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Outline

1 Main problems
How to get all stationary-action principles for a given equation of
continuum mechanics?
How stationary-action principles in the Eulerian description are related
to ones in the Lagrangian description?

2 Main results (spoiler)
Local symplectic structures of equations of continuum mechanics can
be regarded as nontrivial stationary-action principles.
Lagrangian variables are nonlocal variables in a di�erential covering,
hence one can lift symplectic structures from the Eulerian description
to the Lagrangian one.
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Equations in an extended Kovalevskaya form

Most systems of equations in continuum mechanics can be written in an
extended Kovalevskaya form. By a system of equations in an extended
Kovalevskaya form we shall mean a system of the following kind

F = 0 , where F = ubt − f .

Here

u = (u1, . . . , um)T is a vector of dependent variables;

x = (x1, . . . , xn−1, xn = t)T is a vector of independent variables;

ubt is a vector of derivatives (u1b1t , . . . , u
m
bmt

)T , where bi are positive
integers (orders of derivatives);

vector-function f = (f 1, . . . , f m)T depends on x , u and derivatives up
to some �nite order. We also assume that f does not depend on uibi t
and their derivatives.
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Geometrical point of wiev on an extended Kovalevskaya form

From geometrical point of wiev:

independent variables (x1, . . . , xn−1) are local coordinates on a
smooth manifold X , dimX = n − 1;

t = xn is a global coordinate on a real line R;
dependent variables (u1, . . . , um) are local coordinates along the �bres
of a vector bundle

η : E → X .

We assume that either b1 = . . . = bm, or η has a trivial structure
group;

K. Druzhkov (Lomonosov MSU) Symplectic structures and variational principles 14 December 2021 4 / 26



Geometrical point of wiev on an extended Kovalevskaya form

From geometrical point of wiev:

independent variables (x1, . . . , xn−1) are local coordinates on a
smooth manifold X , dimX = n − 1;

t = xn is a global coordinate on a real line R;
dependent variables (u1, . . . , um) are local coordinates along the �bres
of a vector bundle

η : E → X .

We assume that either b1 = . . . = bm, or η has a trivial structure
group;

K. Druzhkov (Lomonosov MSU) Symplectic structures and variational principles 14 December 2021 4 / 26



Geometrical point of wiev on an extended Kovalevskaya form

From geometrical point of wiev:

independent variables (x1, . . . , xn−1) are local coordinates on a
smooth manifold X , dimX = n − 1;

t = xn is a global coordinate on a real line R;
dependent variables (u1, . . . , um) are local coordinates along the �bres
of a vector bundle

η : E → X .

We assume that either b1 = . . . = bm, or η has a trivial structure
group;

K. Druzhkov (Lomonosov MSU) Symplectic structures and variational principles 14 December 2021 4 / 26



Geometrical point of wiev on an extended Kovalevskaya form

ubt and f are sections of some bundle, which can be described as follows:

denote by M and N products M = X × R, N = E × R;
consider a bundle π = (η, 1R)

π : N → M ;

denote natural projection from the in�nite jets to M by π∞:

π∞ : J∞(π)→ M;

Let κ(π) be the module of sections of the pullback:

κ(π) = Γ(π∗∞(π)) .

Then ubt , f ,F ∈ κ(π).
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In�nite prolongation

Let α be a multi-index α = (α1, . . . , αn), where all αi are
non-negative integers.
We shall use the following multi-index notations:

αx = α1x
1 + . . .+ αnx

n = αix
i , |α| =

∑
i

αi ,

Dαx = Dx1
α1 ◦ . . . ◦ Dxn

αn , uiαx = Dαx(ui ),

where Dx i are total derivatives.

Let E ⊂ J∞(π) be the in�nite prolongation of the system of equations
F = 0, i.e.

E : Dαx(uibi t − f i ) = 0 for all α and i = 1, . . . ,m . (1)

Further we consider only regular systems of equations of the form (1)
with trivial de Rham cohomology group Hn+1

dR (E).
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Admissible stationary-action principles

Denote

an algebra of smooth functions on J∞(π) by F(π),

an algebra of horizontal n-forms on J∞(π) by Λn
h(π).

Also we shall use a notation κ̂(π) for the following module

κ̂(π) = HomF(π)(κ(π),Λn
h(π)) .

Admissible (global) stationary-action principles for E amount to admissible
variarional operators, i.e. di�erential operators in total derivatives

A : κ(π)→ κ̂(π) ,

such that for some Lagrangians L ∈ Λn
h(π) the following relation

A(F ) = E(L)

holds. Here E is the Euler operator (variational derivative).
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Basic notations and de�nitions

Denote the universal linearization operator for F by lF . Here

lF : κ(π)→ κ(π) .

For an element ϕ ∈ κ(π) we have lF (ϕ) = Eϕ(F ), where Eϕ is the
corresponding evolutionary vector �eld on J∞(π).

In adapted local coordinates

ϕ = (ϕ1, . . . , ϕm)T

Eϕ = ϕi∂ui + Dx j (ϕ
i )∂ui

xj
+ . . . = Dαx(ϕi )∂uiαx

lF (ϕ)k = lF
k
i (ϕi ) =

∂F k

∂uiαx
Dαx(ϕi ) .

Denote the restriction of lF to E by lE .
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Symplectic structures as closed variational 2-forms

Motivation

As we will see later, the problem of classi�cation of all admissible
variational operators for E is (almost) precisely the problem of classi�cation
of all admissible (local) symplectic structures for E .

Let us recall the de�nition of a symplectic structure of a system of
equations E .

A symplectic structure of a system of equations E is a closed
variational 2-form on E , i.e., an element of the kernel of the
variational di�erential

δ : E 2, n−1
1 (E)→ E

3, n−1
1 (E) .

Here Ep, n−1
1 (E) are groups of variational p-forms from the

A. Vinogradov C-spectral sequence.
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Symplectic structures as classes of operators

Variational 2-forms of a system E can also be described as operators
in total derivatives ∆: κ(E)→ κ̂(E) which satisfy the relation

∆∗ ◦ lE = l ∗E ◦∆ , (2)

modulo the operators of the form ∇ ◦ lE , where ∇ = ∇∗. Here the
operator ∆∗ is formally adjoint to the operator ∆.

Let us also recall

Noether theorem

Every symplectic structure of E determines a mapping from symmetries of
E to its variational 1-forms E 1, n−1

1 (E).
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Variational operators and symplectic structures

The relation between symplectic structures and variational operators is
based on two results

Every admissible variational operator for E determines a symplectic
structure (possibly trivial). Namely, ∆ = A∗|E satisfy the desired
relation

∆∗ ◦ lE = l ∗E ◦∆ .

The corresponding variational 2-form is closed.

Every symplectic structure for E can be obtained from a variational
operator at least locally (it follows from I. Khavkine results and quite a
simple analysis of A. Vinogradov two-line theorem).

On trivial variational operators

If a variational operator determines a trivial symplectic structure, then the
corresponding Noether mapping is also trivial. We will not be interested in
such variational operators.
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Restoring of an action functional from a symplectic structure

So, nontrivial symplectic structures for E can be regarded (at least locally)
as its nontrivial variational principles. Now we only need for a canonical
way to restore a local action functional from a symplectic structure.

Speci�city of systems in extended Kovalevskaya form

It turns out that there is a way to restore a global variational operator from
a symplectic structure of E . If extended Kovalevskaya form is a canonical
form of E , then this way is also canonical.

The key idea is to identify symplectic structures for E with conservation
laws of a special form for another system of equations.

To this end we introduce another equation F ′ = 0. Informally speaking, the
di�erence between F and F ′ amounts to our assumption that there is
another one independent variable a ∈ R for F ′.
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Construction of another one bundle π′

Lets consider a bundle π′ = (π, 1R),

π′ : N × R→ M × R

and denote a global coordinate on this real line R by a.

Consider a projection prN : N × R→ N, which forgets about a. Assume
that a pair (P ′, L′) determines a 1-jet of a section of π′. Here P ′ ∈ N × R,
L′ ⊂ TP′(N × R). Then a pair (prN(P ′), prN∗(L

′)) determines 1-jet of a
section of π. Thus, we have a mapping
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System of equations E ′

For a section ϕ ∈ κ(π) we can de�ne ϕ′ ∈ κ(π′) as a unique section, such
that the square commutes

π′∞
∗(N × R)

g // π∞
∗(N)

J∞(π′)

ϕ′

OO

h // J∞(π)

ϕ

OO

We denote the in�nite prolongation of a system F ′ = 0 by E ′.
Dimension of the base of π′ is n + 1, hence

κ̂(π′) = HomF(π′)(κ(π′),Λn+1
h (π′)) .

If ψ ∈ κ̂(π) then we de�ne ψ′ ∈ κ̂(π′) as a unique element, such that the
relation

da ∧ h∗(〈ψ,ϕ〉) = 〈ψ′, ϕ′〉 (3)

holds.
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Variational principles for E and conservation laws of E ′

Using these two natural mappings κ(π)→ κ(π′), κ̂(π)→ κ̂(π′) and an
operator A : κ(π)→ κ̂(π), one can de�ne a unique operator
A′ : κ(π′)→ κ̂(π′), such that the square commutes

κ(π)

A
��

// κ(π′)

A′

��
κ̂(π) // κ̂(π′)

Now we can formulate the following important lemma

Lemma

ψ ∈ ImE if and only if 〈ψ′, ua〉 ∈ Im dh

This lemma and the Green identity imply the following corollary

Corollary

A(F ) ∈ ImE if and only if 〈A′∗(ua),F ′〉 ∈ Im dh
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Variational principles for E and conservation laws of E ′

Corollary

A(F ) ∈ ImE if and only if 〈A′∗(ua),F ′〉 ∈ Im dh

Therefore, A is a nontrivial variational operator for E if and only if A′∗(ua)
is a characteristic of a nontrivial conservation law for E ′. Notice that
F ′ = 0 is also a system in the extended Kovalevskaya form.

According to L. Martinez Alonso lemma each conservation law of a system
in an extended Kovalevskaya form has a characteristic of a simplest form
(i.e. components of such a characteristic are independent of variables ubt
and their derivatives).
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Main theorem

Kovalevskaya form of a system F = 0 also allows us to extend an operator
(in total derivatives) of the form ∆: κ(E)→ κ̂(E) to an operator of the
form ∆̃ : κ(π)→ κ̂(π) in a coordinate-naive way. Here coordinate-naive
way is a way to identify local coordinates on J∞(π), except for coordinates
of the form Dαx(uibi t), with local coordinates on E .
Using nontationDαx = Dαx |E and applying L. Martinez Alonso lemma we
obtain the following result

Main theorem

A symplectic structure of a system of equations E in an extended
Kovalevskaya form (with Hn+1

dR (E) = 0) can be represented by a unique
operator ∆: κ(E)→ κ̂(E), such that in local coordinates ∆ has the form

∆(ϕ)i = ∆α
ik Dαx(ϕk) , ∆α

ik = 0 only if αn < bk . (4)

An operator ∆̃∗ (adjoint to the corresponding coordinate-naive extension)
is a variational operator for a system E .
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Examples

Consider the stationary boundary layer equations

uyy − uux − vuy = 0 ,

vy + ux = 0 .
(5)

Then the linearization operator is

lE =

(
D

2
y − uDx − ux − vDy −uy

Dx Dy

)
.

Every symplectic sturucture of (5) can be represented by a unique operator
of the form (4):

∆ =

(
∆

(j ,0)
11 D jx + ∆

(j ,1)
11 D jx+y ∆

(j ,0)
12 D jx

∆
(j ,0)
21 D jx + ∆

(j ,1)
21 D jx+y ∆

(j ,0)
22 D jx

)
.

However it is possible to show that in this case there is no nonzero
solutions to the equation

∆∗ ◦ lE = l ∗E ◦∆ .

K. Druzhkov (Lomonosov MSU) Symplectic structures and variational principles 14 December 2021 18 / 26



Examples

Consider the stationary boundary layer equations

uyy − uux − vuy = 0 ,

vy + ux = 0 .
(5)

Then the linearization operator is

lE =

(
D

2
y − uDx − ux − vDy −uy

Dx Dy

)
.

Every symplectic sturucture of (5) can be represented by a unique operator
of the form (4):

∆ =

(
∆

(j ,0)
11 D jx + ∆

(j ,1)
11 D jx+y ∆

(j ,0)
12 D jx

∆
(j ,0)
21 D jx + ∆

(j ,1)
21 D jx+y ∆

(j ,0)
22 D jx

)
.

However it is possible to show that in this case there is no nonzero
solutions to the equation

∆∗ ◦ lE = l ∗E ◦∆ .

K. Druzhkov (Lomonosov MSU) Symplectic structures and variational principles 14 December 2021 18 / 26



Examples

Consider the stationary boundary layer equations

uyy − uux − vuy = 0 ,

vy + ux = 0 .
(5)

Then the linearization operator is

lE =

(
D

2
y − uDx − ux − vDy −uy

Dx Dy

)
.

Every symplectic sturucture of (5) can be represented by a unique operator
of the form (4):

∆ =

(
∆

(j ,0)
11 D jx + ∆

(j ,1)
11 D jx+y ∆

(j ,0)
12 D jx

∆
(j ,0)
21 D jx + ∆

(j ,1)
21 D jx+y ∆

(j ,0)
22 D jx

)
.

However it is possible to show that in this case there is no nonzero
solutions to the equation

∆∗ ◦ lE = l ∗E ◦∆ .

K. Druzhkov (Lomonosov MSU) Symplectic structures and variational principles 14 December 2021 18 / 26



Examples

Consider the stationary boundary layer equations

uyy − uux − vuy = 0 ,

vy + ux = 0 .
(5)

Then the linearization operator is

lE =

(
D

2
y − uDx − ux − vDy −uy

Dx Dy

)
.

Every symplectic sturucture of (5) can be represented by a unique operator
of the form (4):

∆ =

(
∆

(j ,0)
11 D jx + ∆

(j ,1)
11 D jx+y ∆

(j ,0)
12 D jx

∆
(j ,0)
21 D jx + ∆

(j ,1)
21 D jx+y ∆

(j ,0)
22 D jx

)
.

However it is possible to show that in this case there is no nonzero
solutions to the equation

∆∗ ◦ lE = l ∗E ◦∆ .

K. Druzhkov (Lomonosov MSU) Symplectic structures and variational principles 14 December 2021 18 / 26



Examples

Consider the Potential Korteweg-de Vries equation

ut = 3u2x + uxxx . (6)

It admits symplectic structure [Dorfman] generated by the operator

∇ = 2uxx + 4uxDx + D
3
x .

There are two di�erent ways to represent equation (6) in an extended
Kovalevskaya form. Lets consider an unusual representation:

uxxx = ut − 3u2x ,

i.e. let local coordinates on J∞(2, 1) be local coordinates on (6), except
uxxx and its derivatives. Then ∇ is equivalent to the operator

∆ = Dt − 2uxDx + 2uxx .

According to the previous theorem, such choise of local coordinates on (6)
leads to the following �rst-order variational operator

A = ∆̃∗ = −Dt + 2uxDx + 4uxx .
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Part II. Eulerian and Lagrangian descriptions

This part of investigation is joint with A.V. Aksenov.

Lets consider the mass conservation law in continuum mechanics,

ρt + (uρ)x + (vρ)y + (wρ)z = 0 . (7)

Here

v = u∂x + v∂y + w∂z is the velocity �eld;
ρ is the mass density. Below we assume that ρ > 0.

Choosing suitable nonlocal variables, one can introduce a potential for the
mass conservation law, which satis�es the following relation:

ρ dx ∧ dy ∧ dz − uρ dt ∧ dy ∧ dz + vρ dt ∧ dx ∧ dz − wρ dt ∧ dx ∧ dy =

= dh(ξ1dhξ
2 ∧ dhξ3) = dhξ

1 ∧ dhξ2 ∧ dhξ3 .
(8)

Relation (8) is equivalent to the following system of equations:

ρ = det
(Dξ
Dx

)
, ξit + uξix + vξiy + wξiz = 0, i = 1, 2, 3 . (9)
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Lagrangian description as di�erential covering

Conditions (9) show that functions ξi (t, x , y , z) are Lagrangian variables.

Remark

Transformations that preserve the volume dξ1 ∧ dξ2 ∧ dξ3 in the
(ξ1, ξ2, ξ3)-space form the symmetry group for equations in the Lagrangian
variables.

Since the only consistency condition for the system (9) is the mass
conservation law, it follows that, for any system of equations in the
Eulerian variables, the potential (8) determines its di�erential covering.

One can choose x , y , z as new dependent variables for a covering
system and obtain its usual Lagrangian representation.

The description of Lagrangian variables as nonlocal variables in a
di�erential covering allows us to lift symplectic structures from the
Eulerian description to the Lagrangian one.
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Also main theorem

Recall that a system of equations E is l -normal if the condition

∇ ◦ lE = 0 (10)

implies ∇ = 0. All systems in an extended Kovalevskaya form are l -normal.
We shall say that a system of equations F = 0 is variational if for some
Lagrangian L the relation

F = E(L) (11)

holds. Let

F = 0 be a system of di�erential equations in Eulerian variables;

F̃ = 0 be the corresponding system in Lagrangian variables.

Denote the covering from Ẽ to E by τ .

Also main theorem

If a system of equations Ẽ is an l -normal variational system, then the
corresponding symplectic structure of Ẽ is not a lift of a symplectic
structure of E .
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Proof

Proof.

Consider the algebra τ∗-sym Ẽ of τ -projectable symmetries of Ẽ .
Then, for any variational 2-form ω ∈ E

2, n−1
1 (E), the following diagram

is commutative:

τ∗-sym Ẽ

τ∗

��

τ∗(ω) // E 1, n−1
1 (Ẽ)

sym E ω // E 1, n−1
1 (E)

τ∗

OO

The relation
τ∗(ω)(ϕ) = 0 (12)

holds for any symmetry ϕ ∈ τ∗-sym Ẽ , which acts in a �ber of τ .

Then τ∗(ω) can not contain the identity operator (as the equivalence class
of operators).
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Variational systems in Lagrangian description

This theorem shows that, if an l -normal system of equations in Lagrangian
variables is variational, then the corresponding variational principle has no
analogs in the Eulerian variables.

Remark

A similar result holds for any covering from an l -normal system of
di�erential equations such that the �ber symmetry algebra is nontrivial.

In particular, it holds true for coverings from l -normal systems of
di�erential equations which are based on the introduction of potentials for
conservation laws.

Finally, let's look at last example.
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The last but not the least

Example

Equations of motion of a polytropic gas (p = Cργ) in the Lagrangian
variables are Euler-Lagrange equations for the Lagrangian

L =
(x2t + y2t + z2t

2
− V − U

)
dt ∧ dξ1 ∧ dξ2 ∧ dξ3 , (13)

where V is the potential energy density and U is the internal energy
density. The corresponding system of equations has the following
(canonical) extended Kovalevskaya form:

xtt = −δ(V + U)

δx
, ytt = −δ(V + U)

δy
, ztt = −δ(V + U)

δz
.

Thus, this system of equations is l -normal, and there is no corresponding
variational principle for the equations of motion of a polytropic gas in the
Eulerian variables.
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Thank you very much for your attention!
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