra have the form

T = ρ
λ4
λ3
−1

F ′, p = ρ
λ4
λ3

((
λ4

λ3
− 1
)
F − λ1

λ3
F ′
)
− λ2

λ4
,

where F = F
(
s − λ1

λ3
ln ρ
)
is a smooth function, F ′ is positive and

λ2
1F
′′ + λ1(λ3 − 2λ4)F ′ + λ4(λ4 − λ3)F > 0,

F ′′(λ4(λ4 − λ3)F − λ1λ3F
′)− (F ′)2(λ4 − λ3)2 > 0.

The thermodynamic states admitting a two-dimensional
commutative symmetry algebra have the form

p = C (β − 1)eαsρβ − β2

β4
, T = Cαeαsρβ−1,

where

α =
α4β3 − α3β4

α1β3 − α3β1
> 0, β =

α1β4 − β1α4

α1β3 − α3β1
> 1, C > 0,

β2

β4
< 0.
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Differential invariants
We consider two group actions on the Navier–Stokes system E –
the prolonged actions of the groups generated by actions of the Lie
algebras gm and gsym.
A function J on the manifold Ek is a kinematic differential invariant
of order ≤ k if

1 J is a rational function along fibers of the projection
πk,0 : Ek → E0,

2 J is invariant with respect to the prolonged action of the Lie
algebra gm, i.e., for all X ∈ gm,

X (k)(J) = 0, (5)

where Ek is the prolongation of the system E to k-jets, and X (k) is
the k-th prolongation of a vector field X ∈ gm.
A kinematic invariant is a Navier–Stokes invariant if condition (5)
holds for all X ∈ gsym.
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Kinematic invariants

Theorem
The kinematic invariants field is generated by first-order basis
differential invariants and by basis invariant derivations. This
field separates regular orbits.
The number of independent invariants of pure order k is equal
to 5 for k ≥ 1.
For the general cases of h(a), as well as for h(a) = λ1a

λ2 ,
h(a) = λ1e

λ2a and h(a) = ln a, the basis differential invariants
are

a, u, ρ, s, ut , ua, ρa, st , sa,

and the basis invariant derivatives are

d
dt
,

d
da
.
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Kinematic invariants
Theorem

For the cases h(a) = const, h(a) = λa the basis differential
invariants are

ρ, s, ua, ut + uua, ρa, sa, st + usa,

and basis invariant derivatives are

d
dt

+ u
d
da
,

d
da
.

For the case h(a) = λa2 the basis differential invariants are

ρ, s, ua, ut + uua − 2λga, ρa, sa, st + usa,

and basis invariant derivatives are

d
dt

+ u
d
da
,

d
da
.
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Navier–Stokes invariants
Let h(a) = λa, λ 6= 0. If the thermodynamic state admits a
one-dimensional symmetry algebra generated by the vector field

ξ1∂p + ξ2∂s + ξ3(t ∂t + 2a ∂a + u ∂u − p ∂p − 3ρ ∂ρ + 2T∂T )+

ξ4

(
t ∂t +

(
λgt2

2
+ a

)
∂a + λgt ∂u − p ∂p − ρ ∂ρ

)
,

then the field of Navier–Stokes differential invariants is generated
by the differential invariants

s +
ξ2

3ξ3 + ξ4
ln ρ, uaρ

− ξ3+ξ4
3ξ3+ξ4 , ρaρ

ξ3
3ξ3+ξ4

−2
,

ρ2(ut + uua − λg)

ρaua
,

ρsa
ρa
,

st + usa
ua

of the first order and by the invariant derivations

ρ
− ξ3+ξ4

3ξ3+ξ4

(
d
dt

+ u
d
da

)
, ρ

− 2ξ3+ξ4
3ξ3+ξ4

d
da
.
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Navier–Stokes invariants

Let h(a) = λa2, λ 6= 0.
If the thermodynamic state admits a one-dimensional symmetry
algebra generated by the vector field

ξ1∂p + ξ2∂s + ξ3(a ∂a + u ∂u − 2ρ ∂ρ + 2T∂T ),

then the field of Navier–Stokes differential invariants is generated
by the differential invariants

s +
ξ2
2ξ3

ln ρ, ua, ρ(ut + uua − 2λga)2,
ρ2
a

ρ3 ,
s2
a

ρ
, st + usa

of the first order and by the invariant derivations

d
dt

+ u
d
da
, ρ−

1
2

d
da
.
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Thank you for attention.
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