Maciej Dunajski

Department of Applied Mathematics and Theoretical Physics
University of Cambridge

- Felipe Contatto, MD, \texttt{arXiv:1510.01906}.
Given an affine connection ∇ on a surface Σ, determine necessary/sufficient local conditions (explicit curvature invariants) for the existence of first integrals.
Results

- Given an affine connection ∇ on a surface Σ, determine necessary/sufficient local conditions (explicit curvature invariants) for the existence of first integrals.
- If ∇ is a Levi–Civita connection, then there can exist 0, 1 or 3 linear first integrals. Understand the non-metric case with exactly two local linear first integrals.

Application (unexpected!): Given a one–dimensional system of hydrodynamic type in Riemann invariants, determine necessary/sufficient conditions for the existence of a Hamiltonian (bi–Hamiltonian, tri–Hamiltonian) formulation of Dubrovin-Novikov type. Examples: Zoll connections. Hamiltonian systems from two–dimensional Froebenius manifolds, . . .
Given an affine connection ∇ on a surface Σ, determine necessary/sufficient local conditions (explicit curvature invariants) for the existence of first integrals.

If ∇ is a Levi–Civita connection, then there can exist 0, 1 or 3 linear first integrals. Understand the non-metric case with exactly two local linear first integrals.

Application (unexpected!): Given a one–dimensional system of hydrodynamic type in Riemann invariants, determine necessary/sufficient conditions for the existence of a Hamiltonian (bi–Hamiltonian, tri–Hamiltonian) formulation of Dubrovin-Novikov type.
Given an affine connection ∇ on a surface Σ, determine necessary/sufficient local conditions (explicit curvature invariants) for the existence of first integrals.

If ∇ is a Levi–Civita connection, then there can exist 0, 1 or 3 linear first integrals. Understand the non-metric case with exactly two local linear first integrals.

Application (unexpected!): Given a one–dimensional system of hydrodynamic type in Riemann invariants, determine necessary/sufficient conditions for the existence of a Hamiltonian (bi–Hamiltonian, tri–Hamiltonian) formulation of Dubrovin-Novikov type.

Examples: Zoll connections. Hamiltonian systems from two–dimensional Froebenius manifolds, . . .
A simply-connected surface with a torsion–free affine connection \((\Sigma, \nabla)\) of differentiability class \(C^4\).
A simply-connected surface with a torsion–free affine connection (Σ, ∇) of differentiability class C^4.

Affinely parametrised geodesic $\gamma : \mathbb{R} \to \Sigma$, $\nabla \dot{\gamma} \gamma = 0$. Or in local coordinates X^a on $U \subset \Sigma$

$$\ddot{X}^a + \Gamma^a_{bc} \dot{X}^b \dot{X}^c = 0, \quad a, b, c = 1, 2.$$
A simply-connected surface with a torsion–free affine connection \((\Sigma, \nabla)\) of differentiability class \(C^4\).

Affinely parametrised geodesic \(\gamma : \mathbb{R} \to \Sigma, \nabla \dot{\gamma} \dot{\gamma} = 0\). Or in local coordinates \(X^a\) on \(U \subset \Sigma\)

\[
\ddot{X}^a + \Gamma^a_{bc} \dot{X}^b \dot{X}^c = 0, \quad a, b, c = 1, 2.
\]

Linear first integral: \(\kappa \equiv K_a(X) \dot{X}^a\) s.t. \(d\kappa/d\tau = 0\) along the geodesics. Equivalently

\[
\nabla_a K_b + \nabla_b K_a = 0. \quad (K).
\]
A simply-connected surface with a torsion–free affine connection \((\Sigma, \nabla)\) of differentiability class \(C^4\).

Affinely parametrised geodesic \(\gamma : \mathbb{R} \to \Sigma, \nabla \dot{\gamma} \dot{\gamma} = 0\). Or in local coordinates \(X^a\) on \(U \subset \Sigma\)

\[\dddot{X}^a + \Gamma_{bc}^a \dot{X}^b \dot{X}^c = 0, \quad a, b, c = 1, 2.\]

Linear first integral: \(\kappa \equiv K_a(X) \dot{X}^a\) s.t. \(d\kappa/d\tau = 0\) along the geodesics. Equivalently

\[\nabla_a K_b + \nabla_b K_a = 0. \quad (K).\]

Prolong this system to a connection on a rank–3 vector bundle \(E \to \Sigma\). Find the integrability conditions for the existence of one/two/three parallel sections. Express them in terms of the curvature of \(\nabla\) and its covariant derivatives (of order up to 3).
Prolongation connection

- Curvature decomposition

\[
R_{ab}^{\hspace{1em}c} \hspace{1em} d = \delta_a^{\hspace{1em} c} P_{bd} - \delta_b^{\hspace{1em} c} P_{ad} + B_{ab} \delta_d^{\hspace{1em} c}.
\]

Schouten tensor \(P_{ab} = (2/3) R_{ab} + (1/3) R_{ba} \), and \(B_{ab} = -2 P_{[ab]} \). Set \(\beta = B_{ab} \epsilon^{ab} \) for an arbitrary volume form \(\epsilon \).
Curvature decomposition

\[R_{ab}{}^c{}_d = \delta_a{}^c P_{bd} - \delta_b{}^c P_{ad} + B_{ab} \delta_d{}^c. \]

Schouten tensor \(P_{ab} = (2/3)R_{ab} + (1/3)R_{ba} \), and \(B_{ab} = -2P_{[ab]} \). Set \(\beta = B_{ab} \epsilon^{ab} \) for an arbitrary volume form \(\epsilon \).

Proposition. There is a one-to-one correspondence between solutions to the Killing equations \((K)\), and parallel sections of the prolongation connection \(D\) on a rank–3 vector bundle \(E = \Lambda^1(\Sigma) \oplus \Lambda^2(\Sigma) \rightarrow \Sigma \)

\[
D_a \left(\begin{array}{c} K_b \\ \mu \end{array} \right) = \left(\begin{array}{c} \nabla_a K_b - \epsilon_{ab} \mu \\ \nabla_a \mu - \left(P_b{}^a + \frac{1}{2} \beta \delta^b{}_a \right) K_b + \mu \theta_a \end{array} \right).
\]
Prolongation connection

- **Curvature decomposition**

\[
R_{ab}{}^c{}_d = \delta_a{}^c P_{bd} - \delta_b{}^c P_{ad} + B_{ab} \delta_d{}^c .
\]

Schouten tensor \(P_{ab} = (2/3) R_{ab} + (1/3) R_{ba} \), and \(B_{ab} = -2 P_{[ab]} \). Set \(\beta = B_{ab} \epsilon^{ab} \) for an arbitrary volume form \(\epsilon \).

- **Proposition.** There is a one-to-one correspondence between solutions to the Killing equations \((K)\), and parallel sections of the prolongation connection \(D \) on a rank–3 vector bundle \(E = \Lambda^1(\Sigma) \oplus \Lambda^2(\Sigma) \rightarrow \Sigma \)

\[
D_a \begin{pmatrix} K_b \\ \mu \end{pmatrix} = \begin{pmatrix} \nabla_a K_b - \epsilon_{ab} \mu \\ \nabla_a \mu - \left(P^b{}_a + \frac{1}{2} \beta \delta^b{}_a \right) K_b + \mu \theta_a \end{pmatrix}.
\]

- Compute the curvature of \(D \), restrict its holonomy so that parallel sections \(\Psi = (K_a, \mu) \) exist. Find obstructions.
Integrability conditions for $D\Psi = 0$: $\mathcal{F}\Psi = 0$ where $\mathcal{F} = [D, D]$.

If $\mathcal{F} = 0$ then ∇ is projectively flat. Otherwise differentiate:

$$(DF)_{\Psi} = 0,$$
$$(DDF)_{\Psi} = 0,$$...

After K steps $\mathcal{F}^K_{\Psi} = 0$, where \mathcal{F}^K is a matrix of linear blue eqn.

Stop when $\text{rank}(\mathcal{F}^K) = \text{rank}(\mathcal{F}^{K+1})$.

The space of parallel sections has dimension $(3 - \text{rank}(\mathcal{F}^K))$.

Set $L_b \equiv \epsilon_{cd} \nabla^c P_{db}$ and define $F_a = \frac{1}{3} \epsilon_{ab} (L_b - \epsilon_{cd} \nabla^b B_{cd})$, $N_a = -F_a + \epsilon_{bc} \nabla^a B_{bc}$, $M_{ab} = \frac{1}{3} \epsilon_{bc} \epsilon_{de} (\nabla^a Y_{dec} - \nabla^a \nabla^c B_{de}) + \beta P_{ba} + \frac{1}{2} \beta^2 \delta_{ba}$, $I_{N} = \epsilon_{cd} \epsilon_{be} M_{ec} (N_b F_d - \frac{1}{2} \beta M_{bd})$.

Dunajski (DAMTP, Cambridge)
Affine connections, hydrodynamic integrability
October 2015
Integrability conditions for $D\Psi = 0$: $\mathcal{F}\Psi = 0$ where $\mathcal{F} = [D, D]$.
If $\mathcal{F} = 0$ then ∇ is projectively flat. Otherwise differentiate:
$(DF)\Psi = 0, (DDF)\Psi = 0, \ldots$
Integrability conditions for $D\Psi = 0$: $\mathcal{F}\Psi = 0$ where $\mathcal{F} = [D, D]$.

If $\mathcal{F} = 0$ then ∇ is projectively flat. Otherwise differentiate:

$(DF)\Psi = 0, (DDF)\Psi = 0, \ldots$

After K steps $\mathcal{F}_K\Psi = 0$, where \mathcal{F}_K is a matrix of linear blue eqn.
Integrability conditions for $D\Psi = 0$: $\mathcal{F}\Psi = 0$ where $\mathcal{F} = [D, D]$.

If $\mathcal{F} = 0$ then ∇ is projectively flat. Otherwise differentiate:

$$(DF)\Psi = 0, (DDF)\Psi = 0, \ldots$$

After K steps $\mathcal{F}_K \Psi = 0$, where \mathcal{F}_K is a matrix of linear blue eqn.

Stop when rank $(\mathcal{F}_K) = \text{rank} (\mathcal{F}_{K+1})$. The space of parallel sections has dimension $(3 - \text{rank}(\mathcal{F}_K))$.
Integrability conditions for $D\Psi = 0$: $\mathcal{F}\Psi = 0$ where $\mathcal{F} = [D, D]$.

If $\mathcal{F} = 0$ then ∇ is projectively flat. Otherwise differentiate:

$$(DF)\Psi = 0, (DDF)\Psi = 0, \ldots$$

After K steps $\mathcal{F}_K \Psi = 0$, where \mathcal{F}_K is a matrix of linear blue eqn.

Stop when rank $(\mathcal{F}_K) = \text{rank}(\mathcal{F}_{K+1})$. The space of parallel sections has dimension $(3 - \text{rank}(\mathcal{F}_K))$.

Set $L_b \equiv \epsilon^{cd}\nabla_c P_{db}$ and define

$$F^a = \frac{1}{3} \epsilon^{ab}(L_b - \epsilon^{cd}\nabla_b B_{cd}), \quad N_a = -F_a + \epsilon^{bc}\nabla_a B_{bc}$$

$$M_a^b = \frac{1}{3} \epsilon^{bc} \epsilon^{de}(\nabla_a Y_{dec} - \nabla_a \nabla_c B_{de}) + \beta P^b_a + \frac{1}{2} \beta^2 \delta^b_a,$$

$$I_N = \epsilon_{cd} \epsilon^{be} M_e^c \left(N_b F^d - \frac{1}{2} \beta M_b^d \right).$$
Theorem (Contatto, MD) The necessary condition for a C^4 torsion–free affine connection ∇ on a surface Σ to admit a linear first integral is the vanishing, on Σ, of invariants I_N and I_S respectively. For any point $p \in \Sigma$ there exists a neighbourhood $U \subset \Sigma$ of p such that conditions $I_N = I_S = 0$ on U are sufficient for the existence of a first integral on U. There exist precisely two independent linear first integrals on U if and only if the tensor

$$T_a^b \equiv N_a F^b - \beta M_a^b.$$

vanishes and the skew part of the Ricci tensor of ∇ is non–zero on U. There exist three independent first integrals on U if and only if the connection is projectively flat and its Ricci tensor is symmetric.
If ∇ is a Levi–Civita connection of some metric on Σ with scalar curvature R, then (Darboux 1887)

$$I_N := \star \frac{1}{432} dR \wedge d(|\nabla R|^2), \quad I_S := \star dR \wedge d(\triangle R).$$
Connections with two first integrals

- If ∇ is a Levi–Civita connection of some metric on Σ with scalar curvature R, then \textbf{(Darboux 1887)}

$$I_N := \star \frac{1}{432} dR \wedge d(|\nabla R|^2), \quad I_S := \star dR \wedge d(\triangle R).$$

- A Levi–Civita connection can not admit precisely two local first integrals. A non–metric connection can:

\textbf{Theorem (Contatto, MD).} Let ∇ be an affine connection on a surface Σ which admits exactly two non–proportional linear first integrals which are independent at some point $p \in \Sigma$. Coordinates $X^a = (X, Y)$ can be chosen on an open set $U \subset \Sigma$ containing p such that

$$\Gamma_{12}^1 = \Gamma_{21}^1 = \frac{c}{2}, \quad \Gamma_{11}^2 = \frac{P_X}{Q}, \quad \Gamma_{12}^2 = \Gamma_{21}^2 = \frac{P_Y + Q_X - cP}{2Q}, \quad \Gamma_{22}^2 = \frac{Q_Y}{Q},$$

and all other components vanish, where c is a constant equal to 0 or 1, and (P, Q) are arbitrary functions of (X, Y).
One–dimensional systems of hydrodynamic type

\[\frac{\partial X^1}{\partial t} = \lambda^1(X^1, X^2) \frac{\partial X^1}{\partial x}, \quad \frac{\partial X^2}{\partial t} = \lambda^2(X^1, X^2) \frac{\partial X^2}{\partial x}. \] \((HT)\)
Hamiltonian Systems of Hydrodynamic Type

- One-dimensional systems of hydrodynamic type
 \[\frac{\partial X^1}{\partial t} = \lambda^1(X^1, X^2) \frac{\partial X^1}{\partial x}, \quad \frac{\partial X^2}{\partial t} = \lambda^2(X^1, X^2) \frac{\partial X^2}{\partial x}. \]
 \((HT) \)

- Local hydrodynamic Hamiltonian formulation
 \[\frac{\partial X^a}{\partial t} = \Omega^{ab} \frac{\delta H}{\delta X^b}, \]
 where
 \[H[X^1, X^2] = \int_{\mathbb{R}} \mathcal{H}(X^1, X^2) dx, \quad \Omega^{ab} = g^{ab} \frac{\partial}{\partial x} + b^a_c \frac{\partial X^c}{\partial x}. \]
Hamiltonian Systems of Hydrodynamic Type

- One–dimensional systems of hydrodynamic type
 \[\frac{\partial X^1}{\partial t} = \lambda^1(X^1, X^2) \frac{\partial X^1}{\partial x}, \quad \frac{\partial X^2}{\partial t} = \lambda^2(X^1, X^2) \frac{\partial X^2}{\partial x}. \]
 \[(HT) \]

- Local hydrodynamic Hamiltonian formulation
 \[\frac{\partial X^a}{\partial t} = \Omega^{ab} \frac{\delta H}{\delta X^b}, \]
 where
 \[H[X^1, X^2] = \int_{\mathbb{R}} H(X^1, X^2) \, dx, \quad \Omega^{ab} = g^{ab} \frac{\partial}{\partial x} + b^{ab}_c \frac{\partial X^c}{\partial x}. \]

- Poisson bracket \(\{ F, G \} = \int_{\mathbb{R}} \frac{\delta F}{\delta X^a} \left(g^{ab} \frac{\partial}{\partial x} + b^{ab}_c \frac{\partial X^c}{\partial x} \right) \frac{\delta G}{\delta X^b} \, dx \)
 - Skew-symmetry+Jacobi identity: \(g^{ab} \) is a flat metric with Christoffel symbols \(\gamma^c_{ab} \) defined by \(b^{ab}_c = -g^{ad} \gamma^b_{dc} \).
Theorem 3 (Contatto, MD). The hydrodynamic type system \((HT)\) admits one, two or three Hamiltonian formulations with hydrodynamic Hamiltonians if and only if the affine torsion–free connection \(\nabla\) defined by its non–zero components

\[
\begin{align*}
\Gamma_{11}^1 &= \partial_1 \ln A - 2B, \\
\Gamma_{22}^2 &= \partial_2 \ln B - 2A, \\
\Gamma_{12}^1 &= -\left(\frac{1}{2} \partial_2 \ln A + A\right), \\
\Gamma_{12}^2 &= -\left(\frac{1}{2} \partial_1 \ln B + B\right),
\end{align*}
\]

where \(A = \frac{\partial_2 \lambda^1}{\lambda^2 - \lambda^1}, \quad B = \frac{\partial_1 \lambda^2}{\lambda^1 - \lambda^2}, \quad \text{and} \quad \partial_a = \partial/\partial X^a\)

admits one, two or three independent linear first integrals respectively.
The connection from Theorem 3 is generically not metric but is metrisable by the metric

\[h = AB \, dX \otimes dY, \quad X^a = (X, Y). \]

The unparametrised geodesics of \(h \) and of \(\nabla \) conicide, and are integral curves of a 2nd order ODE

\[Y''' = (\partial_X Z)Y' - (\partial_Y Z)(Y')^2, \quad \text{where} \quad Z \equiv \ln (AB), \]
The connection from Theorem 3 is generically not metric but is metrisable by the metric

\[h = AB \, dX \otimes dY, \quad X^a = (X, Y). \]

The unparametrised geodesics of \(h \) and of \(\nabla \) conicide, and are integral curves of a 2nd order ODE

\[Y'' = (\partial_X Z)Y' - (\partial_Y Z)(Y')^2, \quad \text{where} \quad Z \equiv \ln(AB), \]

In the tri–Hamiltonian case (Ferapontov (1991)) the connection from Theorem 3 has symmetric Ricci tensor, and is projectively flat. Equivalently, the metric \(h \) has constant Gaussian curvature i.e.

\[(AB)^{-1} \partial_1 \partial_2 \ln(AB) = \text{const}. \]
The connection from Theorem 3 is generically not metric but is metrisable by the metric
\[h = AB \, dX \odot dY, \quad X^a = (X, Y). \]

The unparametrised geodesics of \(h \) and of \(\nabla \) conicide, and are integral curves of a 2nd order ODE
\[Y'' = (\partial_X Z)Y' - (\partial_Y Z)(Y')^2, \quad \text{where} \quad Z \equiv \ln(AB), \]

In the tri–Hamiltonian case (Ferapontov (1991)) the connection from Theorem 3 has symmetric Ricci tensor, and is projectively flat. Equivalently, the metric \(h \) has constant Gaussian curvature i. e.
\[(AB)^{-1} \partial_1 \partial_2 \ln(AB) = \text{const}. \]

Example: HT system with \(\lambda^1 = -\lambda^2 = (X - Y)^n(X + Y)^m \). Always bi-Hamiltonian. Tri-Hamiltonian iff \(nm(n^2 - m^2) = 0 \).
Two–dimensional Frobenius Manifolds

- Two–dimensional Frobenius manifolds: coordinates $u^a = (u, v)$, a function $F: U \to \mathbb{R}$, associative structure constants $C_{abc}^a := \eta^{ad}C_{bcd}$

$$C = \frac{\partial^3 F}{\partial u^a \partial u^b \partial u^c} du^a du^b du^c, \quad e = \frac{\partial}{\partial u^1}, \quad \eta = \frac{\partial^3 F}{\partial u^1 \partial u^a \partial u^b} du^a du^b.$$
Two-dimensional Frobenius Manifolds

- Two-dimensional Frobenius manifolds: coordinates $u^a = (u, v)$, a function $F : U \to \mathbb{R}$, associative structure constants $C^a_{bc} := \eta^{ad}C_{bcd}$

$$C = \frac{\partial^3 F}{\partial u^a \partial u^b \partial u^c} du^a du^b du^c, \quad e = \frac{\partial}{\partial u^1}, \quad \eta = \frac{\partial^3 F}{\partial u^1 \partial u^a \partial u^b} du^a du^b.$$

- (Dubrovin (1996), Hitchin (1997)) $F(u, v) = \frac{1}{2} u^2 v + f(v)$, where

$$f = v^k, \quad k \neq 0, 2, \quad f = v^2 \ln v, \quad f = \ln v, \quad f = e^{2v}.$$
Two–dimensional Frobenius Manifolds

- Two–dimensional Frobenius manifolds: coordinates \(u^a = (u, v) \), a function \(F : U \rightarrow \mathbb{R} \), associative structure constants \(C^a_{bc} := \eta^{ad} C_{bcd} \),
 \[
 C = \frac{\partial^3 F}{\partial u^a \partial u^b \partial u^c} du^a du^b du^c, \quad e = \frac{\partial}{\partial u^1}, \quad \eta = \frac{\partial^3 F}{\partial u^1 \partial u^a \partial u^b} du^a du^b.
 \]

- (Dubrovin (1996), Hitchin (1997)) \(F(u, v) = \frac{1}{2} u^2 v + f(v) \), where
 \[
 f = v^k, \quad k \neq 0, 2, \quad f = v^2 \ln v, \quad f = \ln v, \quad f = e^{2v}.
 \]
Two–dimensional Frobenius Manifolds

- Two–dimensional Frobenius manifolds: coordinates $u^a = (u, v)$, a function $F : U \rightarrow \mathbb{R}$, associative structure constants $C^a_{bc} := \eta^{ad}C_{bcd}$

$$C = \frac{\partial^3 F}{\partial u^a \partial u^b \partial u^c} du^a du^b du^c, \quad e = \frac{\partial}{\partial u^1}, \quad \eta = \frac{\partial^3 F}{\partial u^1 \partial u^a \partial u^b} du^a du^b.$$

- (Dubrovin (1996), Hitchin (1997)) $F(u, v) = \frac{1}{2} u^2 v + f(v)$, where

$$f = v^k, \ k \neq 0, 2, \quad f = v^2 \ln v, \quad f = \ln v, \quad f = e^{2v}.$$

- Hydrodynamic type system with Riemann invariants

$$X = u + \int \sqrt{f'''(v)} dv, \quad Y = u - \int \sqrt{f'''(v)} dv.$$
Two–dimensional Frobenius Manifolds

- Two–dimensional Frobenius manifolds: coordinates $u^a = (u, v)$, a function $F : U \to \mathbb{R}$, associative structure constants $C^a_{bc} := \eta^{ad}C_{bcd}$

$$C = \frac{\partial^3 F}{\partial u^a \partial u^b \partial u^c} du^a du^b du^c, \quad e = \frac{\partial}{\partial u^1}, \quad \eta = \frac{\partial^3 F}{\partial u^1 \partial u^a \partial u^b} du^a du^b.$$

- (Dubrovin (1996), Hitchin (1997)) $F(u, v) = \frac{1}{2} u^2 v + f(v)$, where $f = v^k, k \neq 0, 2, f = v^2 \ln v, f = \ln v, f = e^{2v}$.

- Hydrodynamic type system with Riemann invariants

$$X = u + \int \sqrt{f'''(v)} dv, \quad Y = u - \int \sqrt{f'''(v)} dv.$$

- Theorem 3: Tri–hamiltonian with 3-parameter family of flat metrics

$$g(c_1, c_2, c_3) = \lambda^{-1} \left(\frac{dX^2}{c_1 + c_2 X + c_3 X^2} - \frac{dY^2}{c_1 + c_2 Y + c_3 Y^2} \right).$$
Two–dimensional Frobenius Manifolds

- Two–dimensional Frobenius manifolds: coordinates $u^{\alpha} = (u, v)$, a function $F : U \rightarrow \mathbb{R}$, associative structure constants $C_{\alpha \beta \gamma} : = \eta^{\alpha \delta} C_{\delta \beta \gamma}$

\[C = \frac{\partial^3 F}{\partial u^a \partial u^b \partial u^c} du^a du^b du^c, \quad e = \frac{\partial}{\partial u^1}, \quad \eta = \frac{\partial^3 F}{\partial u^1 \partial u^a \partial u^b} du^a du^b. \]

- (Dubrovin (1996), Hitchin (1997)) $F(u, v) = \frac{1}{2} u^2 v + f(v)$, where

 \[
 f = v^k, \quad k \neq 0, 2, \quad f = v^2 \ln v, \quad f = \ln v, \quad f = e^{2v}.
 \]

- Hydrodynamic type system with Riemann invariants

\[
X = u + \int \sqrt{f'''(v)} dv, \quad Y = u - \int \sqrt{f'''(v)} dv.
\]

- Theorem 3: Tri–hamiltonian with 3-parameter family of flat metrics

\[
g(c_1, c_2, c_3) = \lambda^{-1} \left(\frac{dX^2}{c_1 + c_2 X + c_3 X^2} - \frac{dY^2}{c_1 + c_2 Y + c_3 Y^2} \right),
\]

- $\eta \equiv g(1, 0, 0)$, $I \equiv g(0, 1, 0)$ (intersection form), $J \equiv g(0, 0, 1)$ s. t. $J_{ab} = I_{ac} I_{bd} \eta^{cd}$ (Romano 2014).
A connection ∇ on a compact surface Σ is *Zoll* if its unparametrised geodesics are simple closed curves.
Zoll Connections

- A connection ∇ on a compact surface Σ is Zoll if its unparametrised geodesics are simple closed curves.
- Axisymmetric Zoll metrics on $\Sigma = S^2$

$$h = (F - 1)^2 dX^2 + \sin^2 X dY^2, \quad F = F(X), \quad F : [0, \pi] \to [0, 1]$$

where $F(0) = F(\pi) = 0$ and $F(\pi - X) = -F(X)$.
Zoll Connections

- A connection ∇ on a compact surface Σ is Zoll if its unparametrised geodesics are simple closed curves.
- Axisymmetric Zoll metrics on $\Sigma = S^2$
 \[
 h = (F - 1)^2 dX^2 + \sin^2 X dY^2, \quad F = F(X), \quad F : [0, \pi] \to [0, 1]
 \]
 where $F(0) = F(\pi) = 0$ and $F(\pi - X) = -F(X)$.
- Non-metric Zoll connection with a linear first integral
 \[
 \Gamma^1_{11} = \frac{F'}{F - 1} - 2 \cot X, \quad \Gamma^1_{22} = -\frac{(H^2 + 1) \sin X \cos X}{(F - 1)^2}
 \]
 \[
 \Gamma^1_{12} = \Gamma^1_{21} = \frac{1}{2} \frac{H' \sin X \cos X - 2H}{\cos X (F - 1)}, \quad H = H(X)
 \]
 where $H(0) = H(\pi) = H(\pi/2) = 0$, and $H(\pi - X) = H(X)$.
Zoll Connections

- A connection ∇ on a compact surface Σ is Zoll if its unparametrised geodesics are simple closed curves.
- Axisymmetric Zoll metrics on $\Sigma = S^2$

$$h = (F - 1)^2 dX^2 + \sin^2 X dY^2, \quad F = F(X), \quad F : [0, \pi] \rightarrow [0, 1]$$

where $F(0) = F(\pi) = 0$ and $F(\pi - X) = -F(X)$.
- Non–metric Zoll connection with a linear first integral

$$\Gamma^1_{11} = \frac{F'}{F - 1} - 2 \cot X, \quad \Gamma^1_{22} = -\frac{(H^2 + 1) \sin X \cos X}{(F - 1)^2}$$

$$\Gamma^1_{12} = \Gamma^1_{21} = \frac{1}{2} \frac{H' \sin X \cos X - 2H}{\cos X (F - 1)}, \quad H = H(X)$$

where $H(0) = H(\pi) = H(\pi/2) = 0$, and $H(\pi - X) = H(X)$.
- Exactly two linear first integrals? Find that $T^a_b = 0$ if

$$F = 1 + c(H^2 + 1) \cot X, \quad c \in \mathbb{R}$$

but the boundary conditions do not hold ... (open problem).
Thank You!