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Recognizing when two metrics are the same

Equivalence problem:
"Given two metrics g and g ′, on an n-dimensional manifold, is there any
diffeomorphism φ such that φ ∗(g ′) = g ?"

It is an important geometrical problem.

Also in physics, e.g. in General Relativity, one often faces with questions
like

- When two spacetimes are the same?

- How to provide evidence that a given solution of Einstein
equations is new?



Invariants play a key role

When we have a class of geometric objects, which is left invariant by
some group of transformations, then up to these transformations we can
study and characterize these objects by means of their invariants.

With the invariants we can:

I study the equivalence problem;
I study invariant properties;
I describe and caracterize special cases and explicit examples.



Cartan-Karlhede algorithm for the metric equivalence
problem

Equivalence problem:
"Given two metrics g and g ′, on an n-dimensional manifold, is there any
diffeomorphism φ such that φ ∗(g ′) = g ?"

I Christoffel and Lipschitz (1870) first studied this problem.

I E. Cartan solved it by using the method of moving-frames
(computing up to n(n+1)/2 order covariant derivatives of R ).

I A. Karlhede simplified Cartan’s solution when n = 4
(computing only

::
up

:::
to

:::
7th

:::::
order

::::::::
covariant

::::::::::
derivatives

::
of

::
R).

A. Karlhede, A review of the geometrical equivalence of metrics in
General Relativity, Gen. Rel. Grav., Vol. 12, No. 9 (1980)



Our problem is a particular instance of the general problem
On a 4-dimensional manifold M , we will consider the pseudo-Riemannian
metrics g such that:

1. Kill(g) = G2, with G2 :=< ξ(1),ξ(2) > being a 2-dimensional Abelian
algebra of vector fields on M .

2. g has non-null Killing leaves (i.e., g does not degenerate on the
2-dimenisional Killing leaves).

In view of 1
Ξ := span{ξ(1),ξ(2)}

is a 2-dimensional integrable distribution. We call killing leaves (or Killing
orbits) its 2-dimensional integral manifolds.
The property 2, on the other hand, is equivalent to say that Ξ⊥ is
transversal to Ξ.

We consider the local equivalence problem for these metrics, with respect
to the Lie pseudogroup G of local diffeomorphisms of M which preserve
G2.



A particular instance with lower order invariants

The Cartan-Karlhede solution is general but leads to invariants that may
be too much complicated, due to their order (which is 7 when n = 4).
Indeed, in practice, by reducing the problem to a more specific situation,
there tipically appear lower order invariants which are more simple and
even more useful for practical applications.

This happens in our particular instance, where one can distinguish two
main cases:

I orthogonally transitive case: Ξ⊥ integrable

here one has a fundamental system of 4 functionally independent
first order scalar differential invariants.

I orthogonally intransitive case: Ξ⊥ not integrable

here one has a fundamental system of 6 functionally independent
first order scalar differential invariants.
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Plan of the talk

I Introduction of adapted coordinates (t1, t2,z1,z2)

I Definition of the metric g̃ on the orbit space S = M /G2, for the
pseudo-Riemannian submersion

π : M → S = M /G2 (t1, t2,z1,z2) 7→ (t1, t2)

I First scalar invariants Cρ ,Cχ ,Qχ ,Qγ

I Semi-invariant horizontal frame (  invariant differentiations)

I When Ξ⊥ is not integrable
I Semi-invariant vertical frame
I Additional scalar invariants `C and ΘC

I Solution of the equivalence problem (with the exception of
orthogonally intransitive metrics with Cρ`C = 0 )

I A discussion of the special case: by imposing the first order
condition Cρ`C = 0 to Lorentzian Λ-vacuum Einstein metrics



Local adapted coordinates

G.2--5 } , ) , } (2) 7

\



G-transformations in adapted coordinates

Proposition. In adapted coordinates, G-transformations (i.e., the
transformations of G) M →M , (t1, t2,z1,z2) 7→ (t̄1, t̄2, z̄1, z̄2), have the
form

t̄ i = φ
i (t1, t2), z̄ i = α

i
j z

j + ψ
i (t1, t2),

where φ i (t1, t2) and ψ i (t1, t2) are arbitrary differentiable functions and

α
i
j ∈ R, Jφ =

∣∣∣∣∂t1φ1 ∂t2φ1

∂t1φ2 ∂t2φ2

∣∣∣∣ 6= 0, (α
i
j ) ∈ GL(2,R).



Natural extension of G to the bundle τ of considered metrics
In adapted coordinates, any metric g of the type considered above takes
the form

g = bij (t
1, t2)dt i dt j +2fik(t1, t2)dt i dzk +hkl (t

1, t2)dzk dz l .

Thus if one considers

ḡ = b̄mn(t̄1, t̄2)dt̄m dt̄n +2f̄mr (t̄1, t̄2)dt̄m dz̄ r + h̄rs(t̄1, t̄2)dz̄ r dz̄s ,

that transforms to g , under pull-back of G-transformations, one has that

bij = b̄mn
∂φm

∂ t i
∂φn

∂ t j
+2f̄mr

∂φm

∂ t i
∂ψ r

∂ t j
+ h̄rs

∂ψ r

∂ t i
∂ψs

∂ t j
,

fik = f̄mrα
r
k

∂φm

∂ t i
+ h̄rsα

r
k

∂ψs

∂ t i
,

hkl = h̄rsα r
kαs

l .

In particular
det ḡ = (detα

i
j )2 (Jφ

)2 detg 6= 0.



Natural extension of G to the bundles Jmτ , m = 0,1,2, ...

The pseudogroup G naturally extends to

τ : E →M

the bundle of metrics satisfying above assumptions (1)-(2).
The extension of G to τ will be denoted by Gτ .

It is in this bundle that we consider the equivalence problem.

We solved the problem by using scalar differential invariants:

functions on the jet prolongations Jmτ, m = 0,1,2, ..., that are invariant
with respect to the action of the corresponding prolonged pseudogroups
G

(m)
τ on Jmτ.



Generic dimensions of orbit spaces Jmτ/G
(m)
τ , and the

number of functionally independent differential invariants

By using the infinitesimal generators of G(m)
τ , one gets the following

Proposition. The generic dimension Nm = dim
(
Jmτ/G

(m)
τ

)
, for

m = 0,1,2,..., varies as follows:

I when Ξ⊥ is not integrable (orthogonally intransitive case), one has

m 0 1 2 · · ·
Nm 0 6 20 · · ·

I when Ξ⊥ is integrable (orthogonally transitive case), one has

m 0 1 2 · · ·
Nm 0 4 14 · · ·



Pseudo-Riemannian submersion

g = bij (t
1, t2)dt i dt j +2fik(t1, t2)dt i dzk +hkl (t

1, t2)dzk dz l

I h = hkldz
kdz l is the metric (possibly non Riemannian) on Killing

leaves.

On the other hand, one can also rearrange g in the form (Geroch)

g = g̃ij (t
1, t2)dt i dt j +hkl (t

1, t2)
(
dzk + f ki dt

i
)(

dz l + f lj dt
j
)

g̃ij := bij − fik fjlh
kl , f kj := fjsh

sk

I g̃ = g̃ij (t
1, t2)dt i dt j defines a metric (possibly non Riemannian) on

S = M /G2, which will be called "orbit metric".

Pseudo-Riemannian submersion between (M ,g) and (S , g̃):

π : M →S , (t1, t2,z1,z2) 7→ (t1, t2)



First 4 scalar invariants: Cρ , Cχ , Qχ , Qγ

Remark: For any invariant symmetric (0,2) tensor µ = µij dt
i dt j on S , we denote by

µ̂ = µ
j
i dt

i ⊗∂t j (µ
j
i = µis g̃sj ) the associated invariant self-adjoint (1,1)-tensor field

µ(Z1,Z2) = g̃(Z1, µ̂(Z2)), Zi ∈D(S ).

Then the trace Cµ and the determinant Qµ of µ̂ are scalar invariants:

Cµ = µij g̃
ij , Qµ =

det µij

det g̃
.

Application: the pseudogroup action leaves invariant the 1-form σ and
the symmetric (0,2)-tensor χ

σ = d (ln(deth)) =
d(deth)

deth
, χ :=

1
(deth)

(dh11 dh22−dh12 dh12)

then we get the invariant symmetric (0,2)-tensors

ρ := σ
2 (symmetric product), γ := χ− 1

4ρ (Cosgrove)

and the nontrivial scalar invariants Cρ ,Cχ ,Qχ ,Qγ , whereas Cγ = Qρ = 0.



Coordinate expressions of Cρ , Cχ , Qχ , Qγ

In coordinates:

1. Cρ =
1

(deth)2 (deth),i (deth),j g̃
ij ;

2. Cχ =
1

(deth)
g̃ ij

∣∣∣∣h11,i h12,j
h12,i h22,j

∣∣∣∣;
3. Qχ =

det χij

det g̃
, χij =

1
2 deth

∣∣∣∣h11,i h12,j
h21,i h22,j

∣∣∣∣+ 1
2 deth

∣∣∣∣h11,j h12,i
h21,j h22,i

∣∣∣∣;
4. Qγ =

detγij

det g̃
=

1
4(deth)3 det g̃

∣∣∣∣∣∣
h11 h12 h22
h11,1 h12,1 h22,1
h11,2 h12,2 h22,2

∣∣∣∣∣∣
2

.

In the orthogonally transitive case, it is a fundamental system of
functionally independent scalar differential invariants.
In the orthogonally intransitive case, we need 2 additional scalar
invariants.



Semi-invariant orthogonal frame on S , when Cρ 6= 0

Let

π1 := π ◦ τ1 : J1
τ →S , σ = d (ln(deth)) , volg̃ =

√
|det g̃|dt1∧dt2,

we can consider the π1-relative vector fields X and X ⊥ on S :

σ = g̃(X ,–), σ = X ⊥ yvolg̃ .

These fields are linearly independent iff Cρ 6= 0. Moreover

X = g̃is (deth),s
deth

∂t i , X ⊥ =
(deth),2

(deth)
√
|det g̃|

∂t1 −
(deth),1

(deth)
√
|det g̃|

∂t2

g̃(X ,X ) = Cρ , g̃(X ,X ⊥) = 0, g̃(X ⊥,X ⊥) =±g̃Cρ , ±g̃ := sgndet g̃,

X 7→X , X ⊥ 7→ sgn(Jφ )X ⊥

{X ,X ⊥} is a semi-invariant orthogonal frame on S , when Cρ 6= 0.



Riemannian submersion
For the pseudo-Riemannian submersion π : M →S we have:
I Ξ is the vertical distribution;
I Ξ⊥ is the horizontal distribution generated by vector fields

ej =
∂

∂ t j
− f kj

∂

∂zk
, j = 1,2 ( where f kj = fjsh

sk);

I TM = Ξ⊕Ξ⊥;
I ver = prΞ : TM → Ξ such that

ver
(

∂

∂ t j

)
= ver

(
∂

∂ t j
− f kj

∂

∂zk
+ f kj

∂

∂zk

)
= f kj

∂

∂zk
,

ver
(

∂

∂zk

)
= ∂

∂zk
;

I hor = prΞ⊥ : TM → Ξ⊥ such that

hor
(

∂

∂ t j

)
= hor

(
∂

∂ t j
− f kj

∂

∂zk
+ f kj

∂

∂zk

)
= ∂

∂ t j
− f kj

∂

∂zk
,

hor
(

∂

∂zk

)
= 0.



O’Neill tensors A and T

O’Neill tensors A and T of the submersion π:

A(W1,W2) = O(W1,W2) +E(W1,W2),

T(W1,W2) = N(W1,W2) +L(W1,W2),

where

O(W1,W2) = ver
(
∇hor W1 hor W2

)
, E(W1,W2) = hor

(
∇hor W1 ver W2

)
,

N(W1,W2) = ver
(
∇ver W1 hor W2

)
, L(W1,W2) = hor

(
∇ver W1 ver W2

)
,

for arbitrary vector fields W1,W2 on M .



Lift of vector fields

Every vector field X on S can be uniquely lifted to an horizontal vector
field X̂ on M which is π-related to X .

In particular every invariant vector field on S can be uniquely lifted to an
invariant vector field on M .

Moreover, the lift preserves the scalar product.

In coordinates,

∂̂

∂ t i
=

∂

∂ t i
− f ki

∂

∂zk
= ei , i = 1,2.



Lifting {X ,X ⊥} to a semi-invariant horizontal frame

The mean-curvature vector field H := ∑
2
s=1 T(vs ,vs), where {v1,v2} is

any vertical orthonormal frame, has components H a = gklTa
kl .

We have that:

H =−1
2
X̂ =−1

2
X i

(
∂

∂ t i
− f ki

∂

∂zk

)
, H ⊥ :=−1

2
X̂ ⊥.

By invariance of scalar product under the lift:

g(H ,H ⊥) = 0, `H = g(H ,H ) =
1
4
g̃(X ,X ) =

1
4
Cρ

`H ⊥ = g(H ⊥,H ⊥) =
1
4
g̃(X ⊥,X ⊥) =

1
4
(
±g̃Cρ

)
=±g̃ `H .

Therefore
{
H ,H ⊥} is a semi-invariant horizontal orthogonal frame,

when Cρ 6= 0.



The Ehresmann curvature c

The Ehresmann curvature is the skew-symmetric tensor

c : D(M )⊗D(M )→D(M )

c(W1,W2) = ver [hor W1,hor W2] , W1,W2 ∈D(M ).

c is traceless (i.e., caab = 0) and its nonzero components, in adapted
coordinates, are

ck
∗

ij = ∂j f
k
i −∂i f

k
j , k∗ = k +2.

Of course, c = 0 if, and only if, Ξ⊥ is involutive.



Semi-invariant vertical frame {C ,C⊥}, when `C 6= 0

The curvature vector field

C :=
c(∂t1 ,∂t2 )√
|det g̃|

= C k ∂

∂zk
, C k =

∂t2 f
k
1 −∂t1 f

k
2√

|det g̃|
, k = 1,2

transforms as C 7→ (sgnJφ )C .

Hence we get the scalar invariant

`C = g(C ,C ) = hklC
kC l =

hkl (∂t2 f
k
1 −∂t1 f

k
2 )(∂t2 f

l
1 −∂t1 f

l
2)

|det g̃|
.

Moreover, when `C 6= 0, one can define another vertical field C⊥ as

g(C ,C⊥) = 0, volh(C ,C⊥) > 0, `C⊥ = g(C⊥,C⊥) =±h`C ,

where volh =
√
|deth|dz1 ∧dz2 and ±h = sgndeth.

It turns out that

C⊥ =
hs2C s√
|deth|

∂

∂z1 −
hs1C s√
|deth|

∂

∂z2 , C⊥ 7→ (sgnJφ )(sgndetα
i
j )C

⊥.

Thus, the pair
{
C ,C⊥

}
defines a semi-invariant vertical orthogonal frame on Ξ.



The sixth scalar differential invariant

Using O’Neill tensors T and A we get further invariants.

The simplest sixth invariant is

ΘC = detTC

where TC is the (1,1)-tensor field on M defined as

TC (�) := T(C , �) .

In coordinates:
ΘC =

1
16

Θ2
I

with

ΘI =
1

|deth|1/2 |det g̃|1/2

∣∣∣∣∣∣
h11,1 h12,1 h22,1
h11,2 h12,2 h22,2

(C 2)2 −C 1C 2 (C 1)2

∣∣∣∣∣∣.



Describing higher order invariants

Recall that

X 7→X , X ⊥ 7→ sgn(Jφ )X ⊥

These field lift to the "invariant" differentiations

X = g̃is (deth),s
deth

Dt i , X⊥ =
(deth),2

(deth)
√
|det g̃|

Dt1 −
(deth),1

(deth)
√
|det g̃|

Dt2

X 7→ X , X⊥ 7→ sgn(Jφ )X⊥

By chosing two invariants I 1,I 2

∆ =

∣∣∣∣ XI 1 XI 2

X⊥I 1 X⊥I 2

∣∣∣∣
we have the following invariant differentiation operators

I 7−→ 1
∆

∣∣∣∣ XI XI 2

X⊥I X⊥I 2

∣∣∣∣ I 7−→ 1
∆

∣∣∣∣ XI 1 XI
X⊥I 1 X⊥I

∣∣∣∣
Thus one can obtain higher order invariants by iterated applications of these invariants.
Other invariants are described in the paper.



Solution of the equivalence problem in the generic (i.e.,
`CCρ 6= 0) orthogonally intransitive case

For any given metric there exist a pair of functionally independent
invariants among:

I1 = Cρ , I2 = Cχ , I3 = Qχ , I4 = Qγ , I5 = `C I6 = (ΘI)
2.

Theorem. Consider two generic orthogonally intransitive metrics

g = bij (t
1, t2)dt i dt j +2fik(t1, t2)dt i dzk +hkl (t

1, t2)dzk dz l

and

ḡ = b̄mn(t̄1, t̄2)dt̄m dt̄n +2f̄mr (t̄1, t̄2)dt̄m dz̄ r + h̄rs(t̄1, t̄2)dz̄ r dz̄s ,

with two pairs of functionally independent invariants

{I 1(t1, t2),I 2(t1, t2)} {Ī 1(t̄1, t̄2),Ī 2(t̄1, t̄2)}

formed by the same fundamental invariants for g and ḡ, respectively.
These metrics are equivalent if, and only if, the remaining 4
fundamental scalar invariants of g depend on (I 1,I 2) in the same way
as the corresponding ones of ḡ depend on (Ī 1,Ī 2).



Solution of the equivalence problem in the generic (i.e.,
`CCρ 6= 0) orthogonally intransitive case

The equivalence class of a generic orthogonally intransitive metric g is
completely characterised by the way the six fundamental first-order scalar
differential invariants I1 = Cρ ,I2 = Cχ , I3 = Qχ , I4 = Qγ , I5 = `C ,
I6 = (ΘI)

2 depend on a pair of functionally independent first-order scalar
differential invariants (I 1,I 2).



Van den Berg metric

Van den Bergh metric

g = cosh
(√

6t1
){

sinh4 (t2)[(dt1)2− (dt2)2]+2 sinh2 (t2)[dz2 +cosh
(
t2
)
dt1

]2}
+

12
cosh

(√
6t1

) [dz1 +cosh
(
t2
)
dz2 +1/2 cosh2 (t2)dt1]2 .

is a Ricci-flat metric with two Killing vector fields ∂z1 and ∂z2 and
orthogonally intransitive Ξ.



Van den Berg metric

In this case:

Cρ =−4
cosh2 (t2)

cosh
(√

6t1
)
sinh6 (t2)

,

Cχ =−6
sinh2 (√6t1)−1

cosh3 (√6t1)sinh4 (t2)
,

Qχ = 6
sinh2 (√6t1) [−6 sinh2 (t2)+cosh2 (t2)cosh2 (√6t1)]

cosh6 (√6t1)sinh10 (t2)
,

Qγ =−36
sinh2 (√6t1)

cosh6 (√6t1)sinh8 (t2)
,

`C = 2
1

cosh
(√

6t1
)
sinh4 (t2)

,

(Θ1)2 = 144
sinh2 (√6t1)

sinh16 (t2)cosh8 (√6t1) .
Hence we can take the following two functionally independent invariants

I 1 = Cρ , I 2 = `C .



Van den Berg metric
By choosing

I 1 = Cρ , I 2 = `C ,

one can write

t1 =
1√
6
arccosh

(
2
`C

(
Cρ

2`C
+1
)2
)
, t2 = arctanh

 1√
1− 1

2
Cρ

`C

 .

Then the remaining 4 fundamental invariants read

Cχ =

−3`C
(
−8`6C +

(
C2

ρ +4Cρ`C +4`2C
)2
)

(
Cρ +2`C

)4 ,

Qχ =

−3`C
(
48`7C +Cρ

(
C2

ρ +4Cρ`C +4`2C
)2
)((

C2
ρ +4Cρ`C +4`2C

)2
−4`6C

)
4
(
Cρ +2`C

)8 ,

Qγ =

−36`8C

((
C2

ρ +4Cρ`C +4`2C
)2
−4`6C

)
(
Cρ +2`C

)8 ,

(ΘI)
2 =−`2C Qγ .

This gives an invariant characterisation of the class represented by Van
den Bergh metric.



Solution of the equivalence problem when Ξ⊥ is integrable

The equivalence class of a orthogonally transitive metric g is completely
characterised by the signature of its restriction to the Killing leaves and
by the way the four fundamental first-order scalar differential invariants
I1 = Cρ , I2 = Cχ , I3 = Qχ , I4 = Qγ depend on two functionally
independent first-order scalar differential invariants (I 1,I 2).



A discussion of the special case Cρ`C = 0

We can distinguish two sub-cases:

I Cρ = 0;

I `C = 0.

When Cρ`C = 0 the equivalence problem is not solved but, since Cρ and
`C are first order invariants, in some particular cases we can use them to
explicitly describe metrics satisfying the special condition Cρ`C = 0.



The particular case of Lorentzian Einstein metrics

Aiming at possible applications in General Relativity, we considered the
case of Lorentzian Λ-vacuum Einstein metrics:

Rµν −Λgµν = 0, Λ ∈ R

with
`CCρ = 0.

We distinguished the following two main sub-cases:

(I) Cρ = 0, with the further sub-cases:
(I-1) det g̃ < 0 (i.e., with Lorentzian orbit

metric);
(I-2) det g̃ > 0 (i.e., with Riemannian orbit

metric).
(II) `C = 0.



Lorentzian Einstein metrics with Cρ = 0 and det g̃ < 0

Theorem. All Lorentzian Λ-vacuum Einstein metrics with 2-dimensional
Abelian Killing algebra, non-null Killing leaves, Cρ = 0 and det g̃ < 0
(hence deth > 0), satisfy Λ = 0 and there exist adapted coordinates
(t1, t2,z1,z2) such that

g = dt1 dt2 +R2(dz1 +W dz2)2 +S2(dz2)2,

with R, W and S differentiable functions of t1 such that R S 6= 0 and

(
W ′)2 =

2S2

R2

(
R ′′

R
+

S ′′

S

)
.

In particular these metrics are such that C = 0 (then `C = 0), hence are
orthogonally transitive and, in addition, are pp-waves since ∂t2 is a null
Killing vector field such that ∇∂t2 = 0.



Lorentzian Λ-vacuum Einstein metrics with Cρ = 0 and
det g̃ > 0

Theorem. All Lorentzian Λ-vacuum Einstein metrics with 2-dimensional
Abelian Killing algebra, non-null Killing leaves, Cρ = 0 and det g̃ > 0
(hence deth < 0), satisfy Λ = 0 and there exist adapted coordinates
(t1, t2,z1,z2) such that g has

::::
either

::::
the

::::
form

g = (dt1)2 + (dt2)2 + ψ(dz1)2 +2
(
c t1dt2 +dz2) dz1,

with c ∈ R and ψ = ψ(t1, t2) a differentiable function such that
ψ,11 + ψ,22 = c2,

:
or

::::
the

::::
form

g = et
1
(dt1)2 + et

1
(dt2)2 + ψ(dz1)2 +2

(
c et

1
dt2 +dz2

)
dz1,

with c ∈ R and ψ = ψ(t1, t2) a differentiable function such that
ψ,11 + ψ,22 = et

1
c2.

In particular, these metrics have `C = 0 and are orthogonally transitive if,
and only if, c = 0. Moreover, they are pp-waves, since ∂z2 is a null Killing
vector field such that ∇∂z2 = 0.



Lorentzian Λ-vacuum Einstein metrics with `C = 0

Theorem. Every Lorentzian Λ-vacuum metric with 2-dimensional
Abelian Killing algebra, non-null Killing leaves and `C = 0 belongs to one
of the following families of metrics:

1. pp-waves described above for Cρ = 0;

2. Kundu orthogonally intransitive vacuum metrics (Λ = 0)

1√
x

(
dx2 +dy2 + (x3/2ψ +1)du2 +2dy du−2x3/2dudv

)
,

ψxx + 1
x ψx + ψyy = 0,

with ψ = ψ(x ,y);



Lorentzian Λ-vacuum Einstein metrics with `C = 0

3. Λ-vacuum orthogonally intransitive metrics (generalized Kundu)

− 3
Λ

c2x
c2x3+1 dx

2 + c2x3+1
x dy2 + 2

x dy du+ x3ψ+1
x du2 +2x2 dudv , c ,Λ ∈ R−{0},

(c2x3+1)2

x2 ψxx + (c2x3+1)(4c2x3+1)

x3 ψx −3 c2

Λ ψyy = 0, ψ = ψ(x ,y);

with c ,Λ ∈ R−{0} and ψ = ψ(x ,y);

4. Λ-vacuum orthogonally intransitive metrics (generalized Kundu)

− 3
Λx2 dx

2 + 1
x2 dy

2 +2x dy du+ 2
x2 dudv + x6+ψ

2x2 du2,

ψxx − 2
x ψx − 3

Λ ψyy = 0,

with Λ ∈ R−{0} and ψ = ψ(x ,y).
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