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Abstract

• This talk goes over the basics of quantum computing, gives a high-
level view of Shor’s quantum-assisted integer factorization algorithm,
introduces one of the key designs of Quantum error correction – the
toric code - and emphasizes the need for native topological
protection of quantum information.

• The talk is an introductory overview of quantum computing concepts
meant for mathematicians. Basic familiarity with the principles of
quantum mechanics is assumed.



What is in this talk

• Beyond Silicon, towards Quantum
• Mathematics of an Ideal Quantum Computer
• What is Exponential (Superpolynomial) Advantage
• Quantum Error Correction: Algebra and Topology 
• Noisy Intermediate Scale Quantum
• Credits and further reading: Understanding Quantum Technologies 

2021 [https://www.oezratty.net/wordpress/2021/understanding-
quantum-technologies-2021/]

https://www.oezratty.net/wordpress/2021/understanding-quantum-technologies-2021/


Beyond Silicon, towards Quantum

• Celebras’ 2.6 trillion  (7 nm) transistors, 15 kW consumption

• How many qubits we need for similar compute?
2𝟒𝟒𝟒𝟒 > 2.6 1012

[credit: New Journal of Physics, 2012]                                     
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Mathematics of an Ideal Quantum Computer, 1
• Qubit. State space of a qubit.
2-level quantum device with basis 0 , |1⟩ and state space 𝑆𝑆3 ⊂ ℂ2:

𝛼𝛼 0 + 𝛽𝛽 1 ,𝛼𝛼,𝛽𝛽 ∈ ℂ, 𝛼𝛼 2 + 𝛽𝛽 2 = 1

• Z-measurement. Born rule.
Observation procedure on a qubit. Forces the qubit into either 0 𝑜𝑜𝑜𝑜 |1⟩ state.

𝑝𝑝0 = 𝛼𝛼 2;𝑝𝑝1 = 𝛽𝛽 2

• Ideal RNG: (1) prepare a qubit in state 1
2

0 + 1
2

|1⟩; (2) measure; (3) repeat

• (699) Erwin Schrodinger Gets Pulled Over By Cops: Pirate Stu's Bootyful Joke of the Day #0036 - YouTube

https://www.youtube.com/watch?v=XU1nncAnR_w
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Labels for orthogonal contravariant vectors

https://www.youtube.com/watch?v=XU1nncAnR_w


Ideal Quantum Computer, 2           ℋ = (ℂ2)⊗𝑛𝑛

• Multi-qubit ensemble. State-space of 𝒏𝒏–qubit register.
State space of an ensemble of 𝑛𝑛 ideal qubits is 𝑆𝑆2𝑁𝑁−1,𝑁𝑁 = 2𝑛𝑛
In the basis 0 , … |𝑁𝑁 − 1⟩ an 𝑛𝑛–qubit state is

𝜓𝜓 = �
𝑘𝑘=0

𝑁𝑁−1

𝛼𝛼𝑘𝑘 𝑘𝑘 ,𝛼𝛼𝑘𝑘 ∈ ℂ, �
𝑘𝑘=0

𝑁𝑁−1
𝛼𝛼𝑘𝑘

2

= 1

• Observables and measurements.
An observable for 𝑛𝑛–qubit states is a Hermitian operator on ℂ𝑁𝑁
Let 𝒪𝒪 be an observable and 𝐸𝐸1 ⊕⋯⊕𝐸𝐸𝑀𝑀 = ℂ𝑁𝑁 be its eigen-decomposition. Then 
measurement of 𝒪𝒪 in quantum state |𝜓𝜓⟩ projects the quantum state onto one of the 𝐸𝐸𝑚𝑚
with the probability 

𝑝𝑝𝑚𝑚 = 𝑃𝑃𝑃𝑃𝐸𝐸𝑚𝑚𝜓𝜓
2

• Thus a quantum state can be viewed as probability distribution for observation 
outcomes.

Presenter
Presentation Notes
In particular, if |𝜓⟩ is an eigenstate of the observable  to begin with, then the measurement outcome is deterministic and yields |𝜓⟩



Mathematics of an Ideal Quantum Computer, 3
• Full 𝒏𝒏–qubit measurement
If we measure out each of 𝑛𝑛 qubits we get a bit string of length 𝑛𝑛
Suppose ℋ is the Hilbert state space of the 𝑛𝑛 qubits, |𝜓𝜓0⟩ is some standard 
initial state, 𝑈𝑈:ℋ → ℋ is some constructive unitary operator.
Measurements of quantum state 𝑈𝑈|𝜓𝜓0⟩ define a probability distribution on 
0,1 𝑛𝑛:

𝒙𝒙 ∈ 0,1 𝑛𝑛:𝑃𝑃𝑈𝑈 𝒙𝒙 = 𝜈𝜈(𝒙𝒙) 𝑈𝑈𝜓𝜓0 2

At the core of a typical quantum algorithm there is a specifically designed
unitary 𝑈𝑈 that implements a distribution over bit strings, where probabilities
of the desired bit strings are higher than the probabilities of undesired ones.



Shor’s Integer Factorization 
(1994): Concepts
• Claims:
Consider a product of two odd primes 𝑁𝑁 = 𝑃𝑃1𝑃𝑃2
The best traditional (field sieve) method for finding these primes has 
“sub-exponential” time complexity of roughly �𝑂𝑂 exp 1.9 (log𝑁𝑁 1/3)
Using ideal quantum computer this can be done in time �𝑂𝑂 log𝑁𝑁 2

• This is called superpolynomial speed-up (or, loosely, “exponential” 
speed up)

Practical takeaway: a 1024-bit RSA encryption key, for one, can be
broken in minutes using ideal quantum computer instead of estimated
½ million core-years.



Shor’s Integer Factorization: Concepts, 2 
𝑁𝑁 = 𝑃𝑃1𝑃𝑃2

• The core idea (number theory, reduction to period finding)
Pick a random integer 𝑎𝑎 < N . W.l.o.g. gcd 𝑎𝑎,𝑁𝑁 = 1
Then the function 𝒇𝒇 𝒌𝒌 = 𝒂𝒂𝒌𝒌 𝒎𝒎𝒎𝒎𝒎𝒎 𝑵𝑵 has a period 𝑟𝑟 < 𝑁𝑁
If 𝑟𝑟 is even and 𝑎𝑎𝑟𝑟/2 ≠ −1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 then gcd 𝑎𝑎𝑟𝑟/2 + 1,𝑁𝑁 and gcd 𝑎𝑎𝑟𝑟/2 − 1,𝑁𝑁 are non-
trivial factors of 𝑁𝑁
• The core quantum idea
Let 𝑟𝑟 be the desired period of the 𝑓𝑓 𝑘𝑘 = 𝑎𝑎𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
Can we manufacture a quantum state

𝜓𝜓 = �
𝑥𝑥=0

𝑀𝑀

𝛼𝛼𝑥𝑥 𝑥𝑥 ,

in a way that we can infer 𝑟𝑟 from the most probable outcome |𝑦𝑦⟩ of measuring out 𝜓𝜓 ?
• In Shor’s algorithm: the outcome 𝑦𝑦 is such that 𝑦𝑦 𝑟𝑟

𝑀𝑀
is very close to an integer



Shor’s Integer Factorization: Concepts, 3
Quantum Ingredients
• 1) Quantum Fourier Transform (𝑁𝑁~2𝑛𝑛)

𝑄𝑄𝑄𝑄𝑇𝑇𝑁𝑁 =
1
𝑁𝑁

…𝜔𝜔𝑁𝑁
𝑗𝑗𝑗𝑗 … ,𝜔𝜔𝑁𝑁 = 𝑒𝑒2 𝜋𝜋 𝑖𝑖/𝑁𝑁, 𝑗𝑗, 𝑘𝑘 ∈ [0,𝑁𝑁 − 1]

Time complexity 𝑂𝑂 𝑛𝑛2 = 𝑂𝑂( log𝑁𝑁 2) [vs. classical 𝑂𝑂(𝑁𝑁 log𝑁𝑁) ]
• 2) Coherent modular arithmetic (in superposition)
For integer 𝑎𝑎 and some large 𝑀𝑀 ≥ 𝑁𝑁2 prepare quantum state of the 
form

1
𝑀𝑀
�

𝑘𝑘=0

𝑀𝑀
𝑘𝑘 ⊗ |𝑎𝑎𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁⟩



Integer Factorization: putting it all together

• [credit: Wikipedia.org]

𝑁𝑁2



Integer Factorization:  𝑁𝑁 = 𝑁𝑁1𝑁𝑁2,𝑛𝑛 = ceil[log2 𝑁𝑁],�𝑁𝑁 = 2𝑛𝑛

• [credit: Wikipedia.org]

�𝑁𝑁2

1
�𝑁𝑁
�
𝑘𝑘=0

�𝑁𝑁2−1

|𝑘𝑘⟩

Good �𝑁𝑁2 has > 1000 decimal digits
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𝟏𝟏
𝟐𝟐

(|𝟎𝟎⟩ + |𝟏𝟏⟩) RSA keys?
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𝑁𝑁 �

𝑘𝑘=0

𝑁𝑁2−1
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𝒄𝒄 𝒓𝒓 ⊗ |𝟏𝟏⟩



Shor Algorithm in Q# Library

• Applications in the Q# standard libraries - Azure Quantum | 
Microsoft Docs

[https://docs.microsoft.com/en-us/azure/quantum/user-guide/libraries/standard/applications#shors-algorithm]

• Programming Quantum Period Finding (Shor’s Algorithm) –
tsmatz (wordpress.com)

[https://tsmatz.wordpress.com/2019/06/04/quantum-integer-factorization-by-shor-period-finding-algorithm/ ]

https://docs.microsoft.com/en-us/azure/quantum/user-guide/libraries/standard/applications#shors-algorithm
https://tsmatz.wordpress.com/2019/06/04/quantum-integer-factorization-by-shor-period-finding-algorithm/
https://tsmatz.wordpress.com/2019/06/04/quantum-integer-factorization-by-shor-period-finding-algorithm/


∄ Ideal Quantum Computer



Noisy qubits

• In traditional silicon device an encoded bit can occasionally flip:
10010101011101010101010000101111
• A qubit

𝛼𝛼 0 + 𝛽𝛽 1 ,𝛼𝛼,𝛽𝛽 ∈ ℂ, 𝛼𝛼 2 + 𝛽𝛽 2 = 1
Can be flipped in more than one way:
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𝛼𝛼 0 + 𝛽𝛽 1 ,𝛼𝛼,𝛽𝛽 ∈ ℂ, 𝛼𝛼 2 + 𝛽𝛽 2 = 1
Can be flipped in more than one way:
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Qubit and Gate Fidelity

• In traditional silicon device an encoded bit can occasionally flip:
10010101011101010101010010101111
• A qubit

𝛼𝛼 0 + 𝛽𝛽 1 ,𝛼𝛼,𝛽𝛽 ∈ ℂ, 𝛼𝛼 2 + 𝛽𝛽 2 = 1
can be flipped in more than one way:

phase-flip: 𝛼𝛼 0 + 𝒆𝒆𝒊𝒊𝒊𝒊𝛽𝛽 1 , X-flip: 𝛼𝛼 𝟏𝟏 + 𝛽𝛽 𝟎𝟎
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Noisy qubits

• In traditional silicon device an encoded bit can occasionally flip:
10010101011101010101010010101111
• A qubit

𝛼𝛼 0 + 𝛽𝛽 1 ,𝛼𝛼,𝛽𝛽 ∈ ℂ, 𝛼𝛼 2 + 𝛽𝛽 2 = 1
can be flipped in more than one way:
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A qubit can also decohere: e.g. 𝛼𝛼 0 + 𝛽𝛽 1 ↦ 𝟏𝟏



(In)Fidelity of state preparation
• It is not easy to prepare a qubit in a coherent state 𝛼𝛼 0 + 𝛽𝛽 1
In the best case, states s.a. 0 , 1 , 1

2
(|0⟩ ± |1⟩), 1

2
(|0⟩ ± 𝑖𝑖|1⟩) are easy to prepare. Others 

must be approximated.
For instance the all-essential QFT is approximate beyond 𝑛𝑛 > 2 qubits. E.g. preparing qubits 
of the form 

1
2

(|0⟩ + 𝑒𝑒𝜋𝜋𝜋𝜋/2𝑘𝑘|1⟩)
that are critical for QFT circuits requires expensive “quantum magic states” for 𝑘𝑘 > 1
• Furthermore:
Primitive quantum operations (“gates”) themselves used in state manipulation are not 
error-tolerant. As a result, on current experimental devices, you are lucky if you get a 

1-qubit state such as 1
2

(|0⟩ + 𝑒𝑒𝜋𝜋𝜋𝜋/2𝑘𝑘|1⟩) with 99% precision 99% of the time.
Fidelity of 2-qubit operations, used to “entangle” qubits is even worse (90% with luck)
⇒ Need for Error Correction methods



Quantum Error Correction, 1
• How do we protect classical information from random errors?

• Quantum “no-cloning” rule: can not create an identical copy of 
unknown quantum state.

• Quantum “observer effect” : observation may change the state of 
quantum system.

⇒ How can we even detect quantum errors (if we cannot observe the 
system) ?

1 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1

1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1

1 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1

:



Quantum Error Correction, 2
• Key ingredient: (non-destructive) stabilizer codes
• Algebra:
1) Let ℋ be 𝑛𝑛-qubit state space, 𝒮𝒮 ⊂ 𝐴𝐴𝐴𝐴𝐴𝐴(ℋ) – an Abelian subgroup of 
Hermitian operators.
2) Require: 𝑛𝑛-qubit state |𝜓𝜓⟩ to be stabilized by 𝒮𝒮,i.e.∀𝒪𝒪 ∈ 𝒮𝒮,𝒪𝒪 𝜓𝜓 = |𝜓𝜓⟩
3) ⇒ measuring any or all 𝒪𝒪 ∈ 𝒮𝒮 in such state |𝜓𝜓⟩ does not affect the state
4) Now, let us design 𝒮𝒮 ⊂ 𝐴𝐴𝐴𝐴𝐴𝐴(𝐻𝐻) such that one quantum error (or,  small 
number of uncorrelated errors) pushes |𝜓𝜓⟩ out of the +1 eigenspace of 𝒮𝒮.
5) Then measuring observables 𝒪𝒪 ∈ 𝒮𝒮 will signal the presence of quantum errors.
6) With some sophistication, these errors can be coherenty corrected.



Quantum Error Correction, 3
• Engineering, toric code

[credit: https://en.wikipedia.org/wiki/Toric_code ]

𝑋𝑋 = 0 1
1 0 ,𝑍𝑍 = 1 0

0 −1

• 𝒮𝒮 = {… 𝑿𝑿𝒂𝒂𝑿𝑿𝒃𝒃𝑿𝑿𝒄𝒄𝑿𝑿𝒅𝒅,𝒁𝒁𝒂𝒂𝒁𝒁𝒃𝒃𝒁𝒁𝒄𝒄𝒁𝒁𝒅𝒅, … }

𝑴𝑴𝟐𝟐 data qubits (black dots)
𝑴𝑴𝟐𝟐 syndrome qubits (white dots)

Presenter
Presentation Notes
The most popular engineering solution known as “toric code”

https://en.wikipedia.org/wiki/Toric_code


Quantum Error Correction, 4

• Topological interpretation:

• 𝒮𝒮 = {… 𝑿𝑿𝒂𝒂𝑿𝑿𝒃𝒃𝑿𝑿𝒄𝒄𝑿𝑿𝒅𝒅,𝒁𝒁𝒂𝒂𝒁𝒁𝒃𝒃𝒁𝒁𝒄𝒄𝒁𝒁𝒅𝒅, … }
• |𝒮𝒮| = 2𝑀𝑀2 − 2, for 2𝑀𝑀2 qubits
• dim𝐸𝐸+1 = 4

• [credit: Lecture2.pdf (fu-berlin.de)]

http://users.physik.fu-berlin.de/%7Epelster/Anyon1/Lecture2.pdf
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Beyond Silicon, towards Quantum

• Celebras’ 2.6 trillion  (7 nm) transistors, 15 kW consumption

• How many qubits we need for similar compute?
2𝟒𝟒𝟒𝟒 > 2.6 1012

[credit: New Journal of Physics, 2012]                                     

10 x

𝟒𝟒𝟒𝟒 → 𝟒𝟒𝟒𝟒 × 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 = 𝟒𝟒𝟒𝟒𝟒𝟒 𝟎𝟎𝟎𝟎𝟎𝟎



Towards native topological protection: non-
Abelian anyons

• Credit: Topological Quantum Computing Market to See Major Growth by 2026 (openpr.com)
[https://www.openpr.com/news/2293601/topological-quantum-computing-market-to-see-major-
growth-by-2026]

Presenter
Presentation Notes
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Topological qubit – a high-stakes prize

• New physics discovery from the Microsoft Quantum team: topology 
with a twist

• A Topological Quantum Computer — Experts Suggest Rethinking The 
Idea | by Anna Ned | Cantor’s Paradise (cantorsparadise.com)

https://cloudblogs.microsoft.com/quantum/2020/03/27/new-physics-discovery-microsoft-quantum-topology-with-a-twist/
https://www.cantorsparadise.com/a-topological-quantum-computer-experts-suggest-rethinking-the-idea-1c6b49bfd391


What are Microsoft resources for all the good 
Quantum stuff?



Azure Quantum Platform

• Algorithms, quantum tools, languages, simulators, resource 
estimators and tutorials developed at Microsoft are available for 
public preview within the Azure Quantum Platform: Azure Quantum -
Quantum Service | Microsoft Azure [https://azure.microsoft.com/en-
us/services/quantum/#product-overview ]

• The Service, moreover provides access to quantum hardware from 
IonQ or Honeywell via “quantum credits” program Azure Quantum 
Credits application (qualtrics.com)
[https://microsoft.qualtrics.com/jfe/form/SV_3fl9dfFrkC3g0aG ]

https://azure.microsoft.com/en-us/services/quantum/
https://azure.microsoft.com/en-us/services/quantum/#product-overview
https://microsoft.qualtrics.com/jfe/form/SV_3fl9dfFrkC3g0aG?aq_source=organic
https://microsoft.qualtrics.com/jfe/form/SV_3fl9dfFrkC3g0aG
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Historic Allusions and NISQ Quantum Chips,2019
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Conclusion

• Quantum computing is at the stage of rapid (explosive) growth. 
• Having scored major achievements and breakthroughs in recent

years, presently QC science and engineering are facing two major
challenges: (1) challenge of scale and (2) challenge of fidelity.

• Installations with millions of fully controllable qubits are needed for 
practical quantum advantage.

• From 50 – 100 qubits with fidelity less than 0.99 we need to scale out 
to 10s of thousands of qubits with fidelities 0.99999 and better.

• Error correction codes and/or native topological protection of 
quantum information will get us there.



Thanks!

• Credit: [ https://www.culture.ru/poems/48738/plastilinovaya-vorona ]

https://www.culture.ru/poems/48738/plastilinovaya-vorona
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