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Alexandre Mikhailovich Vinogradov

Vinogradov was my professor in Salerno.

He was an outstanding professor, and anybody here knows how
charismatic and visionary he was.

The main purpose of his life, I believe, was doing mathematics.
He couldn’t stay away from it, and from sharing his ideas with
students.

Hence I am not surprised by the anecdote told by his daughter
Katya, according to which the first thing Vinogradov asked to
his doctor was whether he would have enough time to finish his
last book. The same I would say for the other anecdote, from
Katya, which has been reported in the Foreword of second
edition of Jet Nestruev.

Born: 18 February 1938

Novorossiysk, Russia I remember with particular sadness the moment when I learned
of his death. It was by an email from Michal Marvan.
Died: 20 September 2019
(aged 81) . . . .
Lizzano in Belvedere, Italy With Michal Marvan we decided to dedicate our last paper to

him.



Recognizing when two metrics are the same

Equivalence problem:

"Given two metrics g and g’, on an n-dimensional manifold, is there any
diffeomorphism ¢ such that ¢*(g') =g ?"

It is an important geometrical problem.
Also in physics, e.g. in General Relativity, one often faces with questions
like

- When two spacetimes are the same?

- How to provide evidence that a given solution of Einstein
equations is new?



Invariants play a key role

When we have a class of geometric objects, which is left invariant by
some group of transformations, then up to these transformations we can
study and characterize these objects by means of their invariants.

With the invariants we can:

» study the equivalence problem;

» study invariant properties;
» describe and caracterize special cases and explicit examples.



Cartan-Karlhede algorithm for the metric equivalence
problem

Equivalence problem:
"Given two metrics g and g’, on an n-dimensional manifold, is there any
diffeomorphism ¢ such that ¢*(g’') =g ?"

» Christoffel and Lipschitz (1870) first studied this problem.

» E. Cartan solved it by using the method of moving-frames
(computing up to n(n-+1)/2 order covariant derivatives of R ).

» A. Karlhede simplified Cartan’s solution when n=4
(computing only up to 7th order covariant derivatives of R).

A. Karlhede, A review of the geometrical equivalence of metrics in
General Relativity, Gen. Rel. Grav., Vol. 12, No. 9 (1980)



Our problem is a particular instance of the general problem

On a 4-dimensional manifold .#, we will consider the pseudo-Riemannian
metrics g such that:

1. Rill(g) =%, with % :=< §(1),§2) > being a 2-dimensional Abelian
algebra of vector fields on ..

2. g has non-null Killing leaves (i.e., g does not degenerate on the
2-dimenisional Killing leaves).

In view of 1

= :=span{&u),52)}
is a 2-dimensional integrable distribution. We call killing leaves (or Killing
orbits) its 2-dimensional integral manifolds.

The property 2, on the other hand, is equivalent to say that =t is
transversal to =.

We consider the local equivalence problem for these metrics, with respect
to the Lie pseudogroup & of local diffeomorphisms of .Z which preserve
9.



A particular instance with lower order invariants

The Cartan-Karlhede solution is general but leads to invariants that may
be too much complicated, due to their order (which is 7 when n = 4).
Indeed, in practice, by reducing the problem to a more specific situation,
there tipically appear lower order invariants which are more simple and
even more useful for practical applications.

This happens in our particular instance, where one can distinguish two
main cases:

» orthogonally transitive case: = integrable

here one has a fundamental system of 4 functionally independent
first order scalar differential invariants.

» orthogonally intransitive case: = not integrable

here one has a fundamental system of 6 functionally independent
first order scalar differential invariants.



References

The orthogonally transitive case, with a solution of the equivalence
problem, has been considered in the paper:

» M. Marvan and O. Stolin, On local equivalence problem of
spacetimes with two orthogonally transitive commuting Killing fields,
Journal of Mathematical Physics, vol 49 (2008)

The orthogonally intransitive case has been considered in the paper:

» D. Catalano Ferraioli and M. Marvan, The equivalence problem for
generic four-dimensional metrics with two commuting Killing vector,
Annali di Matematica Pura ed Applicata, vol 199 (2020)

Where the equivalence problem has been solved with the only exception
of a special case. Neverthless, we use the relative simplicity of our
invariants to explicitly describe Lorentzian Einstein metrics belonging to
this special case.



Plan of the talk

» Introduction of adapted coordinates (t!,t2, 21, z?)
» Definition of the metric g on the orbit space ¥’ = .# /%>, for the
pseudo-Riemannian submersion
n. M — S =M (t1, 12,21, 2%) — (t1,t?)
» First scalar invariants Cp, Cy, Qy, Qy
» Semi-invariant horizontal frame ( ~ invariant differentiations)

» When =* is not integrable

» Semi-invariant vertical frame
» Additional scalar invariants {4 and ©¢

» Solution of the equivalence problem (with the exception of
orthogonally intransitive metrics with Cyly =0)

> A discussion of the special case: by imposing the first order
condition C,l% =0 to Lorentzian A-vacuum Einstein metrics



Local adapted coordinates

. . - 2-dim Abelian algebra
M, 4-dim manifold Gg—< \g(n )E<2)> of vector fields

(6,22

local adapted
coordinates such

that
¥, - az‘

I

Orbit space
(locally a 2-dim manifold)



B-transformations in adapted coordinates

Proposition. In adapted coordinates, ®-transformations (i.e., the
transformations of &) .# — ., (t1,t%,21,2%) — (£, 2,21, 72), have the
form _ ' . o .

t'=0'(t",1%), z'=aZ+y'(t' %),

where ¢/(t1,t?) and y/(t!,t?) are arbitrary differentiable functions and

atl(Pl at2¢1

at1¢2 at2¢2 7£ Oa (aj) € GL(27R)

o eR,  Jy=



Natural extension of & to the bundle T of considered metrics

In adapted coordinates, any metric g of the type considered above takes
the form

g = bj(th, t?) dt’ dt/ + 26 (t1, %) dt’ dzX + hy(t*, t%) dz* dz'.
Thus if one considers
g = by (1, ) dE™ dT" + 2f (B, 12) AT d 2" + hys(F1, %) dZ" dZ°,

that transforms to g , under pull-back of ®-transformations, one has that

B _ a¢m a(pn _ a¢m 8‘,/’ _ all/r aws
bij = brmn Jati Jti +2fnr ati dt P oti dti’
_ Jom _ Qv
fik = fmralz%+hrsalz%a

hk/ = hrSOCL(X/S.

In particular
detg = (detar/)? (J¢)2 detg # 0.



Natural extension of & to the bundles J™7, m=0,1,2,...

The pseudogroup & naturally extends to
T E—>. A

the bundle of metrics satisfying above assumptions (1)-(2).
The extension of & to T will be denoted by &;.

It is in this bundle that we consider the equivalence problem.

We solved the problem by using scalar differential invariants:

functions on the jet prolongations J™1, m=0,1,2,..., that are invariant
with respect to the action of the corresponding prolonged pseudogroups
05(Tm) on JT1.



Generic dimensions of orbit spaces Jmf/(’ﬁ(fm), and the
number of functionally independent differential invariants

By using the infinitesimal generators of Qﬁ(fm), one gets the following

Proposition. The generic dimension N,, = dim (J""L’/Qi(,m)), for
m=20,1,2,..., varies as follows:

L

» when == is not integrable (orthogonally intransitive case), one has

1

» when =+ is integrable (orthogonally transitive case), one has

m‘Ol 2
Nm |0 4 14




Pseudo-Riemannian submersion

g = bj(t}, t?) dt’ dt/ + 2, (t*, %) dt’ dz* + hy(t*,t?) dz* dzZ'

» h = hydz*dz' is the metric (possibly non Riemannian) on Killing
leaves.

On the other hand, one can also rearrange g in the form (Geroch)

g = &;(t5, 12) dt! dt) + hyy (L, 1) (dzk + ﬁ-kdt") (dz’ + :;-’drf)

&jj = by — fycfyh", f = fish™

> g =g;(th, t?) dt' dt/ defines a metric (possibly non Riemannian) on
S = M |9, which will be called "orbit metric".

Pseudo-Riemannian submersion between (.#,g) and (., §):

no M — ., (th 22 2%) = (¢ 1)



First 4 scalar invariants: Cp, Gy, Qy, Qy

Remark: For any invariant symmetric (0,2) tensor g = y; dt’ dt/ on ., we denote by

= wisg¥) the associated invariant self-adjoint (1,1)-tensor field

W21, 22) = §(Z1,0(22)),  Zie ().

fi=pldt'©d, (u

Then the trace C; and the determinant Q, of I are scalar invariants:

detu,-j

Cu=psgh,  Qu= dotE

Application: the pseudogroup action leaves invariant the 1-form ¢ and
the symmetric (0,2)-tensor x

d(deth)

—d(ln(deth)):m, X = (deth)

(dh11 dh22 - dh12 dh12)

then we get the invariant symmetric (0,2)-tensors

p := o2 (symmetric product), y:=yx — %p (Cosgrove)

and the nontrivial scalar invariants C,, Cy, @y, @y, whereas C, = Q, = 0.



Coordinate expressions of Cp, Cy, Qy, Qy

In coordinates:

1 ~
L G = (gornyz (deth).i(deth) ;27
I il hizy
2. Cy= S Pt
x (deth)g hi2ji 2o
CHo P RV S [N Y I S
C T detg? 7Y 2deth |hayi hoaj| | 2deth |ha1j hoai|’
2
h h h
. dotyy ) 11 he h

= = = ~|h11 hizi hooa
v detg  4(deth)3detg hi1o h12'2 hrys o

In the orthogonally transitive case, it is a fundamental system of
functionally independent scalar differential invariants.

In_the orthogonally intransitive case, we need 2 additional scalar
invariants.




Semi-invariant orthogonal frame on ., when C, # 0
Let
m=not 't —.#,  o=d(In(deth)),  volg = +/|detg|dt* A dt?,
we can consider the my-relative vector fields 2" and 2™+ on .-
c=g(2,-), o=2",volg.

These fields are linearly independent iff C, # 0. Moreover

. js(deth) s L (deth) » (deth)
g —geldesy 25, - L,
& deth (deth)/|detg| " (deth)./|detg| "

g(%v'%)zclh g(‘%a‘%l):(L g(%LyﬁL):inga ig3:Sgndetgv

X2, X+ sgn(Jg) 2+

{Z, 2} is a semi-invariant orthogonal frame on ., when Cp #0.




Riemannian submersion

For the pseudo-Riemannian submersion 7 : . # — . we have:
» = is the vertical distribution;
> =

L is the horizontal distribution generated by vector fields

8 k a . k k
&=~ —f'op j=1,2 ( where £ = fih™);
» TH ===

- —

ver = pr= : TM — = such that

9\ — 9 _ fk 9
ver aﬂ-)—ver( - )j

k 9 |\ _ gk _d_
atl '92k+f} 82k>_f}8zk’
9 )\ _ d_.
Ver{5z¢ ) = 9k
» hor=pr=, : TM — =+ such that
2\ = 9 (k9 fk d N\ _ 9 gk 9
hor atf>*h°r<atf fi ot azk)*atf i az%>
d —
hor y)_o.



O'Neill tensors A and T

O’Neill tensors A and T of the submersion 7:

A(Wy, Wa) = O(Wi, Wa) + E(Wy, Wa),

T(Wi, Wa) = N(Wi, Wa) + L(Wi, Wa),
where
O(Wy, Wa) = ver (Vhor wy hor Wa),  E(Wy, Wa) = hor (Vier wy ver Wa),
N(W;, Wa) = ver (Vver w, hor W2) ,  L(Wi, Ws) =hor (Vver W, ver WQ) ,
for arbitrary vector fields Wy, W5 on /.



Lift of vector fields

Every vector field X on .’ can be uniquely lifted to an horizontal vector
field X on .# which is n-related to X.

In particular every invariant vector field on . can be uniquely lifted to an
invariant vector field on .Z.

Moreover, the lift preserves the scalar product.

In coordinates,

9 9 0 .
W_W—fiﬁ_e,7 i=1,2.



Lifting {27, 2"} to a semi-invariant horizontal frame

The mean-curvature vector field 7 := Y2_, T(vs,vs), where {vi,vs} is
any vertical orthonormal frame, has components 7# = gh' T3, .
We have that:

d 0
o0 T ok

%f:%:é%"( > st ::%3@.

By invariance of scalar product under the lift:

1. 1
g, AT)=0, Lyp=g(H H)= 82 2)=76
L 1 ool o1 1
Cypr =g(H, ):Zg(% X ):Z( QCP):iééﬁ”-

Therefore {7, ¢+ } is a semi-invariant horizontal orthogonal frame,
when C, #0.




The Ehresmann curvature ¢

The Ehresmann curvature is the skew-symmetric tensor
M SD(AM)— D( M)

c(Wi, Wa) = ver[hor Wy, hor W], Wi, Wo € ().

c is traceless (i.e., ¢3, =0) and its nonzero components, in adapted
coordinates, are

c =9,k —9;fk k* = k+2.

Of course, ¢ =0 if, and only if, = is involutive.



Semi-invariant vertical frame {€, %4}, when fg # 0

The curvature vector field

&= <(9t,9:;) :%ki @k — I — D ff k=1.2

transforms as @ — (sgnJy )%
Hence we get the scalar invariant
hi (92 i — 01 £5) (02 f{ — 91 £))

ly =g(C,C) = hy€*e' =
¢ =8(%,C) = hu detg]|

Moreover, when {4 # 0, one can define another vertical field ¢+ as

g(¢, ¢ ) =0, volo(¢,¢) >0, Ly =g(C.C) = tnly,
where vol, = \/Mdzl Adz? and 4, = sgndeth.
It turns out that

o _ h2€® 9 ha?® 9
VIdeth] 921 \/|deth| 922’

Ct (sgnJ@(sgndetaj)%’L.

Thus, the pair {%, %"} defines a semi-invariant vertical orthogonal frame on =.




The sixth scalar differential invariant

Using O'Neill tensors T and A we get further invariants.

The simplest sixth invariant is

Oy =detTy
where T is the (1,1)-tensor field on .# defined as
Ty () =T(%,.).

In coordinates:

@%’ 16 @I
with
1 h11 1 hi21
hi12 h122

" |deth|"? [detg[V/2 (@32 —gig?

h2s1

h22 |.
(61)?



Describing higher order invariants

Recall that
=2, Xt sen(dy) 27+
These field lift to the "invariant" differentiations
s (deth) ¢ 1 (deth) » (deth) 1
X = s D i X+ = D,1 —
& deth (deth)y/|detg] ©  (deth)./|detg]
X X, X+ sgn(Jy) X+

By chosing two invariants .#1,.#2

X1 X.7?
XLﬂl XLjZ
we have the following invariant differentiation operators

1] Xs X .72
Al Xto Xt o2

a-|

I — I —

1] xs° X7
Al Xto1 X+t7

Thus one can obtain higher order invariants by iterated applications of these invariants.
Other invariants are described in the paper.



Solution of the equivalence problem in the generic (i.e.,
U4 Cy # 0) orthogonally intransitive case

For any given metric there exist a pair of functionally independent
invariants among:

h=Cy, h=Cy h=Qy, hL=Q, k=>l; ls=(0))>.

Theorem. Consider two generic orthogonally intransitive metrics
g = by(t',t?) dt’ dt/ + 26y (1, £?) dt’ dz* + hy(t*, t%) dz* dz’
and
g = bn(t4, %) dE™ dE" + 2fn, (E2, 82) dE™ d2" 4 hys (T2, 12) dZ" d2°,
with two pairs of functionally independent invariants
{7t %), 7211, %)) {FY(E, 12, 7%(1, %)}

formed by the same fundamental invariants for g and g, respectively.
These metrics are equivalent if, and only if, the remaining 4
fundamental scalar invariants of g depend on (.#*,.72) in the same way
as the corresponding ones of g depend on (.#1,.72).



Solution of the equivalence problem in the generic (i.e.,
U4 Cy # 0) orthogonally intransitive case

The equivalence class of a generic orthogonally intransitive metric g is
completely characterised by the way the six fundamental first-order scalar
differential invariants h = Cp, b = Cy, k= Qy, s = Qy, Is =,

ls = (©1)? depend on a pair of functionally independent first-order scalar
differential invariants (.#1,.72).




Van den Berg metric

Van den Bergh metric

g = cosh (V6 1) {sinh (¢2) [ (de?)® - (d£2)°] +2sinh? (£2) [dz? + cosh (¢2) dt1]* |

12 , R
+W [dzl+cosh (tz)d22+1/2cosh (tz) dtl] )

is a Ricci-flat metric with two Killing vector fields d,1 and d,2 and
orthogonally intransitive =.



Van den Berg metric

In this case:

o cosh? (t2)

P cosh (v61t1) sinh®(¢2)’
C—_ sinh? (\/étl)fl

x cosh® (v/6t1) sinh* (£2)’
Q=6 sinh? (\/Etl) [-6 sinh? (t2) + cosh? (t2) cosh? (Votl)]

cosh® (v/6t1) sinh1® (£2) ’

Q—— sinh2 (\@tl)

r cosh® (/6 1) sinh® (£2)’

1

be=2 cosh (v/6t1) sinh* (£2)’
(91)2 144 sinh? (\@tl)

sinh1® (¢2) cosh® (Vo)

Hence we can take the following two functionally independent invariants

IL=C,, I=ly.



Van den Berg metric

By choosing
IL=C,, I=lg,

one can write

1 2 (G 2 1
t! = ——arccosh £ 4 l) , t?2 = arctanh | ———
V6 (fz/‘ (2&; 16
2 by

Then the remaining 4 fundamental invariants read

2
30y (—8£%+ (C2+aGots+a22) >
C, = ,
(Go+2¢)*
7 2 2 2 2 2 2 6
~30, (4807 4 G, (Cp +4Cpé%/+4é(6> (Cp +4cp£<g+4zfg) —ars
Qx = 8
24 (Co+20¢)
736£%<(c§+4cpey; +462) 74@)
Q’y: 8 )
(Co+2L¢)
)2 =-12q,

This gives an invariant characterisation of the class represented by Van
den Bergh metric.



Solution of the equivalence problem when =+ is integrable

The equivalence class of a orthogonally transitive metric g is completely
characterised by the signature of its restriction to the Killing leaves and
by the way the four fundamental first-order scalar differential invariants
h=0Co bh=Cy, b= Qy, ls = Qy depend on two functionally
independent first-order scalar differential invariants (.#1,.72).




A discussion of the special case Cplyy =0

We can distinguish two sub-cases:

When G,/ = 0 the equivalence problem is not solved but, since C, and
Ly are first order invariants, in some particular cases we can use them to
explicitly describe metrics satisfying the special condition Cyly = 0.




The particular case of Lorentzian Einstein metrics

Aiming at possible applications in General Relativity, we considered the
case of Lorentzian A-vacuum Einstein metrics:

Ryv —Aguy =0, ANeR

with

We distinguished the following two main sub-cases:

(I) Cp =0, with the further sub-cases:
(I-1) detg < 0 (i.e., with Lorentzian orbit
metric);
(I-2) detg > 0 (i.e., with Riemannian orbit
metric).

(1) £y =0.



Lorentzian Einstein metrics with C; =0 and detg < 0

Theorem. All Lorentzian A-vacuum Einstein metrics with 2-dimensional
Abelian Killing algebra, non-null Killing leaves, C, =0 and detg <0
(hence deth > 0), satisfy A =0 and there exist adapted coordinates
(t1,t2, 2%, z?) such that

g = dt' dt? + R?(dz' + W dz?)? + S?(dz?)?,
with R, W and S differentiable functions of t! such that RS # 0 and

n2_ 28 (R S
(W)_R2<R+5 .

In particular these metrics are such that 4" =0 (then ¢4 = 0), hence are
orthogonally transitive and, in addition, are pp-waves since d,2 is a null
Killing vector field such that Vd,2 = 0.



Lorentzian A-vacuum Einstein metrics with Cp =0 and
detg >0

Theorem. All Lorentzian A-vacuum Einstein metrics with 2-dimensional
Abelian Killing algebra, non-null Killing leaves, C, =0 and detg >0
(hence deth < 0), satisfy A =0 and there exist adapted coordinates

(t1, 12,21, 2%) such that g has either the form

g = (dt')?+ (dt?)? + y(dz')? + 2 (c t'dt? + dz?) dz*,

with ¢ € R and y = y(t!,t?) a differentiable function such that
a1+ Y22 = 2, or the form

g = el (dt')2+ et (di?)?+ y(dz')? +2 (c et di? + d22> dz*,

with ¢ € R and y = y(t,t?) a differentiable function such that

_ ot 2
Vii1+ VYo =€ c°.

In particular, these metrics have /=0 and are orthogonally transitive if,
and only if, ¢ = 0. Moreover, they are pp-waves, since d,2 is a null Killing
vector field such that Vd,» = 0.



Lorentzian A-vacuum Einstein metrics with £, =0

Theorem. Every Lorentzian A-vacuum metric with 2-dimensional
Abelian Killing algebra, non-null Killing leaves and ¢4 = 0 belongs to one
of the following families of metrics:

1. pp-waves described above for C, =0;

2. Kundu orthogonally intransitive vacuum metrics (A = 0)

Tz (4 dy? + (P +1) du® +2dy du—2x*2dudv),

Wxx“!‘%llfx“v‘l[/yy :0,

with y = y(x,y);



Lorentzian A-vacuum Einstein metrics with £, =0

3. A-vacuum orthogonally intransitive metrics (generalized Kundu)

3_c2x dx2+@dy2+%dydu+%du2+2x2dudv, c,Ae R—{0}

T ACx3+1
2X3 2 2X3 2X3 2
(OIS 4 (R 3y, =0, w=y(xy);

with ¢, A€ R—{0} and y = y(x,y);

4. A-vacuum orthogonally intransitive metrics (generalized Kundu)

6
— 25 dx®+ Ldy? +2xdydu+ % dudv+ 5 du?,

Wxx_%wx_%ll/yyzoa
with A € R—{0} and v = y(x,y).
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