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1 Introduction

To begin with we start with several motivational questions and comments.

1. Why separation of variables (SoV) in the Hamilton-Jacobi (HJ) sense is important?

It is important because it is the main method of the integration of the classical equations of mo-

tion for integrable hamiltonian systems. It is used also while solving quantum integrable models [11].

2. What is the state of arts in the subject?

There exist three main approaches to the variable separation: a classical one going back to the

papers of Stackel [12, 13], Levi-Civitta [14] and Agostinelli [15] and developed later in the papers of

Benenti and his school [16, 17] and two modern ones. They are: the “magic recipe” of Sklyanin [11]

and the bi-hamiltonian approach of Magri, Falqui and Pedroni [18, 19]. The classical approach is

very restricted: it works only for the hamiltonian systems on cotangent bundles T ∗N . Two modern

approaches cover much wider class of the models, but, unfortunately they are far from being finished.

2. Why the Clebsch model?

The Clebsch system [2] is the only integrable case of Kirckhoff model [1] for which HJ SoV was

unknown. It was known on the special submanyfold, where it is equivalent to the Weber model [3].
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2 Generalities on Hamilton-Jacobi SoV for the integrable hamiltonian systems

An integrable Hamiltonian system with n degrees of freedom is determined on a 2n-dimensional

symplectic manifold M, which is embedded in the Poisson manyfold (P , { , }1) as a level surface

of m Casimir function Ci, by n independent Poisson-commuting first integrals Ij:

{Ii, Ij}1 = 0, i, j ∈ 1, n.

To find HJ separated variables means to find — at least locally — a set of coordinates xi, pj, i, j ∈
1, n, such that there exist n relations — “equations of separation” — of the following form [11]:

Φi(xi, pi, I1, ..., In, C1, ..., Cm) = 0, i ∈ 1, n, (1)

and the coordinates xi, pj, i, j ∈ 1, n are (quasi)canonical:

{pi, xj, }1 = fi(xi, pi)δij, {xi, xj}1 = 0, {xi, xj}1 = 0, ∀i, j ∈ 1, n (2)

for some functions fi, i ∈ 1, n on C2.

It is possible to show that the coordinates of separation xi satisfy the following equations:
n∑
i=1

∂IkΦi(xi, pi, I1, ..., In, C1, ..., Cm)

∂piΦi(xi, pi, I1, ..., In, C1, ..., Cm)

1

fi(xi, pi)

∂xi
∂tj

= δkj, ∀k, j ∈ 1, n, (3)

where tj is a “time” corresponding to the integral Ij, i.e. a parameter along its hamiltonian flow.

From the equations (3) one deduces the Abel-type equations written in the differential form:
n∑
i=1

∂IjΦi(xi, pi, I1, ..., In, C1, ..., Cm)

∂piΦi(xi, pi, I1, ..., In, C1, ..., Cm)

dxi
fi(xi, pi)

= dtj, j ∈ 1, n. (4)

The equations (4) are the final object of SoV and the starting object for the integration procedure.
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3 The “magic recipe”of Sklyanin

In the case when the hamiltonian system under the consideration possess Lax pair formulation

there exist the so-called “magic recipe” of Sklyanin [11]. We remarque, that its roots — at least

in the classical case — go back to the papers [6] [7], [8]. The “magic recipe” states that in the

Lax-integrable case all equations of separation coincide with one spectral curve of the Lax matrix:

Φi(xi, pi, I1, ..., In, C1, ..., Cm) = det(L(xi)− piId) = 0 (5)

and the coordinates of separation coincide with the poles of the “properly normalized” eigenvectors

of L(u). Using this normalization one can construct the coordinates and momenta of separations

as zeros of certain function B(u) and the values of another function A(u) in these zeros:

B(xi) = 0, pi = A(xi). (6)

Unfortunately, in the general case the “magic recipe” of Sklyanin dos not answer the question what

the “proper” normalization should be. That is why, it is more precise to call the “magic recipe” to

be the “magic conjecture”, due to the fact that in the general case there is no concrete “recipe”

of how to construct the “proper” normalization of the eigenvectors of L(u), or, equivalently how to

construct the functions B(u) and A(u). Another restriction of the method is the condition that all

the equations of separation are the same and coincide with a spectral curve of one Lax matrix. As

we will show in the present talk, this is too strong the requirement that does not hold true in some

cases. That is why it is desirable — even in the Lax integrable case — to have alternative methods

of SoV. Two of such the methods we will describe below.
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4 The method of the vector fields Zi

The method of the vector field Zi in the theory of separation of variables was proposed in the paper

of Magri, Falqui and Pedroni [18]. It permits to construct the coordinates of separation xi for the

given bi-hamiltonian system starting from the certain data of the Poisson geometry. In more details,

let us assume that there exists a second Poisson bracket { , }2 compatible with the first one, i.e.

any linear combination of the brackets { , }i: { , }u = u{ , }1 + { , }2. is a Poisson bracket.

We denote Casimir functions of { , }u by Ck(u), k ∈ 1,m and assume them to be polynomial [21].

Theorem 4.1 (Magri, Falqui, Pedroni) Let us consider vector fields Zk on the Poisson many-

fold P that satisfy the following conditions:

LieZi{ , }1 = 0, i ∈ 1,m (7a)

LieZi{ , }2 =

m∑
j=1

Zj ∧ [Xj, Zi], i ∈ 1,m (7b)

ZkZl(Ii) = 0, i ∈ 1, n, k, l ∈ 1,m (7c)

Zk(Cl) = δkl, k, l ∈ 1,m. (7d)

Let the roots u = xi, i ∈ 1, n of the equation

S(u) = det(Zi(Cj(u))) = 0, i, j ∈ 1,m (8)

be functionally independent on generic coadjoint orbits of { , }1. Then xi, i ∈ 1, n are the

coordinates of separation for the considered bi-hamiltonian system.
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The theorem above, in principle, provides the coordinates of separation xi, i ∈ 1, n. The difficult

part of the approach is the necessity to find all vector fields Zk, k ∈ 1,m in order to find the

separating polynomial S(u). Indeed, in order to define the separating polynomial in terms of the

initial dynamical variables, we need to resolve the system of PDE (7a), (7b), (7c), which is, in

general, very complicated task. This task, however, is simplified in certain cases, e.g. when one

needs only one vector field Zk for a certain index k in order to define S(u).

Corollary 4.1 (Magri, Falqui, Pedroni) Let the Casimir functions Ci, i ∈ 1,m− 1 be the

common Casimirs of the both brackets { , }1 and { , }2. Then the roots u = xi of the equation

S(u) = Zm(Cm(u))) = 0 (9)

are the coordinates of separation.

Hence, in the case when all but one Casimirs of the brackets { , }1 and { , }2 are the common

ones, the problem of the construction of separating polynomial is reduced to the problem of finding

of only one vector field Zm, which satisfies instead of (7c), (7a), (7b) simpler conditions:

Zm(Ci) = 0, i ∈ 1,m− 1, Zm(Cm) = 1, (10a)

Z2
m(Cm(u)) = 0, (10b)

LieZm{ , }m = 0, (10c)

LieZm{ , }2 = Zm ∧ [Xm, Zm], (10d)

where Xm is a hamiltonian vector field of the Casimir Cm with respect to the second bracket.

Remark. Observe that although the equations (10) are simpler than the system of equations (7c),

(7a), (7b), they still are non-linear PDE which are in general difficult to solve. We will illustrate a

possible approach to solution of the problem of finding of the vector field Zm in the next sections.
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5 The method of the differential conditions

This method is due to F. Magri [20]. We will use it in order to find the momenta pi canonically

conjugated to the separated coordinates xi. The momenta of separation in the general case are not

given by the method of the vector fields Zi. We will expose the method of the differential conditions

in the simplest case of the systems with two degrees of freedom and in the convenient for us form,

i.e. hereafter we will assume that n = 2, m = 2. We will hereafter put also I1 = H , I2 = K.

For any function f we define its derivatives along the time flows of the integrals H and K as follows:

ḟ = {f,H}, f ′ = {f,K}. (11)

The following Proposition holds true:

Proposition 5.1 Assume that the separating polynomial has the form

S(u) = u2 + s1u + s2 = u2 + Z2(H)u + Z2(K), (12)

where the vector field Z2 satisfy the conditions (10) with m = 2. Then the functions s1, s2
Poisson-commute:

{s1, s2}1 = 0, (13)

and satisfy the following differential equations:

s′1 − ṡ2 = 0, (14a)

s′2 − s1ṡ2 + s2ṡ1 = 0. (14b)

The above proposition has the following Corollary [22]:
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Corollary 5.1 Let x1, x2 be the roots of the polynomial S(u). Then the functions x1, x2
Poisson-commute:

{x1, x2}1 = 0

and satisfy the following differential equations:

x′1 + x2ẋ1 = 0, x′2 + x1ẋ2 = 0. (15)

The above Corollary is used in order to construct the canonically conjugated momenta p1, p2 [22]:

Theorem 5.1 Let the coordinates xi, i ∈ 1, 2 satisfy the conditions (15) and Poisson-commute.

Let the function Fi, i ∈ 1, 2 be defined as follows:

Fi = (xj − xi)ẋi, i ∈ 1, 2, j 6= i. (16)

Then in the coordinate system consisting of the functions x1, x2, H, K, C1, C2 we will have

Fi = Fi(xi, xiH + K,C1, C2) (17)

and the functions

pi =

xiH+K∫
0

dλ

Fi(xi, λ, C1, C2)
, i ∈ 1, 2, (18)

are the momenta canonically conjugated to the coordinates xi, i ∈ 1, 2.

Using this theorem one obtains the explicit form of momenta of separation:

pi = Ψi(xi, xiH + K,C1, C2), ∀i ∈ 1, 2

and, consequently, the equations of separation as the final point of SoV:

Φi(pi, xi, xiH + K,C1, C2) = 0, ∀i ∈ 1, 2.
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6 The Clebsch model and its bi-hamiltonian structure

The Clebsch model is an integrable model defined on the linear space of the dimension six with the

coordinates Sα, Tα, α ∈ 1, 3 that satisfy the standard e∗(3) Poisson brackets:

{Sα, Sβ} = εαβγSγ, {Sα, Tβ} = εαβγTγ, {Tα, Tβ} = 0. (19)

These brackets possess two Casimir functions:

C2 =

3∑
α=1

T 2
α, C1 =

3∑
α=1

TαSα. (20)

The quadratic functions:

I1 = H =

3∑
α=1

S2
α +

3∑
α=1

(jβ + jγ)T
2
α, (21)

I2 = K =

3∑
α=1

jαS
2
α +

3∑
α=1

jβjγT
2
α. (22)

are Poisson-commuting integrals of motion. The system is completely integrable: the dimension of

the corresponding phase space — a level surface of the Casimir function is four.

The equations of motion of the Clebsch model with respect to the Hamiltonian H read as follows:

dSα
dt1

= (jγ − jβ)TβTγ,
dTα
dt1

= SβTγ − SγTβ. (23)

Here t1 is the time corresponding to the hamiltonian H .
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Observe that there is a second Lie-Poisson structure for the Clebsch model, compatible with the

first one and having the following explicit form:

{Sα, Sβ}2 = εαβγjγSγ, {Sα, Tβ}2 = εαβγjβTγ, {Tα, Tβ}2 = εαβγSγ. (24)

Observe that in the case jα 6= 0, α ∈ 1, 3 the Poisson algebra (24) is isomorphic to so(4). The

isomorphism is achieved by the following substitution of variables:

Sα →
√
jβ
√
jγSα, Tα →

√
jαTα, α ∈ 1, 3. (25)

In such a way the considered model is isomorphic to the so-called Shottky-Frahm model on so(4).

Observe also that the function C1 is a common Casimir function for the both brackets. The

hamiltonian K is a Casimir function of the structure { , }2. The integrals are functions H and C2.

The “Poisson pencil” of the above brackets

{ , }u = u{ , }1 + { , }2 (26)

has the following Casimir functions:

C2(u) = C2u
2 + Hu + K, C1(u) = C1. (27)

The function C1 is a Common Casimir function of the all brackets of the Poisson pencil.

Remark. Hereafter we will assume complete anisotropy i.e. we will assume that jα 6= jβ if α 6= β.

11



7 The Weber-Neumann subcase of the Clebsch model

On special coadjoint orbits with C1 = 0 the Clebsch model is equivalent to the Weber-Neumann

model [3, 4]. The corresponding coadjoint orbit may be viewed as a cotangent bundle T ∗S2 embed-

ded in six-dimensional linear space with the coordinates Q1, Q2, Q3, P1, P2, P3 by the equations:

Q2
1 + Q2

2 + Q2
3 = 1, P1Q1 + P2Q2 + P3Q3 = 0, (28)

were the coordinates Q1, Q2, Q3, P1, P2, P3 satisfy the canonical Poisson brackets:

{Pα, Qβ} = δαβ. (29)

In this case there exists the following parametrization of the Lie-algebraic variables:

Sα = PβQγ − PγQβ, Tα = Qα, (30)

In the result the hamiltonian H of the Clebsch model acquires Weber-Neumann form:

H =

3∑
α=1

P 2
α +

3∑
α=1

(jβ + jγ)Q
2
α (31)

of the Hamiltonian of motion of the particle on the sphere in the quadratic potential.

8 SoV for the Weber-Neumann subcase of the Clebsch model

Well-known for more than a century is SoV for the subcase C1 = 0 of the Clebsch model [3, 4]. The

separating polynomial in this case is written as follows:

S(u) =

3∑
α=1

(u + jβ)(u + jγ)T
2
α. (32)
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Its two roots u = x1, u = x2 satisfy the following equations of separation:

(xi + j1)(xi + j2)(xi + j3)p
2
i + (K + xiH + x2iC2) = 0, i ∈ 1, 2, (33)

where the coordinates xi, pi, i ∈ 1, 2 are the canonical ones:

{pi, xj, }1 = δij, {xi, xj}1 = 0, {xi, xj}1 = 0, ∀i, j ∈ 1, n.

This SoV is a bi-hamiltonian one: on the surface C1 = 0 the normalized Euler vector field

Z2 =
1

2C2

3∑
α=1

Tα
∂

∂Tα
(34)

satisfies the condition (10). In more details we have that:

LieZ2{ , }1 = 0, (35a)

LieZ2{ , }2 = Z2 ∧ [XC2, Z2], (35b)

Z2
2(H) = 0, Z2

2(K) = 0, Z2
2(C2) = 0, Z2

2(C1) = 0. (35c)

Z2(C2) = 1, Z2(C1) = 0. (35d)

That is why it defines the separating polynomial by the following formula:

S(u) = Z2(C2)u
2 + uZ2(H) + Z2(K), (36)

which exactly coincides with the “made-monic” polynomial (32).

The momenta of separation and equations of separation (33) are obtained using the formula (18).
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9 Assymetric SoV for the Clebsch model: the coordinates of separation

In order to obtain the coordinates of separation we use the technique of the vector field Z = Z2. Due

to the fact that C1 is a common Casimir the needed separating polynomial is written as follows:

S(u) = Z(C2)u
2 + Z(H)u + Z(K) (37)

where the vector field Z may be normalized as follows: Z(C2) = 1 to make S(u) to be monic. We look

for such a vector field Z that the conditions the conditions (35) be satisfied on the whole phase space.

Let us solve the condition (35c) together with the normalization conditions (35d). For this purpose

let us consider the general vector field on e∗(3):

Z =

3∑
α=1

Aα
∂

∂Sα
+

3∑
α=1

Bα
∂

∂Tα
, (38)

where Aα, Bβ are some functions on the phase space e∗(3).

In order to solve the condition (35c) we assume that vector field Z annuls its components:

Z(Aα) = 0, Z(Bα) = 0, α ∈ 1, 3. (39)

Observe that this is an important technical assumption that permits us to consider instead of set of

differential equations for the functions Aα, Bβ a set of algebraic equations for these functions.

Under such the requirement six functions Aα, Bβ should satisfy the following six algebraic equations:

A2
1 + A2

2 + A2
3 + (j2 + j3)B

2
1 + (j3 + j1)B

2
2 + (j1 + j2)B

2
3 = 0, (40a)

j1A
2
1 + j2A

2
2 + j3A

2
3 + j2j3B

2
1 + j3j1B

2
2 + j1j2B

2
3 = 0, (40b)
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B2
1 + B2

2 + B2
3 = 0, (40c)

A1B1 + A2B2 + A3B3 = 0. (40d)

2(B1T1 + B2T2 + B3T3) = 1, (40e)

A1T1 + A2T2 + A3T3 + B1S1 + B2S2 + B3S3 = 0, (40f)

which are the consequences of the algebraic equations (35c), (35d). The following Proposition holds [22]:

Proposition 9.1 The equations (40a)-(40f) have the following generic solution:

Aα = λcαvβvγ, Bα = λcαvα, where (41)

v2α = v + jα, (42)

c2γ = jα − jβ, (43)

v is the function of Sα, Tβ satisfying the following irrational equation:

c1v2v3T1 + c2v1v3T2 + c3v1v2T3 + c1v1S1 + c2v2S2 + c3v3S3 = 0. (44)

and normalization constant λ is given by the following formula λ =
1

2(c1T1v1 + c2T2v2 + c3T3v3)
.

Remark. Observe, that the equation (44) has eight solutions as the equation of the function v!

For the subsequent we will need to introduce the following auxiliary functions:

f1 =

3∑
α=1

cαvαTα, f2 =

3∑
α=1

cαjαvαTα, f3 =

3∑
α=1

cαvβvγTα, (45)

g1 =

3∑
α=1

cαvαSα, g2 =

3∑
α=1

cαjαvαSα, g3 =

3∑
α=1

cαvβvγSα. (46)
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The following Theorem holds true [22]:

Theorem 9.1 Let the vector field Z (38) has the components Aα, Bα as in the Proposition 9.1.

Then

(i) The roots of the polynomial (37) are the Poisson-commuting functions x1, x2 having the

form:

x1 = v, x2 = −v +
f2 − g3
f1

− (j1 + j2 + j3). (47)

(ii) The corresponding canonically conjugated momenta p1, p2 are written as follows:

p1 =
(g1v + g2 + v1v2v3f1)

2c1c2c3v1v2v3
, p2 =

f1
c1c2c3

. (48)

(iii) The curves of separation Φi(xi, pi, H,K,C1, C2), have genus three and the following form:

Φ1(x1, p1, H,K,C1, C2) = 4p21(x1 + j1)(x1 + j2)(x1 + j3) + (x21C2 + x1H + K)+

+ 2
√

(x1 + j1)(x1 + j2)(x1 + j3)C1 = 0, (49)

Φ2(x2, p2, H,K,C1, C2) = p42(x2 + j1)(x2 + j2)(x2 + j3) + (x22C2 + x2H + K)p22 + C2
1 = 0. (50)

Remark. There are three ways to prove this theorem. The first way is to show that defined by

Proposition 9.1 vector field Z satisfy also the conditions (35a)- (35b), i.e. define the coordinates of

separation indeed. The second way is to show that the coordinates xi given by (47), Poisson-commute,

satisfy the differential conditions (15), then to find explicitly the functions Fi given by (16) and use

them in order to find the canonically conjugated momenta and equations of separation. This is done in

our papers [22, 25]. Here we propose for your attention the direct proof, which is the simplest one.
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Sketch of the Proof. Applying the vector field Z = Z2 with the above components to the polynomial

C2(u) we obtain the explicit form of the polynomial S(u). By the direct check one sees that it factorizes

in the product of two linear in u multipliers and has two roots x1 and x2 given by (47).

Then we calculate the Poisson brackets among the functions gα, fβ, v:

{f1, f2}1 =
c1c2c3f

2
3

(2v + j1 + j2 + j3)f1 + g3 − f2
, {f1, f3}1 = − c1c2c3f3f1

(2v + j1 + j2 + j3)f1 + g3 − f2
,

{f1, g1}1 =
c1c2c3f3f1

(2v + j1 + j2 + j3)f1 + g3 − f2
, {f1, g2}1 = − c1c2c3vf3f1

(2v + j1 + j2 + j3)f1 + g3 − f2
,

{f1, g3}1 = c1c2c3f1 −
c1c2c3f3g1

(2v + j1 + j2 + j3)f1 + g3 − f2
,

{f2, g1}1 =
c1c2c3(f

2
1v1v2v3 + ((v + j1 + j2 + j3)f1 − f2)f3)
(2v + j1 + j2 + j3)f1 + g3 − f2

,

{f2, g2}1 =
c1c2c3(((f1(v + j1 + j2 + j3)− f2 + g3)f1 − g1f3)v1v2v3 − v(v + j1 + j2 + j3)f3f1 + vf3f2)

(2v + j1 + j2 + j3)f1 + g3 − f2
,

{g3, g1}1 =
c1c2c3(g1f2 − g2f1)

(2v + j1 + j2 + j3)f1 + g3 − f2
, {g3, g2}1 =

c1c2c3(g
2
1v1v2v3 + v(g1f2 − g2f1))

(2v + j1 + j2 + j3)f1 + g3 − f2
,

{f1, v}1 = 0, {g1, v}1 = − 2c1c2c3v1v2v3f1
(2v + j1 + j2 + j3)f1 + g3 − f2

,

{g2, v}1 = −2c1c2c3v1v2v3((j1 + j2 + j3)f1 + g3 − f2)
(2v + j1 + j2 + j3)f1 + g3 − f2

, {g3, v}1 =
2c1c2c3v1v2v3g1

(2v + j1 + j2 + j3)f1 + g3 − f2
,

{f2, v}1 = − 2c1c2c3v1v2v3f3
(2v + j1 + j2 + j3)f1 + g3 − f2

, {f3, v}1 = − 2c1c2c3v1v2v3f1
(2v + j1 + j2 + j3)f1 + g3 − f2

.

17



Using these brackets and the explicit form of x1 and x2 we immediately obtain that {x1, x2}1 = 0.

In the same way we find that the variables

p1 =
(g1v + g2 + v1v2v3f1)

2c1c2c3v1v2v3
, p2 =

f1
c1c2c3

, (51)

are canonically conjugated to x1, x2, i.e:

{pj, xi}1 = δij, {xi, xj}1 = 0, {pi, pj}1 = 0, ∀i, j ∈ 1, 2.

Finally using the explicit form of the canonical variables pi, xi, i ∈ 1, 2 in terms of the functions gα,

fβ, v and expressing in the terms of these functions also the integrals of motion and Casimir functions:

C1 =
1

c21c
2
2c

2
3

(g1f1(v+j1+j2+j3)−(g2f1+g1f2)−g3f3), C2 =
1

c21c
2
2c

2
3

(f 21 (v+j1+j2+j3)−2f2f1−f 23 ),

H =
1

c21c
2
2c

2
3

(
(j21+j22+j23+j3j1+j1j2+j2j3−v2)f 21+(−2(j1+j2+j3)f2+2f3v1v2v3)f1+f

2
2−(v+j1+j2+j3)f

2
3

+ (v + j1 + j2 + j3)g
2
1 − 2g1g2 − g23

)
,

K =
1

c21c
2
2c

2
3

(
−((v+j1+j2+j2)

2v+j1j2j3)f
2
1 +(2v(v+j3+j1+j2)f2+2v1v2v3(v+j3+j1+j2)f3)f1−f 22v

− 2f2f3v1v2v3 + (v2 + v(j1 + j2 + j3) + j1j2 + j3j1 + j2j3)(−f 23 + g21)− 2g1g3v1v2v3 − g22 + g23v
)
.

and taking into account that the constraint (44) acquires in f − g coordinates the following form:

g1 + f3 = 0 (52)

we obtain the equations of separation (49)-(50).

Theorem is proven.
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10 The reconstruction formulae

Although it is impossible to find explicitly the coordinates x1, x2 as the functions of Sα, Tα, it is

possible to express explicitly Sα, Tα using separated variables x1, x2, p1, p2 and the values of the

Casimir functions C1, C2. The following Proposition holds true [22]:

Proposition 10.1 The variables Sα, Tα, α ∈ 1, 3 are expressed via separated coordinates and

Casimir functions as follows:

Sα =
1

cβcγ

(√x1 + jβ
√
x1 + jγC

2
1

2p32(x1 − x2)2
+
√
x1 + jα

(2(x1 + jβ)(x1 + jγ)p1
(x1 − x2)2p22

−(jγx2 + jβx2 + jβjγ + 2x1x2 − x21)
(x1 − x2)2p2

)
× C1 +

√
x1 + jβ

√
x1 + jγ

(C2

2p2
+

2(x1 + j3)(x1 + j2)(x1 + j1)p
2
1

(x1 − x2)2p2
− 2(x2 + jβ)(x2 + jγ)(x1 + j1)p1

(x1 − x2)2
+

+
(2x32 + (3jα + jβ + jγ − x1)x22 + (−2x1jα + 2jα(jβ + jγ))x2 − ((jβ + jγ)jα − jβjγ)x1 + j1j2j3)p2

2(x1 − x2)2
))
,

(53a)

Tα =
1

cβcγ

( √x1 + jαC
2
1

2p32(x1 − x2)2
+
(2
√
x1 + jβ

√
x1 + jγ(x1 + jα)p1

(x1 − x2)2p22
−
√
x1 + jβ

√
x1 + jγ(x2 + jα)

(x1 − x2)2p2
)
C1+

+
√
x1 + jα

(C2

2p2
+

2(x1 + j1)(x1 + j3)(x1 + j2)p
2
1

(x1 − x2)2p2
− 2(x1 + j3)(x1 + j2)(x2 + j1)p1

(x1 − x2)2
+

+
((jβ − jα + jγ + x1)x

2
2 + (2x1jα + 2jβjγ)x2 + ((jβ + jγ))jα − jβjγ)x1 + j2j3j1)p2

2(x1 − x2)2
))
. (53b)
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11 The Abel-type equations

Using the equations of spectral curves (49), (50) and the formulae (4) it is easy to obtain the Abel-type

equations written in the differential form [22]:

x1dx1
8p1(x1 + j1)(x1 + j2)(x1 + j3)

+
x2p

3
2dx2

2(p42(x2 + j1)(x2 + j2)(x2 + j3)− C2
1)

= dt1, (54)

dx1
8p1(x1 + j1)(x1 + j2)(x1 + j3)

+
p32dx2

2(p42(x2 + j1)(x2 + j2)(x2 + j3)− C2
1)

= dt2, (55)

where t1, t2 are “times” corresponding to the hamiltonians H and K.

Let us transform them into more standard form. For this purpose we make the change of variables:

w = 2
√

(x1 + j1)(x1 + j2)(x1 + j3) p1, W =

√
2C1

p2
, Φ(x) = (x + j1)(x + j2)(x + j3). (56)

In such the notations the separation curves acquire the form:

C : w2 + (C2x
2
1 + Hx1 + K) + 2C1

√
Φ(x1) = 0. (57)

K : W 4 + 2(C2x
2
2 + Hx2 + K)W 2 + 4C2

1Φ(x2) = 0. (58)

and the Abel-type equations (54)-(55) are written as follows

x1dx1
w(w2 + (C2x21 + Hx1 + K))

+

√
2x2dx2

W (W 2 + (C2x22 + Hx2 + K))
= −dt1

C1
, (59)

dx1
2w(w2 + (C2x21 + Hx1 + K))

+

√
2dx2

W (W 2 + (C2x22 + Hx2 + K))
= −dt2

C1
. (60)
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12 Remarks on the Abel-Jacobi inversion problem

It is possible to show [26] that the differentials w1, w2

w1 =
dx1

w(w2 + (C2x21 + Hx1 + K))
, w2 =

x1dx1
2w(w2 + (C2x21 + Hx1 + K))

(61)

participating in our Abel-type equations are two holomorphic differentials on the curve (57), while the

differentials W1, W2

W1 =
√

2
dx2

W (W 2 + (C2x22 + Hx2 + K))
, W2 =

√
2

x2dx2
W (W 2 + (C2x22 + Hx2 + K))

(62)

also participating in our Abel-type equations, are two holomorphic differentials on the curve (58), their

periods are commensurable and, that is why, the Abel-type equations (59)-(60) can be inverted in terms

of meromorphic functions of times. They lead to a well-defined, so called Abel–Prym map from the

product C × K to a two-dimensional Prym subvariety of the Jacobian of the curve K (see [9, 10] for

details on algebraic geometry of these curves). Moreover, it can be shown that separated coordinates

are expressed in terms of so-called higher order theta-functions on the Prym variety of the curve K [26].

Important Remark. In contrast to the standard Abel map, the Abel–Prym map is not one-to-one: a

full preimage of a point in the Prym variety consists of 8 pairs of points on C × K. The coordinates of

these 8 pairs of points can be identified with the eight sets of separating variables for the Clebsch system

connected with eight solutions v(1), .... , v(8) of the constraint equation (44). This enables one to derive

a (new) theta-function solution for the original variables Sα, Tα: they can be expressed as symmetric

functions of coordinates of the eight points on the curve C, while the latter functions can be written in

terms of the higher order theta-functions which solve the problem of inversion of the Abel–Prym map.
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13 The Weber-Neumann interpretation of the assymetric SoV

Finally we would like to present the “Weber-Neumann interpretation” of the obtained assymetric SoV

for the Clebsch model [25]. For this purpose we extend the phase space of the Clebsch system P = C6,

endowed with the Poisson pencil { , }u = u{ , }1 + { , }2.
Let E be an elliptic curve

y2 = (v + j1)(v + j2)(v + j3). (63)

Let Ê be its un-ramified 4 : 1 covering on which the functions vα, α ∈ 1, 3 are correctly defined.

Let us prolong the Poisson pencil { , }u = u{ , }1 + { , }2 onto the extended phase space P̂ = P × Ê
with the coordinates (Sα, Tα, v) by the following formulae:

{Sα, Sβ}1̂ = {Sα, Sβ}1, (64a)

{Sα, Tβ}1̂ = {Sα, Tβ}1, (64b)

{Tα, Tβ}1̂ = {Tα, Tβ}1, (64c)

{Sα, v}1̂ = −(

3∑
β=1

∂Z(C1)

∂Sβ
{Sα, Sβ}1 +

∂Z(C1)

∂Tβ
{Sα, Tβ}1)(

∂Z(C1)

∂v
)−1, (64d)

{Tα, v}1̂ = −(

3∑
β=1

∂Z(C1)

∂Sβ
{Tα, Sβ}1 +

∂Z(C1)

∂Tβ
{Tα, Tβ}1)(

∂Z(C1)

∂v
)−1. (64e)

The brackets { , }2̂ are defined similarly. This explicit representation allows to check the following

• The pencil u{ , }1̂ + { , }2̂ is a new Poisson pencil.
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• It has two common Casimir functions C1 and C ′1 = Z(C1), and a quadratic polynomial Casimir

function C2(u) = C2u
2 + Hu + K.

• The new Poisson pencil defines two vector fields X̂H and X̂K on P̂ , which are integrable Hamiltonian

vector fields on P̂ .

• The vector fields XH and XK of Clebsch are the projections of the vector fields X̂H and X̂K along

the canonical projection π : P̂ → P .

Under such the definition the constructed SoV for the Clebsch model on P can be interpreted as SoV

for the extended Clebsch model defined on the special symplectic leafs in P̂ given by the equation

C ′1 = Z(C1) = 0. (65)

In such a way the obtained SoV for the Clebsch model is interpreted as Weber-Neumann-type SoV

for its extension. The constraint equations (44) is interpreted as zero level set of the Casimir function

C ′1. The strange condition that the vector field Z annuls its own components is reduced — modulo the

normalization of Ẑ — to the requirement that the extended vector field Ẑ has the form:

Ẑ =

3∑
α=1

Aα(v)
∂

∂Sα
+

3∑
α=1

Bα(v)
∂

∂Tα
+ 0 · ∂

∂v
, (66)

i.e. its components depend only on the coordinate v of the proposed one-dimensional extension.

In such a way this view-point provides geometric interpretation of our asymmetric SoV and geometric

interpretation of its main constraint (44).
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14 Conclusion and discussion

Regardless the interpretation, the proposed SoV exhibits the following qualitatively new properties:

1. It has two different curves of separation C and K, i.e. we are out of the “magic recipe”.

2. The genus of separation curves g = 3 is larger than the number of degrees of freedom n = 2.

3. In contrast to the standard Abel map, the corresponding Abel–Prym map from C × K to Prym

variety of K is not one-to-one.

At last, two natural questions may arise in the context of the presented results:

1. Is there any “symmetric” SoV for the Clebsch model with two separation curves being equal?

2. Is there any other — except for the Clebsch model — examples of the Lax-integrable models with

different separation curves?

The answer to the both questions is positive.

As for the first question: in [24] we have constructed symmetric SoV for the Clebsch model on C ×C.

As for the second question: using the bi-hamiltonian equivalence of the Clebsch and Shotky-Frahm

models we have constructed asymmetric SoV on C×K also for the Shotky-Frahm model [23]. Moreover,

we have recently obtained asymmetric SoV for several systems with two and three degrees of freedom

that are not equivalent to Clebsch and Shotky-Frahm models. These results will soon be published.
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