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Abstract. We describe CDE, a Reduce package devoted to differential-geometric
computations on Differential Equations (DEs, for short). The package relies on the
Reduce package CDIFF, whose development was carried out by P. Gragert, P.H.M.
Kersten, G. Post and G. Roelofs at the University of Twente, The Netherlands.

The package is included in the official Reduce sources in Sourceforge [34] and it is
also distributed on the Geometry of Differential Equations web site http://gdeq.org
(GDEQ for short).

We start from an installation guide for Linux and Windows. Then we focus on con-
crete usage recipes for computations in the geometry of differential equations: higher
symmetries, conservation laws, Hamiltonian operators and their Schouten bracket, re-
cursion operators. All programs discussed here are shipped together with this manual
and can be found in the Reduce sources or at the GDEQ website. The mathematical
theory on which computations are based can be found in refs. [12, 19].
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1. Why CDE?

This brief guide refers to using CDE, a Reduce package for differential-geometric
computations for DEs. The package aims at defining differential operators in total
derivatives and computing with them. Such operators are called C-differential operators
(see [12]). CDE runs in the computer algebra system Reduce and depends on the Reduce
package CDIFF for constructing total derivatives. Recently, Reduce 3.8 became free
software, and can be downloaded here [1]. This was an important motivation for making
our computations accessible to a wider public, also through this user guide.
The development of the CDIFF package was started by Gragert and Kersten for

symmetry computations in DEs. Then CDIFF was partly rewritten and extended by
Roelofs and Post. The CDIFF package consists of 4 files, but only the main three files
are documented [8, 9, 10]. This software and the related documentation can be found in
both the Reduce sources and the Geometry of Differential Equations (GDEQ for short)
web site [2].

There are already several software packages that may compute symmetries and conser-
vation laws; many of them run on Mathematica or Maple. Those who run on Reduce

were written by M.C. Nucci [28, 29], F. Oliveri (ReLie, [30]), F. Schwartz (SPDE,
Reduce official distribution) T. Wolf (APPLYSYM and CONLAW in the official Reduce
distribution, [35, 36, 37, 38]).
The development of CDE started from the idea that a computer algebra tool for

the investigation of integrability-related structures of PDEs still does not exist in the
public domain. We are only aware of a Mathematica package that may find recursion
operators under quite restrictive hypotheses [13].
CDE is especially designed for computations of integrability-related structures (such

as Hamiltonian, symplectic and recursion operators) for systems of differential equations
with an arbitrary number of independent or dependent variables. On the other hand
CDE is also capable of (generalized) symmetry and conservation laws computations.
The aim of this manual is to introduce the reader to computations of integrability
related structures using CDE.
The current version of CDE is able to define equations for Hamiltonian, symplectic

and recursion operators. Such equations may be solved by different techniques; one of
the possibilities is to use CRACK, a Reduce package for solving overdetermined systems
of PDEs [39]. Moreover, CDE is able to compute Schouten brackets to check Hamilto-
nianity of operators. Very soon CDE will include simplecticity tests, hereditariety tests,
computation of linearization (or Fréchet derivatives), adjoints of differential operators.
At the moment the papers [18, 21, 23, 32, 33] have been written by means of CDE,

and more research by CDE on integrable systems is in progress.
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The readers are warmly invited to send questions, comments, etc., both on the com-
putations and on the technical aspects of installation and configuration of Reduce, to
the author of this document.
Acknowledgements. My warmest thanks are for Paul H.M. Kersten, who explained

to me how to use the original CDIFF package for several computations of interest in
the Geometry of Differential Equations. I also would like to thank J.S. Krasil’shchik
and A.M. Verbovetsky for constant support and stimulating discussions which led me
to write this text. On the software side, I’d like to thank A.C. Norman for his unfailing
support in my computer science ‘troubles’. Moreover, I’d like to thank the developers
of the Reduce mailing list for their prompt replies with solutions to my problems.

2. Installation

In order to use the CDE package it is enough to have a recent version of Reduce with
both the CDE and the CDIFF packages installed.
We stress that most of the technical difficulties related to installation and configura-

tion are due to the lack of a Reduce installer. This problem should be solved in the near

future.

2.1. Installation of Reduce. In order to install Reduce one can download a precom-
piled binary distribution from here [34]. However, please make sure that the version
that you are downloading has been compiled later than 1st October 2014, or you will
not get CDE in it. If you are ready to recompile Reduce, please consider the text [27]
for instructions on how to do it in different operating systems.
In Linux you can also download .deb packages at the GetDeb website [3].
From now on we will assume that the binary executable of Reduce is in the path

of the executables of your operating system. A typical location in Linux would be
/usr/local/bin. You might put a link instead of the binary executable.

A Reduce program using CDE package can be written with any text editor; it is
customary to use the extension .red for Reduce programs, like program.red. If you
wish to run your program, just run the Reduce executable. After starting Reduce, you
would see something like

Reduce (Free CSL version), 01-Oct-14 ...

1:

At the prompt 1: write in "program.red";. Of course, if the program file program.red
is not in the place where the Reduce executable is, you should indicate the full path
of the program, and this depends on your system. In Linux, assuming that you are
the user user and your program is in the subdirectory Reduce/computations of your
home directory, you have something like

in "/home/user/Reduce/computations/program.red";

In Windows, assuming that you are the user user and your program is in the subdirec-
tory Reduce\computations of the Desktop folder, you would write

in "C:\Documents and Settings\user\Desktop\Reduce

\computations\program.red";
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Remember that each time you run Reduce from a command shell, Reduce inherits your
current path from the shell unless you use an absolute path as above. However, if you
start Reduce with the graphical interface (see below) you can always use the leftmost
menu item File>Open... in order to avoid to write down the whole absolute path.

2.2. Choice of an editor for writing Reduce programs. Now, let us deal with the
problem of writing Reduce programs.
Generally speaking, any text editor can be used to write a Reduce program. A more

suitable choice is an editor for programming languages. Such editors exist in Linux and
Windows, a list can be found here [5].

A suggested text editor in Windows is notepad++. This editor is easy to install, it
has support for many programming languages (but not for Reduce!), and has a GPL
free license, see [4]. Similar tools in Linux are kwrite and gedit.
The IDE (Integrated Development Environment) of choice of the author for develop-

ing programs and running them inside the editor itself exists for the great text editor
emacs, which runs in all operating systems, and in particular Linux and Windows. We
stress that an IDE makes the developing-running-debugging cycle much faster because
every step is performed in the same environment. Another IDE which has Reduce

capabilities is GNU TeXmacs, see http://www.texmacs.org.
Installation of emacs in Linux is quite smooth, although it depends on the Linux

distribution; usually it is enough to select the package emacs in your favourite package
management tool, like aptitude, synaptic, or kpackage. In order to install emacs on
Windows one has to work a little bit more. See here [6] for more information. Assuming
that emacs it is installed and working, the Reduce IDE for emacs can be found here [11].
We refer to their guide for the installation (the procedure is the same for both Linux
and Windows). I tested the IDE with emacs 23.2.1 under Debian-based Linux systems
(Debian Etch and Squeeze 32-bit and 64-bit, Ubuntu 11.04 64-bit) and Windows XP
and it works fine for me.
Suppose you have emacs and its Reduce IDE installed, then there is a last configu-

ration step that will make emacs and Reduce work together. Namely, when opening
for the first time a Reduce program file with emacs, go to the REDUCE>Customize...

menu item and locate the ‘Reduce run Program’ item. This item contains the command
which is issued by emacs from the Reduce IDE when the menu item Run REDUCE>Run

REDUCE is selected. Change the command to:

• under Linux (user and location as above):

reduce -w

• under Windows (user and locations as above):

reduce.exe

This setting will run Reduce inside emacs. If you prefer the (slower) graphical interface
to Reduce, remove ‘-w’. Note that the graphical interface will produce LATEX output,
making it much more readable. This behaviour can be turned off in the graphical
interface by issuing the command off fancy;.

http://www.texmacs.org
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3. Working with CDE

All programs that we will discuss in this manual can be found inside the subfolder
examples of the main directory of CDE. There are some conventions that I adopted on
writing programs which use CDE.

• Test files have the following names:

equationname typeofcomputation.red

where equationname stands for the shortened name of the equation (e.g. Ko-
rteweg–de Vries is always indicated by kdv), and typeofcomputation stands
for the type of geometric object which is computed with the given file, for
example symmetries, Hamiltonian operators, etc.. This string also includes a
version number. The extension .red will tell emacs to load the reduce-ide mode
(provided you made the installation steps described in the reduce-ide guides).

• More specific information, like the date and more details on the computation
done in each version, are included as comment lines at the very beginning of
each file.

If you use a generic editor, as soon as you are finished writing a program, you may run
it from within Reduce by following the instructions in the previous section.
In emacs with Reduce IDE it is easier: issuing the command M-x run-reduce (or

choosing the menu item Run REDUCE>Run REDUCE) will split the window in two halves
and start Reduce in the bottom half. You may use either CSL or PSL Reduce: they are
two different interpreters of the low-level programming language of Reduce, Standard
Lisp. Reduce shows up the type of interpreter at startup, see 2.1. At the moment, tests
by CDE computations show that the CSL interpreter is considerably faster than the
PSL interpreter.
Then you may load the program file that you were editing (suppose that its name

is program.red) by issuing in "program.red"; at the Reduce prompt. In fact, emacs
lets Reduce assume as its working directory the directory of the file that you were
editing.
NOTE: at the time of writing the package CDE is being included into the main

Reduce source tree. So, it is not likely that it will be contained in any old binary

distribution. If this is the case, please put your program file in the main CDE directory

is, in order to allow Reduce to find the main file cde.red and then all others.

Results of a computation consist of the values of one or more unknown. Suppose
that the unknown’s name is sym, and assume that, after a computation, you wish to
save the values of sym, possibly for future use from within Reduce. Issue the following
Reduce commands (of course, after you finish your computations!):

off nat;

out "file_res.red";

sym:=sym;

shut "file_res.red";

on nat;

The above commands will write the content of sym into the file file res.red, where
file stands for a filename which follows the above convention. The command off nat;

is needed in order to save the variable in a format which could be imported in future
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Reduce sessions. If you wish to translate your results in LATEX, see the package tri and
its own documentation.
Working remotely with Reduce is not difficult and it is highly recommended for

big computations that a server can run more efficiently and without interruptions. A
method of choice to do this is described by the following steps:

(1) login to the remote server with ssh;
(2) start emacs as a daemon on the server by the command emacs --daemon (only

from version 23.1!);
(3) run emacsclient -c file.red. That program will connect to the emacs dae-

mon and open the requested file.
(4) run Reduce (if you installed the reduce IDE everything is easier, otherwise you

should open a shell within emacs and issue the command reduce);
(5) exit emacsclient normally (C-x C-c). This will not kill the daemon, that will

keep your computation running until the end.
(6) login again when you wish to check the computation.

In next sections we will describe some examples of computations with CDE. The
parts which are shared between all examples are described only once. We stress that
all computations presented in this document can be downloaded at the GDEQ website
[2], and that they are run in the Reduce environment by typing in "program.red"; at
the Reduce prompt, as explained above. Moreover, all examples can be run at once by
the shell script cdiff.sh to test if the system is working properly and results are the
same as obtained previously.
Each computation consists of two parts: setting up the jet space and the equation,

and solving the problem using suitable ansatz for the unknown functions. We will
emphasize this division only in the first example.
Remark. The mathematical framework on which the computations are based can

be found in [12].

4. Higher symmetries

In this section we show the computation of (some) higher (or generalized, [31]) sym-
metries of Burgers’equation B = ut − uxx + 2uux = 0.
We provide two ways to solve the equations for higher symmetries. The first possi-

bility is to use dimensional analysis. The idea is that one can use the scale symmetries
of Burgers’equation to assign “gradings” to each variable appearing in the equation
(in other words, one can use dimensional analisys). As a consequence, one could try
different ansatz for symmetries with polynomial generating functions. For example, it
is possible to require that they are sum of monomials of given degrees. This ansatz
yields a simplification of the equations for symmetries, because it is possible to solve
them in a “graded” way, i.e., it is possible to split them into several equations made by
the homogeneous components of the equation for symmetries with respect to gradings.
In particular, Burgers’equation translates into the following dimensional equation:

[ut] = [uxx], [uxx] = [2uux].

By the rules [uz] = [u]− [z] and [uv] = [u] + [v], and choosing [x] = −1, we have [u] = 1
and [t] = −2. This will be used to generate the list of homogeneous monomials of given
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grading to be used in the ansatz about the structure of the generating function of the
symmetries.
The file for the above computation is bur hsy1.red and the results of the computa-

tion are in results/bur hsy1 res.red.
Another possibility to solve the equation for higher symmetries is to use a PDE solver

that is especially devoted to overdetermined systems, which is the distinguishing feature
of systems coming from the symmetry analysis of PDEs. This approach is described
below. The file for the above computation is bur hsy2.red and the results of the
computation are in results/bur hsy2 res.red.

4.1. Setting up the jet space and the differential equation. The program that
builds total derivatives restricted to the given equation has to be loaded in the begin-
ning:

in "cde.red";

Then, CDE needs to know the variables, their scale degree and the maximal order
of derivatives at which it will compute differential consequences of the given equation.
The input is done in this way:

indep_var:={x,t}$

dep_var:={u}$

odd_var:={p}$

deg_indep_var:={-1,-2}$

deg_dep_var:={1}$

deg_odd_var:={0}$

total_order:=10$

Here

• indep var is the list of independent variables;
• dep var is the list of dependent variables;
• odd var is the list of odd variables (not used in this computation – just a dummy
variable);

• deg indep var is the list of scale degrees of the independent variables;
• deg dep var is the list of scale degrees of the dependent variables;
• deg odd var is the list of scale degrees of odd variables (not used in this com-
putation);

• total order is the maximal order of derivatives at which the program will
compute differential consequences of the given equation;

Two more parameters can be set for convenience:

statename:="bur_hsy1_state.red"$

resname:="bur_hsy1_res.red"$

These are the name of the output file for recording the internal state of the program
cde.red, including the total derivatives, and the name of the file containing results of
the computation.
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We now give the equation in the form of one of the derivatives equated to a right-
hand side expression. The left-hand side derivative is called principal, and the remain-
ing derivatives are called parametric1. Parametric coordinates are coordinates on the
equation manifold and its differential consequences, and principal coordinates can be
deduced from the differential equation and its differential consequences. For scalar evo-
lutionary equations with two independent variables parametric derivatives are of the
type (u, ux, uxx, . . .). Note that the system must be in passive orthonomic form; this
also means that there will be no nontrivial integrability conditions between parametric
derivatives. (Lines beginning with % are comments for Reduce.)

% left-hand side of the differential equation

principal_der:={u_t}$

% right-hand side of the differential equation

de:={u_2x+2*u*u_x}$

% same construction for odd coordinates

principal_odd:={p_t}$

de_odd:={-p_2x+2*u*p_x}$

In this computation the odd equation will not have any role, but it must be present
even for purely even computations. In order to speed up computations one could set
de odd to be zero.
The main routine in cde.red is called as follows:

cde({indep_var,dep_var,odd_var,total_order},

{{principal_der,de},{principal_odd,de_odd}})$

The function cde defines total derivatives truncated at the order total order and
restricted on the (even and odd) equation; this means that total derivatives are tangent
to the equation manifold. Their coordinate expressions are of the form

(1) Dλ =
∂

∂xλ
+

∑

ui
σ

parametric

ui
σλ

∂

∂ui
σ

+
∑

pi
σ

parametric

pi
σλ

∂

∂pi
σ

,

where σ is a multiindex. It can happen that ui
σλ (or pi

σλ) is principal and must be
replaced with differential consequences of the equation. Such differential consequences
are called primary differential consequences, and are computed; in general they will
depend on other, possibly new, differential consequences, and so on. Such newly ap-
pearing differential consequences are called secondary differential consequences. If the
equation is in passive orthonomic form, the system of all differential consequences (up
to the maximal order total order) must be solvable in terms of parametric derivatives
only. The function cde automatically computes all necessary and sufficient differential
consequences which are needed to solve the system.
Note that when in total derivatives there is a coefficient of order higher than maximal

this is replaced by the string letop. If such a string appears during computations it
is likely that we went too close to the highest order variables that we defined in the
file. This could mean that we need to extend the operators and variable list, just by
increasing the number total order. Later on we will describe a useful test to check
the absence of letop from a computation.

1This terminology dates back to Riquier, see [25]
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The output generated by the function cde is not a result of the computation, but it
can be useful for debugging purposes or for storing intermediate computations to be
reused later. It can be saved by the function:

save_cde_state(statename)$

4.2. Solving the problem via dimensional analysis. Higher symmetries of the
given equation are functions sym depending on parametric coordinates up to some jet
space order. We assume that they are graded polynomials of all parametric derivatives.
In practice, we generate a linear combination of graded monomials with arbitrary co-
efficients, then we plug it in the equation of the problem and find conditions on the
coefficients that fulfill the equation. To construct a good ansatz, it is required to make
several attempts with different gradings, possibly including independent variables, etc..
For this reason, ansatz-constructing functions are especially verbose. In order to use
such functions they must be initialized with the following command:

cde_grading(deg_indep_var,deg_dep_var,deg_odd_var)$

We need one operator equ whose components will be the equation of higher symme-
tries and its consequences. Moreover, we need an operator c which will play the role of
a vector of constants, indexed by a counter ctel:

ctel:=0;

operator c,equ;

We prepare a list of variables ordered by scale degree:

graadlijst:=der_deg_ordering(0,all_parametric_der)$

The function der deg ordering is defined in cde.red. It produces the given list using
the list all parametric der of all parametric derivatives of the given equation up to
the order total order. The first two parameters can assume the values 0 or 1 and say
that we are considering even variables and that the variables are of parametric type.
Then, due to the fact that all parametric variables have positive scale degree then we

prepare the list ansatz of all graded monomials of scale degree from 0 to 5

graadmon:=for i:=1:5 collect mkvarlist1(i,i)$

graadmon:={1} . graadmon$

ansatz:=for each el in graadmon join el$

More precisely, the command mkvarlist1(i,i) produces a list of monomials of degree
i from the list of graded variables graadlijst; the second command adds the zero-
degree monomial; and the last command produces a single list of all monomials.
Finally, we assume that the higher symmetry is a graded polynomial obtained from

the above monomials (so, it is independent of x and t!)

sym:=(for each el in ansatz sum (c(ctel:=ctel+1)*el))$

Next, we define the equation ℓB(sym) = 0. Here, ℓB stands for the linearization, or
Fréchet derivative of the function B, where B = 0 is Burgers’equation. A function sym

that fulfills the above equation is an higher symmetry.

equ 1:=ddt(sym)-ddx(ddx(sym))-2*u*ddx(sym)-2*u_x*sym ;

In the above equation total derivatives with respect to x, t are ddx, ddt. The list of
variables, to be passed to the equation solver:
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vars:=append(indep_var,all_parametric_der);

The number of initial equation(s):

tel:=1;

Next command initializes the equation solver. It passes

• the equation vector equ togeher with its length tel (i.e., the total number of
equations);

• the list of variables with respect to which the systemmust not split the equations,
i.e., variables with respect to which the unknowns are not polynomial. In this
case this list is just {};

• the constants’vector c, its length ctel, and the number of negative indexes if
any; just 0 in our example;

• the vector of free functions f that may appear in computations. Note that in
{f,0,0 } the second 0 stands for the length of the vector of free functions. In
this example there are no free functions, but the command needs the presence
of at least a dummy argument, f in this case. There is also a last zero which is
the negative length of the vector f , just as for constants.

initialize_equations(equ,tel,{},{c,ctel,0},{f,0,0});

Run the procedure splitvars on the first component of equ in order to obtain equations
on coefficiens of each monomial.

splitvars 1;

Next command tells the solver the total number of equations obtained after running
splitvars.

put_equations_used tel;

This command solves the equations for the coefficients. Note that we have to skip the
initial equations!

for i:=2:tel do integrate_equation i;

;end;

The output is written in the result file by the commands

off echo$

off nat$

out <<resname>>;

sym:=sym;

write ";end;";

shut <<resname>>;

on nat$

on echo$

The command off nat turns off writing in natural notation; results in this form are
better only for visualization, not for writing or for input into another computation. The
command <<resname>> forces the evaluation of the variable resname to its string value.
The commands out and shut are for file opening and closing. The command sym:=sym

is evaluated only on the right-hand side.
One more example file is available; it concerns higher symmetries of the KdV equation.

In order to deal with symmetries explicitely depending on x and t it is possible to
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use Reduce and CDE commands in order to have sym = x*(something of degree 3) +

t*(something of degree 5) + (something of degree 2); this yields scale symmetries. Or we
could use sym = x*(something of degree 1) + t*(something of degree 3) + (something
of degree 0); this yields Galilean boosts.

4.3. Solving the problem using CRACK. CRACK is a PDE solver which is devoted
mostly to the solution of overdetermined PDE systems [37, 39]. Several mathematical
problems have been solved by the help of CRACK, like finding symmetries [36, 38] and
conservation laws [35]. The aim of CDE is to provide a tool for computations with total
derivatives, but it can be used to compute symmetries too. In this subsection we show
how to interface CDE with CRACK in order to find higher (or generalized) symmetries
for the Burgers’equation. To do that, after loading CDE and introducing the equation,
the operator of linearization should be defined:

operator ell_b$

for all sym let ell_b(sym)=ddt(sym)-ddx(ddx(sym))-2*u*ddx(sym)-2*u_x*sym$

We introduce the new unknown function ‘ansatz’. We assume that the function depends
on parametric variables of order not higher than 3. The variables are selected by the
function selectvars of CDE as follows:

even_vars:=for i:=0:3 join selectvars(0,i,dep_var,all_parametric_der)$

In the arguments of selectvars, 0 means that we want even variables, i stands for
the order of variables, dep var stands for the dependent variables to be selected by
the command (here we use all dependent variables), all parametric der is the set
of variables where the function will extract the variables with the required properties.
In the current example we wish to get all higher symmetries depending on parametric
variables of order not higher than 3.

The dependency of ansatz from the variables is given with the standard Reduce

command depend:

for each el in even_vars do depend(ansatz,el)$

The equation to be solved is the equation ell b(ansatz)=0, hence we give the command

total_eq:=ell_b(ansatz)$

Another command is a safety measure agains the possibility that the application of the
operator ell b to the function ansatz yields a result which is of order higher than that
of the current CDE jet space:

check_letop({total_eq})$

The above command will issue an error if the list {total eq} depends on the flag
variable letop. That variable appears when total derivatives shift the order of jet
space coordinates our of the current CDE jet space.
The equation ell b(ansatz)=0 is polynomial with respect to the variables of order

higher than those appearing in ansatz. For this reason, its coefficients can be put to
zero independently. This is the reason why the PDEs that determine symmetries are
overdetermined. To tell this to CRACK, we issue the command

split_vars:=diffset(all_parametric_der,even_vars)$

The list split vars contains variables which are in the current CDE jet space but not
in even vars.
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Then, we load the package CRACK and get results.

load_package crack;

crack_results:=crack(total_eq,{},{ansatz},split_vars);

The results are in the variable crack results:

{{{},

{ansatz=(2*c_12*u_x + 2*c_13*u*u_x + c_13*u_2x + 6*c_8*u**2*u_x

+ 6*c_8*u*u_2x + 2*c_8*u_3x + 6*c_8*u_x**2)/2},

{c_8,c_13,c_12},

{}}}$

So, we have three symmetries; of course the generalized symmetry corresponds to c 8.
Remember to check always the output of CRACK to see if any of the symbols c n is
indeed a free function depending on some of the variables, and not just a constant.

5. Local conservation laws

In this section we will find (some) local conservation laws for the KdV equation
F = ut−uxxx+uux = 0. Concretely, we have to find non-trivial 1-forms f = fxdx+ftdt
on F = 0 such that d̄f = 0 on F = 0. “Triviality” of conservation laws is a delicate
matter, for which we invite the reader to have a look in [12].
The files containing this example are kdv lcl1,kdv lcl2 and the corresponding re-

sults and debug files.
We suppose that the conservation law has the form ω = fxdx+ ftdt. Using the same

ansatz as in the previous example we assume

fx:=(for each el in ansatz sum (c(ctel:=ctel+1)*el))$

ft:=(for each el in ansatz sum (c(ctel:=ctel+1)*el))$

Next we define the equation d̄(ω) = 0, where d̄ is the total exterior derivative restricted
to the equation.

equ 1:=ddt(fx)-ddx(ft)$

After solving the equation as in the above example we get

fx := c(3)*u_x + c(2)*u + c(1)$

ft := (2*c(8) + 2*c(3)*u*u_x + 2*c(3)*u_3x + c(2)*u**2 +

2*c(2)*u_2x)/2$

Unfortunately it is clear that the conservation law corresponding to c(3) is trivial,
because it is just the KdV equation. Here this fact is evident; how to get rid of less
evident trivialities by an ‘automatic’ mechanism? We considered this problem in the
file kdv lcl2, where we solved the equation

equ 1:=fx-ddx(f0);

equ 2:=ft-ddt(f0);

after having loaded the values fx and ft found by the previous program. In order to
do that we have to introduce two new counters:

operator cc,equ;

cctel:=0;

We make the following ansatz on f0:
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f0:=(for each el in ansatz sum (cc(cctel:=cctel+1)*el))$

After solving the system, issuing the commands

fxnontriv := fx-ddx(f0);

ftnontriv := ft-ddt(f0);

we obtain

fxnontriv := c(2)*u + c(1)$

ftnontriv := (2*c(8) + c(2)*u**2 + 2*c(2)*u_2x)/2$

This mechanism can be easily generalized to situations in which the conservation laws
which are found by the program are difficult to treat by pen and paper. However, we
will present another approach to the computation of conservation laws in subsection 8.3.

6. Local Hamiltonian operators

In this section we will show how to compute local Hamiltonian operators for Korteweg–
de Vries, Boussinesq and Kadomtsev–Petviashvili equations. It is interesting to note
that we will adopt the same computational scheme for both equations, even if the latter
is not in evolutionary form and it has more than two independent variables. This comes
from a new mathematical theory which started in [19] for evolution equations and was
later extended to general differential equations in [21].

6.1. Korteweg–de Vries equation. Here we will find local Hamiltonian operators
for the KdV equation ut = uxxx + uux. A necessary condition for an operator to be
Hamiltonian is that it sends generating functions (or characteristics, according with
[31]) of conservation laws to higher (or generalized) symmetries. As it is proved in [19],
this amounts at solving ℓ̄KdV (phi) = 0 over the equation

{

ut = uxxx + uux
pt = pxxx + upx

or, in geometric terminology, find the shadows of symmetries on the ℓ∗-covering of
the KdV equation, with the further condition that the shadows must be linear in the
p-variables.
The file containing this example is kdv lho1.
We stress that the linearization ℓ̄KdV (phi) = 0 is the equation

ddt(phi)-u*ddx(phi)-u_x*phi-ddx(ddx(ddx(phi)))=0

but the total derivatives are lifted to the ℓ∗ covering, hence they must contain also
derivatives with respect to p’s. This will be achieved by treating p variables as odd and
introducing the odd parts of ddx and ddt.
At this point we should discuss how CDE treats odd variables. Externally they

look just like even variables, and are indicated by a letter followed by a multiindex.
Internally, they are components of an operator: ext(1), ext(2), ext(3), . . . , and
they are endowed with a skew-symmetric product. There are CDE commands which
translate expressions involving odd variables. Namely, to replace in the expression f

odd variables with ext variables (for example, for computations with CDE), do

replace_oddext(f);

and do
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replace_extodd(g);

if you wish to translate a result g of CDE computations, depending on skew-symmetric
internal variables ext, in a more readable form in terms of odd variables.
The ansatz must be generalized to odd variables. To this aim we produce two lists:

the list graadlijst of all even variables collected by their gradings and a similar list
graadlijst odd for odd variables:

graadlijst:=der_deg_ordering(0,all_parametric_der)$

graadlijst_odd:={1} . der_deg_ordering(1,all_parametric_odd)$

graadmon:=for i:=1:10 collect mkvarlist1(i,i)$

graadmon:={1} . graadmon$

In particular, the unknown must be linear in odd variables, so we need a list of graded
monomials which are linear in odd variables. The function mkalllinodd produces all
monomials which are linear with respect to the variables from graadlijst odd, have
(monomial) coefficients from the variables in graadlijst, and have total scale degrees
from 1 to 6. Such monomials are then converted to the internal representation of odd
variables.

linodd:=mkalllinodd(graadmon,graadlijst_odd,1,6)$

linext:=replace_oddext(linodd)$

Note that all odd variables have positive scale degrees thanks to our initial choice
deg odd var:=1;. Finally, the ansatz for local Hamiltonian operators:

sym:=(for each el in linext sum (c(ctel:=ctel+1)*el))$

After having set

equ 1:=ddt(sym)-u*ddx(sym)-u_x*sym-ddx(ddx(ddx(sym)));

and having initialized the equation solver as before, we do splitext

splitext 1;

in order to split the polynomial equation with respect to the ext variables, then
splitvars

tel1:=tel;

for i:=2:tel1 do begin splitvars i;equ i:=0;end;

in order to split the resulting polynomial equation in a list of equations on the coefficients
of all monomials.
Now we are ready to solve all equations:

put_equations_used tel;

for i:=2:tel do integrate_equation i;

end;

Note that we want all equations to be solved!
The results are the two well-known Hamiltonian operators for the KdV. If we issue

the command

sym_odd:=replace_extodd(sym)$

then the variable sym odd will be expressed in the human-readable notation:

sym_odd := (c(5)*p*u_x + 2*c(5)*p_x*u + 3*c(5)*p_3x + 3*c(2)*p_x)/3$
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Note the internal and external expressions of the result. Of course, the results corre-
spond to the operators

px → Dx,

1

3
(3p3x + 2upx + uxp) →

1

3
(3Dxxx + 2uDx + ux)

Note that each operator is multiplied by one arbitrary real constant, c(5) and c(2).
The same problem can be approached using CRACK, as follows (file kdv lho2.red).

An ansatz is constructed by the following instructions:

even_vars:=for i:=0:3 join selectvars(0,i,dep_var,all_parametric_der)$

odd_vars:=for i:=0:3 join selectvars(1,i,odd_var,all_parametric_odd)$

ext_vars:=replace_oddext(odd_vars)$

ctemp:=0$

ansatz:=for each el in ext_vars sum mkid(s,ctemp:=ctemp+1)*el$

Note that we have (after replacement of internal variables with odd variables):

ansatz_odd := p*s1 + p_2x*s3 + p_3x*s4 + p_x*s2$

Indeed, we are looking for a third-order operator whose coefficients depend on variables
of order not higher than 3. This last property has to be introduced by

unk:=for i:=1:ctemp collect mkid(s,i)$

for each ell in unk do

for each el in even_vars do depend ell,el$

Then, we introduce the linearization (lifted on the cotangent covering)

operator ell_f$

for all sym let ell_f(sym)=

ddt(sym)-u*ddx(sym)-u_x*sym-ddx(ddx(ddx(sym)))$

and the equation to be solved, together with the usual test that checks for the nedd to
enlarge the jet space:

total_eq:=ell_f(ansatz)$

check_letop({total_eq})$

Finally, we split the above equation by collecting all coefficients of odd variables:

coeff_ext:=operator_coeff(total_eq,ext)$

system_eq:=for i:=2:length(coeff_ext) collect second(part(coeff_ext,i))$

and we feed CRACK with the equations that consist in asking to the above coefficients
to be zero:

load_package crack;

crack_results:=crack(system_eq,{},unk,

diffset(all_parametric_der,even_vars));

The results are the same as in the previous section:

crack_results := {{{},

{s4=(3*c_17)/2,s3=0,s2=c_16 + c_17*u,s1=(c_17*u_x)/2},

{c_17,c_16},

{}}}$
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6.2. Boussinesq equation. There is no conceptual difference when computing for
systems of PDEs with respect to the previous computations for scalar equations. We
will look for Hamiltonian structures for the following Boussinesq equation:

(2)

{

ut − uxv − uvx − σvxxx = 0
vt − ux − vvx = 0

where σ is a constant. This example also shows how to deal with jet spaces with more
than one dependent variable. Here gradings can be taken as

[t] = −2, [x] = −1, [v] = 1, [u] = 2, [p] = 1, [q] = 2

where p, q are the two coordinates in the space of generating functions of conservation
laws.
The linearization of the above system and its adjoint are, respectively

ℓBou =

(

Dt − vDx − vx −ux − uDx − σDxxx

−Dx Dt − vx − vDx

)

, ℓ∗Bou =

(

−Dt + vDx Dx

uDx + σDxxx −Dt + vDx

)

and lead to the ℓ∗Bou covering equation














−pt + vpx + qx = 0
upx + σpxxx − qt + vqx = 0
ut − uxv − uvx − σvxxx = 0
vt − ux − vvx = 0

We have to find shadows of symmetries on the above covering. At the level of source
file (bou lho1 test) the input data is:

indep_var:={x,t}$

dep_var:={u,v}$

odd_var:={p,q}$

deg_indep_var:={-1,-2}$

deg_dep_var:={2,1}$

deg_odd_var:={1,2}$

total_order:=8$

principal_der:={u_t,v_t}$

de:={u_x*v+u*v_x+sig*v_3x,u_x+v*v_x}$

principal_odd:={p_t,q_t}$

de_odd:={v*p_x+q_x,u*p_x+sig*p_3x+v*q_x}$

The ansatz for the components of the Hamiltonian operator, of scale degree between 1
and 6, is

linodd:=mkalllinodd(graadmon,graadlijst_odd,1,6)$

linext:=replace_oddext(linodd)$

phi1:=(for each el in linext sum (c(ctel:=ctel+1)*el))$

phi2:=(for each el in linext sum (c(ctel:=ctel+1)*el))$

and the equation for shadows of symmetries is

equ 1:=ddt(phi1)-v*ddx(phi1)-v_x*phi1-u_x*phi2-

u*ddx(phi2)-sig*ddx(ddx(ddx(phi2)));

equ 2:=-ddx(phi1)-v*ddx(phi2)-v_x*phi2+ddt(phi2);
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After the usual procedures for decomposing polynomials we obtain three local Hamil-
tonian operators:

phi1_odd := (2*c(31)*p*sig*v_3x + 2*c(31)*p*u*v_x + 2*c(31)*p*u_x*v + 6*c(31)*

p_2x*sig*v_x + 4*c(31)*p_3x*sig*v + 6*c(31)*p_x*sig*v_2x + 4*c(31)*p_x*u*v + 2*c

(31)*q*u_x + 4*c(31)*q_3x*sig + 4*c(31)*q_x*u + c(31)*q_x*v**2 + 2*c(16)*p*u_x +

4*c(16)*p_3x*sig + 4*c(16)*p_x*u + 2*c(16)*q_x*v + 2*c(10)*q_x)/2$

phi2_odd := (2*c(31)*p*u_x + 2*c(31)*p*v*v_x + 4*c(31)*p_3x*sig + 4*c(31)*p_x*u

+ c(31)*p_x*v**2 + 2*c(31)*q*v_x + 4*c(31)*q_x*v + 2*c(16)*p*v_x + 2*c(16)*p_x*v

+ 4*c(16)*q_x + 2*c(10)*p_x)/2$

There is a whole hierarchy of nonlocal Hamiltonian operators [19].

6.3. Kadomtsev–Petviashvili equation. There is no conceptual difference in sym-
bolic computations of Hamiltonian operators for PDEs in 2 independent variables and
in more than 2 independent variables, regardless of the fact that the equation at hand
is written in evolutionary form. As a model example, we consider the KP equation

(3) uyy = utx − u2x − uuxx −
1

12
uxxxx.

Proceeding as in the above examples we input the following data:

indep_var:={t,x,y}$

dep_var:={u}$

odd_var:={p}$

deg_indep_var:={-3,-2,-1}$

deg_dep_var:={2}$

deg_odd_var:={1}$

total_order:=6$

principal_der:={u_2y}$

de:={u_tx-u_x**2-u*u_2x-(1/12)*u_4x}$

principal_odd:={p_2y}$

de_odd:={p_tx-u*p_2x-(1/12)*p_4x}$

and look for Hamiltonian operators of scale degree between 1 and 5:

linodd:=mkalllinodd(graadmon,graadlijst_odd,1,5)$

linext:=replace_oddext(linodd)$

phi:=(for each el in linext sum (c(ctel:=ctel+1)*el))$

After solving the equation for shadows of symmetries in the cotangent covering

equ 1:=ddy(ddy(phi))-ddt(ddx(phi))+2*u_x*ddx(phi)

+u_2x*phi+u*ddx(ddx(phi))+(1/12)*ddx(ddx(ddx(ddx(phi))))$

we get the only local Hamiltonian operator

phi_odd := c(13)*p_2x$

As far as we know there are no further local Hamiltonian operators.
Remark: the above Hamiltonian operator is already known in an evolutionary pre-

sentation of the KP equation [24]. Our mathematical theory of Hamiltonian operators
for general differential equations [21] allows us to formulate and solve the problem for
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any presentation of the KP equation. Change of coordinate formulae could also be
provided.

7. The Schouten bracket of local Hamiltonian operators

It is known [19] that the Schouten bracket between local candidates to Hamiltonian
operators can be computed in terms of their equivalent linear functions on the cotangent
covering. Such linear functions must be rewritten as bivectors, then the bracket can
be computed; it will produce an equivalence class of three-vectors which are defined
modulo total divergencies. So, to check that such a three-vector is zero we should apply
to it the Euler operator and check if the result is zero.
More precisely, consider a differential equation F = 0 and its cotangent covering

ℓ∗F (p) = 0, F = 0. Let H i
1, H

i
2 be shadows of symmetries of the cotangent covering

which are linear in p-variables:

H i
j = aik σpk σ, j = 1, 2,

where ai σ are functions defined on F = 0, i.e., functions of the parametric coordinates.
Then the corresponding bivectors are written as

Hj = aik σpk σpi.

Note that the product pk σpi is anticommutative since p’s are odd variables. Then, the
formula for the Schouten bracket is

[H1, H2] =
δH1

δuj
δH2

δpj
+
δH2

δuj
δH1

δpj

The above formula produces a three-vector. If we would like to check that the three-
vector is indeed a total divergence, we should apply the Euler operator, and check that
it is zero:

E([H1, H2]) = 0.

With the above formula one can check Hamiltonianity [H1, H1] = 0 and compatibility
[H1, H2] = 0.

7.1. Bi-Hamiltonian structure of the KdV equation. We can do the above com-
putations using KdV equation as a test case (see the file kdv lho3.red).
Let us load the above operators:

operator ham1;

for all psi1 let ham1(psi1)=ddx(psi1);

operator ham2;

for all psi2 let ham2(psi2)=(1/3)*u_x*psi2 + ddx(ddx(ddx(psi2)))

+ (2/3)*u*ddx(psi2);

We may convert the two operators into the corresponding generating functions. This
amounts at evaluating the operators in the odd variable p:

sym1:=conv_cdiff2genfun(ham1);

sym2:=conv_cdiff2genfun(ham2);

The output of the above two command is, respectively,

sym1 := {p_x};

sym2 := {(1/3)*p*u_x + p_3x + (2/3)*p_x*u};
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Then we shall convert the two generating functions into bivectors:

biv1 := conv_genfun2biv(sym1_odd);

biv2 := conv_genfun2biv(sym2_odd);

The output of the above commands is the internal notation for bivectors, which is hard
to understand; in a short time a more readable form will be available.
Finally, the three Schouten brackets [Bi, Bj] are computed, with i, j = 1, 2:

sb11 := schouten_bracket(biv1,biv1);

sb12 := schouten_bracket(biv1,biv2);

sb22 := schouten_bracket(biv2,biv2);

7.2. Bi-Hamiltonian structure of the WDVV equation. This subsection refers
to the the example file wdvv biham1.red. The simplest nontrivial case of the WDVV
equations is the third-order Monge–Ampère equation, fttt = f 2

xxt − fxxxfxtt [14]. This
PDE can be transformed into hydrodynamic form,

at = bx, bt = cx, ct = (b2 − ac)x,

via the change of variables a = fxxx, b = fxxt, c = fxtt. This system possesses two
Hamiltonian formulations [17]:





a
b
c





t

= Ai





δHi/δa
δHi/δb
δHi/δc



 , i = 1, 2

with the homogeneous first-order Hamiltonian operator

Â1 =





−3
2
Dx

1
2
Dxa Dxb

1
2
aDx

1
2
(Dxb+ bDx)

3
2
cDx + cx

bDx
3
2
Dxc− cx (b2 − ac)Dx +Dx(b

2 − ac)





with the Hamiltonian H1 =
∫

c dx, and the homogeneous third-order Hamiltonian op-
erator

A2 = Dx





0 0 Dx

0 Dx −Dxa
Dx −aDx Dxb+ bDx + aDxa



Dx,

with the nonlocal Hamiltonian

H2 = −

∫ (

1

2
a
(

Dx
−1b

)2
+Dx

−1bDx
−1c

)

dx.

Both operators are of Dubrovin–Novikov type [15, 16]. This means that the operators
are homogeneous with respect to the grading |Dx| = 1. It follows that the operators
are form-invariant under point transformations of the dependent variables, ui = ui(ũj).
Here and in what follows we will use the letters ui to denote the dependent variables
(a, b, c). Under such transformations, the coefficients of the operators transform as
differential-geometric objects.
The operator A1 has the general structure

A1 = gij1 Dx + Γij

k u
k
x
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where the covariant metric g1 ij is flat, Γ
ij

k = gis1 Γ
j

sk (here gij1 is the inverse matrix that

represent the contravariant metric induced by g1 ij), and Γj

sk are the usual Christoffel
symbols of g1 ij.
The operator A2 has the general structure

(4) A2 = Dx

(

gij2 Dx + cijk u
k
x

)

Dx,

where the inverse g2 ij of the leading term transforms as a covariant pseudo-Riemannian
metric. From now on we drop the subscript 2 for the metric of A2. It was proved in
[18] that, if we set cijk = giqgjpc

pq

k , then

cijk =
1

3
(gik,j − gij,k)

and the metric fulfills the following identity:

(5) gmk,n + gkn,m + gmn,k = 0.

This means that the metric is a Monge metric [18]. In particular, its coefficients are
quadratic in the variables ui. It is easy to input the two operators in CDE. Let us start
by A1: we may define its entries one by one as follows

operator a1;

for all psi let a1(1,1,psi) = - (3/2)*ddx(psi);

for all psi let a1(1,2,psi) = (1/2)*ddx(a*psi);

...

We could also use one specialized Reduce package for the computation of the Christoffel
symbols, like RedTen or GRG. Assuming that the operators gamma hi(i,j,k) have been
defined equal to Γij

k and computed in the system using the inverse matrix gij of the
leading coefficient contravariant metric2

gij =





−3
2

1
2
a b

1
2
a b 3

2
c

b 3
2
c 2(b2 − ac)





then, provided we defined a list dep var of the dependent variables, we could set

operator gamma_hi_con;

for all i,j let gamma_hi_con(i,j) =

(

for k:=1:3 sum gamma_hi(i,j,k)*mkid(part(dep_var,k),!_x)

)$

and

operator a1$

for all i,j,psi let a1(i,j,psi) =

gu1(i,j)*ddx(ddx(psi))+(for k:=1:3 sum gamma_hi_con(i,j)*ddx(psi)

)$

2Indeed in the example file wdvv biham1.red there are procedures for computing all those quantities.
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The third order operator can be reconstructed as follows. Observe that the leading
contravariant metric is

gij =





0 0 1
0 1 −a
1 −a 2b+ a2





Introduce the above matrix in Reduce as gu3. Then set

gu3:=gl3**(-1)$

and define cijk as

operator c_lo$

for i:=1:3 do

for j:=1:3 do

for k:=1:3 do

<<

c_lo(i,j,k):=

(1/3)*(df(gl3(k,i),part(dep_var,j)) - df(gl3(j,i),part(dep_var,k)))$

>>$

Then define cijk
templist:={}$

operator c_hi$

for i:=1:ncomp do

for j:=1:ncomp do

for k:=1:ncomp do

c_hi(i,j,k):=

<<

templist:=

for m:=1:ncomp join

for n:=1:ncomp collect

gu3(n,i)*gu3(m,j)*c_lo(m,n,k)$

templist:=part(templist,0):=plus

>>$

Introduce the contracted operator

operator c_hi_con$

for i:=1:ncomp do

for j:=1:ncomp do

c_hi_con(i,j):=

<<

templist:=for k:=1:ncomp collect

c_hi(i,j,k)*mkid(part(dep_var,k),!_x)$

templist:=part(templist,0):=plus

>>$

Finally, define the operator A2

operator aa2$

for all i,j,psi let aa2(i,j,psi) =

ddx(
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gu3(i,j)*ddx(ddx(psi))+c_hi_con(i,j)*ddx(psi)

)$

Now, we can test the Hamiltonian property of A1, A2 and their compatibility:

sym1:=conv_cdiff2genfun(aa1)$

sym2:=conv_cdiff2genfun(aa2)$

biv1:=conv_genfun2biv(sym1)$

biv2:=conv_genfun2biv(sym2)$

schouten_bracket(biv1,biv1);

schouten_bracket(biv1,biv2);

schouten_bracket(biv2,biv2);

Needless to say, the result of the last three command is a list of zeroes.
We observe that the same software can be used to prove the bi-Hamiltonianity of a

6-component WDVV system [32].

More formulae are currently being implemented in the system, like symplecticity and
Nijenhuis condition for recursion operators [20]. Interested readers are warmly invited
to contact R. Vitolo for questions/feature requests.

8. Non-local operators

In this section we will show an experimental way to find nonlocal operators. The word
‘experimental’ comes from the lack of a comprehensive mathematical theory of nonlocal
operators. In any case we will achieve the results by means of a covering of the cotangent
covering. Indeed, it can be proved that there is a 1−1 correspondence between (higher)
symmetries of the initial equation and conservation laws on the cotangent covering.
Such conservation laws provide new potential variables, hence a covering (see [12] for
theoretical details on coverings).
In Section 8.3 we will also discuss a procedure for finding conservation laws from

their generating functions that is of independent interest.

8.1. Non-local Hamiltonian operators for the Korteweg–de Vries equation.

Here we will compute some nonlocal Hamiltonian operators for the KdV equation. The
result of the computation (without the details below) has been published in [19].
We have to solve equations of the type ddx(ct)-ddt(cx) as in 5. The main difference

is that we will attempt a solution on the ℓ∗-covering (see Subsection 6). For this
reason, first of all we have to determine covering variables with the usual mechanism of
introducing them through conservation laws, this time on the ℓ∗-covering.
As a first step, let us compute conservation laws on the ℓ∗-covering whose components

are linear in the p’s. This computation can be found in the file kdv nlcl1 and related
results and debug files.
The conservation laws that we are looking for are in 1− 1 correspondence with sym-

metries of the initial equation [19]. We will look for conservatoin laws which correspond
to Galilean boost, x-translation, t-translation at the same time. In the case of 2 inde-
pendent variables and 1 dependent variable, one could prove that one component of
such conservation laws can always be written as sym*p x0t0 as follows:
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c1x_odd:=(t*u_x+1)*p$ % degree 1

c2x_odd:=u_x*p$ % degree 4

c3x_odd:=(u*u_x+u_3x)*p_x0t0$ % degree 6

Of course, we must pass to the internal representation:

c1x:=replace_oddext(c1x_odd)$

c2x:=replace_oddext(c2x_odd)$

c3x:=replace_oddext(c3x_odd)$

The second component must be found by solving an equation. To this aim we produce
the ansatz

c1t_odd:=f1*p+f2*p_x+f3*p_2x$

c1t:=replace_oddext(c1t_odd)$

c2t:=(for each el in linext6 sum (c(ctel:=ctel+1)*el))$ % degree 6

c3t:=(for each el in linext8 sum (c(ctel:=ctel+1)*el))$ % degree 8

where we already introduced the sets linext6 and linext8 of 6-th and 8-th degree
monomials which are linear in odd variables (see the source code). For the first conser-
vation law solutions of the equation

equ 1:=ddx(c1t)-ddt(c1x);

are found by hand due to the presence of ‘t’ in the symmetry:

f3:=t*u_x+1$

f2:=-ddx(f3)$

f1:=u*f3+ddx(ddx(f3))$

We also have the equations

equ 2:=ddx(c2t)-ddt(c2x);

equ 3:=ddx(c3t)-ddt(c3x);

They are solved in the usual way (see the source code of the example and the results
file kdv nlcl1 res).
Now, we solve the equation for shadows of nonlocal symmetries in a covering of the ℓ∗-

covering (source file kdv nlho1 test). We can produce such a covering by introducing
three new nonlocal (potential) variables ra,rb,rc. We are going to look for non-local
Hamiltonian operators depending linearly on one of these variables. To this aim we
modify the odd part of the equation to include the components of the above conservation
laws as the derivatives of the new non-local variables ra, rb, rc:

The scale degree analysis of the local Hamiltonian operators of the KdV equation leads
to the formulation of the ansatz

phi:=(for each el in linext sum (c(ctel:=ctel+1)*el))$

where linext is the list of graded mononials which are linear in odd variables and
have degree 7 (see the source file). The equation for shadows of nonlocal symmetries
in ℓ∗-covering

equ 1:=ddt(phi)-u*ddx(phi)-u_x*phi-ddx(ddx(ddx(phi)));

is solved in the usual way, obtaining (in odd variables notation):
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phi_odd := (c(5)*(4*p*u*u_x + 3*p*u_3x + 18*p_2x*u_x + 12*p_3x*u

+ 9*p_5x + 4*p_x*u**2 + 12*p_x*u_2x - r2*u_x))/4$

Higher non-local Hamiltonian operators could also be found [19]. The CRACK approach
also holds for non-local computations.

8.2. Non-local recursion operator for the Korteweg–de Vries equation. Fol-
lowing the ideas in [19], a differential operator that sends symmetries into symmetries
can be found as a shadow of symmetry on the ℓ-covering of the KdV equation, with
the further condition that the shadows must be linear in the covering q-variables. The
tangent covering of the KdV equation is

{

ut = uxxx + uux
qt = uxq + uqx + qxxx

and we have to solve the equation ℓ̄KdV (phi) = 0, where ℓ̄KdV means that the lineariza-
tion of the KdV equation is lifted over the tangent covering.
The file containing this example is kdv ro1.red. The example closely follows the

computational scheme presented in [23].
Usually, recursion operators are non-local: operators of the form D−1

x appear in their
expression. Geometrically we interpret this kind of operator as follows. We introduce
a conservation law on the cotangent covering of the form

ω = rt dx+ rx dt

where rt = uq + qxx and rx = q. It has the remarkable feature of being linear with
respect to q-variables. A non-local variable r can be introduced as a potential of ω, as
rx = rx, rt = rt. A computation of shadows of symmetries on the system of PDEs















ut = uxxx + uux
qt = uxq + uqx + qxxx
rt = uq + qxx
rx = q

yields, analogously to the previous computations,

2*c(5)*q*u + 3*c(5)*q_2x + c(5)*r*u_x + c(2)*q.

The operator q stands for the identity operator, which is (and must be!) always a
solution; the other solution corresponds to the Lenard operator

3Dxx + 2u+ uxD
−1
x .

8.3. Non-local Hamiltonian-recursion operators for Plebanski equation. The
Plebanski (or second Heavenly) equation

(6) F = uttuxx − u2tx + uxz + uty = 0

is Lagrangian, hence it admits a trivial local Hamiltonian operator which is just the
Noether map. Nonlocal Hamiltonian and recursion operators have been computed in
an evolutionary presentation of the equation in [26]. We can recompute such operators
in the above Lagrangian presentation as follows.
First of all, we remark that in a Lagrangian presentation symmetries and cosym-

metries coincide, since the equation is self-adjoint. This means that the concept of
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Hamiltonian, recursion, symplectic operators coincide. So, instead of trying to find a
variety of operators we may focus on just one type of search.

Then, by introducing a suitable nonlocal variable on the cotangent covering. Namely,
we compute a linear conservation law (with respect to p’s) on the cotangent covering
which corresponds with the u-translation symmetry (see [23] for a theoretical descrip-
tion). After guessing the generating function of the conservation law ψ = (0, 1) from the
generating function ϕ = 1 of the u-translation symmetry , we deduce that the equation

(7) d̄ω = ℓ∗F (p)

should hold on the jet space. Here

ω = ct dx ∧ dy ∧ dz + cx dt ∧ dy ∧ dz + cy dt ∧ dx ∧ dz + cz dt ∧ dx ∧ dy,

where ct, cx, cy, cz are linear functions of p’s and its derivatives, with coefficients in
u’s3, and

d̄ω = (Dtct−Dxcx+Dycy −Dzcz)dt ∧ dx ∧ dy ∧ dz,

where total derivatives are lifted on the jet space of even and odd coordinates.
Then, we try to find representatives of the above conservation law which have not

more than two non-vanishing components. In particular we will solve the equation

(8) Dtct−Dxcx = 0

in the cotangent covering. Such an equation cannot be solved in general, but it can be
solved in this case. In order to solve it we perform dimensional analysis on (7) and we
deduce the gradings of ct and cx. The result is determined up to trivial conservation
laws, so that we have to remove them; at the end we remain with three 2-component
conservation law. It can be proved that they are equivalent, i.e., they differ each other
by a trivial conservation law.
This allows us to introduce a new nonlocal odd variable r on the cotangent covering

such that rx = ct, rt = cx. We obtain an Abelian covering of the cotangent covering:














rx = ct,
rt = cx,
ℓ∗F (p) = 0,
F = 0.

A nonlocal Hamiltonian operator will be a shadow of symmetry of the above system
with respect to the initial equation F = 0 with the property of being linear with
respect to all (p’s and r’s) odd variables. With the above nonlocal variable we find a
nonlocal Hamiltonian operator which, after changing coordinates to the evolutionary
presentation of [26], coincides with one of the nonlocal Hamiltonian operators presented
in that paper4.
Let us describe the computation in detail. We start with the conservation law (see

the file ple nlcl1.red):

3In general, coefficients can explicitly depend on independent variables.
4We observe that in [26] also the trivial Hamiltonian operator is recovered in the evolutionary

presentation; of course it has an apparently nontrivial expression.
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indep_var:={t,x,y,z}$

dep_var:={u}$

odd_var:={p}$

deg_indep_var:={-1,-1,-4,-4}$

deg_dep_var:={1}$

deg_odd_var:={4}$

total_order:=6$

principal_der:={u_xz}$

de:={-u_ty+u_tx**2-u_2t*u_2x}$

principal_odd:={p_xz}$

de_odd:={-p_ty+2*u_tx*p_tx-u_2x*p_2t-u_2t*p_2x}$

Now we limit the computation to variables of jetspace order not greater than 4; this
is done through the function selectvars, which takes four arguments. The first can
be 0 for even variables or 1 for odd variables, the second argument is the specified
order, the third argument is the subset of dependent variables that we wish to select
(all dependent variables in our case) and the fourth is the set of derivative coordinates
from which we wish to extract the variables.

v0_4:=for i:=0:4 join selectvars(0,i,dep_var,all_parametric_der)$

vo0_4:=for i:=0:4 join selectvars(1,i,odd_var,all_parametric_odd)$

We rearrange all variables by their scale degree, starting from variables of degree 1
(the degree is always chosen in such a way that grading of any even or odd derivative
coordinates is positive):

graadlijst:=der_deg_ordering(0,v0_4)$

graadlijst_odd:={1} . der_deg_ordering(1,vo0_4)$

and we collect graded monomials of scale degree less than or equal 13:

graadmon:=for i:=1:13 collect mkvarlist1(i,i)$

graadmon:={1} . graadmon$

Then we have to make an ansatz for the conservation law: since the summands of
ellstarfp have degree 9 we assume [ct]=[cx]=8

deg_cx:=8$

deg_ct:=deg_cx$

It would also be [cy]=[cz]=5, but in this computation we assume cy = cz = 0. Note
that no simplification can be assumed like in the case of 2 independent variables: it is
not true, in general, that one component of such conservation laws can always be written
as sym*p x0t0. The ansatz is constructed through the function mklinodd, which takes
three arguments: the list of lists of graded monomials of degree 1, 2, . . . , the list of lists
of graded odd variables of degree 1, 2, . . . , and the final degree of their products:

linoddt:=mklinodd(graadmon,graadlijst_odd,deg_ct)$

linoddx:=linoddt$

linextt:=replace_oddext(linoddt)$

linextx:=linextt$

% Ansatz:

ct:=(for each el in linextt sum (c(ctel:=ctel+1)*el))$
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cx:=(for each el in linextx sum (c(ctel:=ctel+1)*el))$

The equation for conservation laws can be checked for the presence of letop. If an
error is issued, the computation must be rerun with a higher value of total order:

ct_t:=ddt(ct)$

cx_x:=ddx(cx)$

check_letop({ct_t,cx_x})$

Note that in the folder containing all examples there is also a shell script, rrr.sh (works
only under bash, a GNU/Linux command interpreter) which can be used to run reduce
on a given CDE program. If the function check letop issues an error message then
the script reruns the computation with a new value of total order one unity higher
than the previous one.
Finally we define the equation

equ 1:=ct_t-cx_x$

The equation admits a lot of solutions, almost all of which are trivial conservation laws
(here they are expressed in odd variables):

ct_odd := (6*c(45)*p_4x + 6*c(44)*p_t3x + 6*c(43)*p_2t2x + 6*c(42)*p_3tx + 6*c(

34)*p_2x*u_t + 6*c(34)*p_t2x*u + 6*c(34)*p_y + 6*c(33)*p_2x*u_x + 6*c(33)*p_3x*u

+ 6*c(30)*p_t2x*u + 6*c(30)*p_tx*u_x + 6*c(27)*p_2t*u_x + 6*c(27)*p_2tx*u - 6*c

(24)*p_t2x*u + 6*c(24)*p_x*u_tx - 6*c(24)*p_y - 6*c(23)*p_3x*u + 6*c(23)*p_x*

u_2x + 3*c(21)*p_2x*u**2 + 6*c(21)*p_x*u*u_x + 6*c(18)*p_t*u_tx + 6*c(18)*p_tx*

u_t + 6*c(17)*p_t*u_2x - 6*c(17)*p_t2x*u + 6*c(15)*p_t*u*u_x + 3*c(15)*p_tx*u**2

+ 6*c(12)*p*u_2tx + 6*c(12)*p_x*u_2t + 6*c(11)*p*u_t2x + 6*c(11)*p_t2x*u + 6*c(

11)*p_y + 6*c(10)*p*u_3x + 6*c(10)*p_3x*u + 6*c(5)*p*u*u_tx + 6*c(5)*p*u_t*u_x +

6*c(5)*p_x*u*u_t + 6*c(4)*p*u*u_2x + 6*c(4)*p*u_x**2 - 3*c(4)*p_2x*u**2 + 6*c(2

)*p*u**2*u_x + 2*c(2)*p_x*u**3)/6$

cx_odd := (6*c(45)*p_t3x + 6*c(44)*p_2t2x + 6*c(43)*p_3tx + 6*c(42)*p_4t - 6*c(

34)*p_2t*u_x + 6*c(34)*p_2tx*u + 12*c(34)*p_tx*u_t - 6*c(34)*p_z + 6*c(33)*p_2x*

u_t + 6*c(33)*p_t2x*u + 6*c(30)*p_2tx*u + 6*c(30)*p_tx*u_t + 6*c(27)*p_2t*u_t +

6*c(27)*p_3t*u + 6*c(24)*p_2t*u_x - 6*c(24)*p_2tx*u - 6*c(24)*p_tx*u_t + 6*c(24)

*p_x*u_2t + 6*c(24)*p_z - 6*c(23)*p_2x*u_t - 6*c(23)*p_t2x*u + 6*c(23)*p_tx*u_x

+ 6*c(23)*p_x*u_tx + 3*c(21)*p_tx*u**2 + 6*c(21)*p_x*u*u_t + 6*c(18)*p_2t*u_t +

6*c(18)*p_t*u_2t + 6*c(17)*p_2t*u_x - 6*c(17)*p_2tx*u + 6*c(17)*p_t*u_tx - 6*c(

17)*p_tx*u_t + 3*c(15)*p_2t*u**2 + 6*c(15)*p_t*u*u_t + 6*c(12)*p*u_3t + 6*c(12)*

p_t*u_2t + 6*c(11)*p*u_2tx - 6*c(11)*p_2t*u_x + 6*c(11)*p_2tx*u + 6*c(11)*p_t*

u_tx + 6*c(11)*p_tx*u_t - 6*c(11)*p_x*u_2t - 6*c(11)*p_z + 6*c(10)*p*u_t2x + 6*c

(10)*p_2x*u_t + 6*c(10)*p_t*u_2x + 6*c(10)*p_t2x*u - 6*c(10)*p_tx*u_x - 6*c(10)*

p_x*u_tx + 6*c(5)*p*u*u_2t + 6*c(5)*p*u_t**2 + 6*c(5)*p_t*u*u_t + 6*c(4)*p*u*

u_tx + 6*c(4)*p*u_t*u_x + 6*c(4)*p_t*u*u_x - 3*c(4)*p_tx*u**2 - 6*c(4)*p_x*u*u_t

+ 6*c(2)*p*u**2*u_t + 2*c(2)*p_t*u**3)/6$

We begin the removal of trivial conservation laws from the above solution. The idea is
that a conservation law (i.e. a horizontal 3-form) is trivial if it is equal to the horizontal
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differential of a 2-form. Such two form will be chosen according with dimensional anal-
ysis. We introduce an operator and a counter that will parametrize trivial conservation
laws:

operator cc$

cctel:=0$

Then we assume that the trivial conservation law has the form

tcl = tctxdt ∧ dx+ tctydt ∧ dy + tctzdt ∧ dz + tcxydx ∧ dy + tcxzdx ∧ dz + tcyzdy ∧ dz

so that a conservation law will be trivial if and only if

d̄(tcl) =(Dz(tcxy)−Dy(tcxz) +Dx(tcyz))dx ∧ dy ∧ dz+

(Dz(tcty)−Dy(tctz) +Dt(tcyz))dt ∧ dy ∧ dz+

(Dz(tctx)−Dx(tctz) +Dt(tcxz))dt ∧ dx ∧ dz+

(Dy(tctx)−Dx(tcty) +Dt(tcxy))dt ∧ dx ∧ dy

=ctdx ∧ dy ∧ dz + cxdt ∧ dy ∧ dz + cydt ∧ dx ∧ dz + czdt ∧ dx ∧ dy

Since in our case we are looking for a 2-component conservation law, we will assume a
single potential of the form: tcyzdy ∧ dz:

deg_tcyz:=7$

linodd_tcyz:=mklinodd(graadmon,graadlijst_odd,deg_tcyz)$

linext_tcyz:=replace_oddext(linodd_tcyz)$

tcyz:=(for each el in linext_tcyz sum (cc(cctel:=cctel+1)*el))$

After clearing the previous equations, we set up the new equation

clear equ$

operator equ$

equ 1:=ddx(tcyz) - ct$

equ 2:=ddt(tcyz) - cx$

Note that in this case if the equation can be solved then the conservation law is trivial;
only if the equation cannot be solved we found at least one nontrivial conservation law.
Results can be written as follows:

write ctnontriv:=equ 1$

write cxnontriv:=equ 2$

they will be nonzero if a nontrivial conservation law remains in ct and cx.
Now, we look for nonlocal Hamiltonian operators in the cotangent covering using a

new nonlocal odd variable r as follows (see ple nlho1.red):

indep_var:={t,x,y,z}$

dep_var:={u}$

odd_var:={p,r}$

deg_indep_var:={-1,-1,-4,-4}$

deg_dep_var:={1}$

deg_odd_var:={1,4}$

total_order:=6$

principal_der:={u_xz}$
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de:={-u_ty+u_tx**2-u_2t*u_2x}$

% rhs of the equations that define the nonlocal variable

rt:=p_2t*u_x - p_2tx*u - 2*p_tx*u_t + p_z$

rx:=- p_2x*u_t - p_t2x*u - p_y$

% We add conservation laws as new nonlocal odd variables;

principal_odd:={p_xz,r_x,r_t}$

%

de_odd:={-p_ty+2*u_tx*p_tx-u_2x*p_2t-u_2t*p_2x,rx,rt}$

We look for Hamiltonian operators which depend on r (which has scale degree 4); we
produce the following ansatz for phi:

linodd:=mkalllinodd_e(graadmon,graadlijst_odd,1,4)$

linext:=replace_oddext_e(linodd)$

phi:=(for each el in linext sum (c(ctel:=ctel+1)*el))$

then we solve the equation of shadows of symmetries:

equ 1:=ddx(ddz(phi))+ddt(ddy(phi))-2*u_tx*ddt(ddx(phi))

+u_2x*ddt(ddt(phi))+u_2t*ddx(ddx(phi))$

The solution in odd coordinates is

phi_odd := c(20)*p_t*u_x - c(20)*p_tx*u - c(20)*p_x*u_t - c(20)*r + c(1)*p

hence we obtain the Noether map (the identity operator p) and the new nonlocal opera-
tor uxpt−ptxu−pxut−r. It can be proved that changing coordinates to the evolutionary
presentation yields the local operator (which has a much more complex expression than
the identity operator) and one of the nonlocal operators of [26]. More details on this
computation can be found in [23].
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Arnesano, 73100 Lecce, Italy

E-mail address : raffaele.vitolo@unisalento.it

http://lie.math.brocku.ca/Crack_demo.html

	1. Why CDE?
	2. Installation
	2.1. Installation of Reduce
	2.2. Choice of an editor for writing Reduce programs

	3. Working with CDE
	4. Higher symmetries
	4.1. Setting up the jet space and the differential equation.
	4.2. Solving the problem via dimensional analysis.
	4.3. Solving the problem using CRACK

	5. Local conservation laws
	6. Local Hamiltonian operators
	6.1. Korteweg–de Vries equation
	6.2. Boussinesq equation
	6.3. Kadomtsev–Petviashvili equation

	7. The Schouten bracket of local Hamiltonian operators
	7.1. Bi-Hamiltonian structure of the KdV equation
	7.2. Bi-Hamiltonian structure of the WDVV equation

	8. Non-local operators
	8.1. Non-local Hamiltonian operators for the Korteweg–de Vries equation
	8.2. Non-local recursion operator for the Korteweg–de Vries equation
	8.3. Non-local Hamiltonian-recursion operators for Plebanski equation

	References

