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Preliminaries

Iiven a manifold M of dim M = m, a Poisson operator
of co-rank r on M is a bivector II ¢ A?(M) with
vanishing Schouten bracket:

1L 15 = 0,
whose kernel is spanned by exact one-forms
ker IT = Sp{de;}iz1,..r-

c; functions are called Casimirs.
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Preliminaries

Iiven a manifold M of dim M = m, a Poisson operator
of co-rank r on M is a bivector II ¢ A?(M) with
vanishing Schouten bracket:

1L 15 = 0,
whose kernel is spanned by exact one-forms
ker IT = Sp{de;}iz1,..r-

c; functions are called Casimirs. In a local coordinate
system (z!,...,2™) on M we have

Z %,
1= ZHJ Ao

1<J
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Preliminaries

hile the Poisson property takes the form

> (WhoIrt + mto M + oY) =0, 0 =
[

I Bi-nresvmplectic separabilitv theorv

oxt

—n. 3/31



Preliminaries

hile the Poisson property takes the form

Z(H]lall—[zk 4 HzlalHk] 4 Hklalnjz) =0, 0;:= v
X
l

Let C(M) denote the space of all smooth real-valued
functions on M.
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Preliminaries

while the Poisson property takes the form

Z(Hjlall—[zk 4 HzlalHk] 4 Hklalnjz) =0, 0;:= v
X
l

Let C(M) denote the space of all smooth real-valued
functions on M.

Having a Poisson tensor we can define a Hamiltonian
vector fields on M. A vector field X related to a
function £ € C (M) by the relation

Xp = [dF, (3)

IS called the Hamiltonian vector field with respect to
- the Poisson operator II.
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Preliminaries

linear combination 11, = II; + Ay (A € R) of two
Poisson operators 11y and II; Is called a Poisson pencll
If the operator II, Is Poisson for any value of the
parameter .
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Preliminaries

linear combination 11, = II; + Ay (A € R) of two
Poisson operators 11y and II; Is called a Poisson pencll
If the operator II, Is Poisson for any value of the
parameter .

In this case we say that I, and II; are compatible.
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Preliminaries

linear combination 11, = II; + Ay (A € R) of two
Poisson operators 11y and II; Is called a Poisson pencll
If the operator II, Is Poisson for any value of the
parameter .

In this case we say that II; and II; are compatible.
When all Casimir functions of 11, are polynomials In

parameter \ then we say that the pencil is of
Gel'fand-Zakharevich (GZ) type.
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Preliminaries

urther, a presymplectic operator 2 on M is defined
a two-form that is closed, I.e. d) = 0, degenerated
general.
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Preliminaries

urther, a presymplectic operator 2 on M is defined
a two-form that is closed, I.e. d) = 0, degenerated
In general.

Moreover, the kernel of any presymplectic form is an
iIntegrable distribution.
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Preliminaries

urther, a presymplectic operator € on M is defined
a two-form that is closed, I.e. d) = 0, degenerated
In general.

Moreover, the kernel of any presymplectic form is an
iIntegrable distribution.

In local coordinate system (z!,...,2™) on M we can
represent Q) as

Q=Y Qida’ Ada’,

1<9
where the closeness condition takes the form
@-ij + 8kﬂij -+ 83'@]%' = 0.

. Bi-nresvmplectic separabilitv theorv —n. 5/31



Preliminaries

vector field X' related to a function F ¢ C'(M) by the
lation

QX = dF

IS called the inverse Hamiltonian vector field with
respect to the presymplectic operator 2.
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Preliminaries

vector field X related to a function F € C(M) by the
lation

QX = dF

IS called the inverse Hamiltonian vector field with
respect to the presymplectic operator 2.

As In the case of presymplectic forms their linear
combination is always presymplectic, hence the notion
of compatibility, as it was defined for Poisson tensors,
does not make sense.

. Bi-nresvmplectic separabilitv theorv —n. 6/31



Preliminaries

A vector field X* related to a function F' € C'(M) by the

relation
OXt = dF

IS called the inverse Hamiltonian vector field with
respect to the presymplectic operator 2.

As In the case of presymplectic forms their linear
combination is always presymplectic, hence the notion
of compatibility, as it was defined for Poisson tensors,
does not make sense.

Any non-degenerate closed two form on M is called a
symplectic form. The inverse of a symplectic form is
an implectic operator, I.e. invertible Poisson tensor.
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Preliminaries

pair (II, Q) Is called dual implectic-symplectic pair on
If IT IS non-degenerate Poisson tensor, 2 IS
non-degenerate closed two-form and the following
partition of unity holds on 7'M, respectively on 7% M:

[ =110 and I = QII.
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Preliminaries

pair (II, Q) Is called dual implectic-symplectic pair on
If IT IS non-degenerate Poisson tensor, 2 IS
non-degenerate closed two-form and the following
partition of unity holds on 7'M, respectively on 7% M:

[ =110 and I = QII.

So, In the non-degenerate case, a dual pair is a pair of
mutually inverse operators on M.

. Bi-nresvmplectic separabilitv theorv —n. 7/31



Preliminaries

A pair (I1, ©) Is called dual implectic-symplectic pair on
M If 11 Is non-degenerate Poisson tensor, 2 IS
non-degenerate closed two-form and the following
partition of unity holds on 7'M, respectively on 7% M:

[ =110 and I = QII.

So, In the non-degenerate case, a dual pair is a pair of
mutually inverse operators on M.

Moreover, the Hamiltonian and the inverse
Hamiltonian representations are equivalent as for any
Implectic bivector II there is a unique dual symplectic
form Q = II-! and hence a vector field Hamiltonian
with respect to II Is an inverse Hamiltonian with

m respect to (.
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preliminaries

t us extend these considerations onto a degenerate
se.
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preliminaries

t us extend these considerations onto a degenerate
se.

A pair of tensor fields (II, 2) on M of co-rank r Is called
a dual pair If there exists » one-forms dc; and r linearly
Independent vector fields Z;, such that:
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preliminaries

t us extend these considerations onto a degenerate
se.

A pair of tensor fields (II, 2) on M of co-rank r Is called
a dual pair If there exists » one-forms dc; and r linearly
Independent vector fields Z;, such that:

1. ker Il = Sp{dc; : i =1,...r1}.
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preliminaries

t us extend these considerations onto a degenerate
se.

A pair of tensor fields (II, 2) on M of co-rank r Is called
a dual pair If there exists » one-forms dc; and r linearly
Independent vector fields Z;, such that:

1. ker Il = Sp{dc; : i =1,...r1}.

2. kerQ)=Sp{Z;:i=1,...r}.
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preliminaries

t us extend these considerations onto a degenerate
se.

A pair of tensor fields (II, 2) on M of co-rank r Is called
a dual pair If there exists » one-forms dc; and r linearly
Independent vector fields Z;, such that:

1. ker Il = Sp{dc; : i =1,...r1}.

2. kerQ)=Sp{Z;:i=1,...r}.

3. Zz'(Cj) — 5@7‘, 1 = 1,2...7°.
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preliminaries

t us extend these considerations onto a degenerate
se.

A pair of tensor fields (II, 2) on M of co-rank r Is called
a dual pair If there exists » one-forms dc; and r linearly
Independent vector fields Z;, such that:

1. ker Il = Sp{dc; : i =1,...r1}.

2. kerQ)=Sp{Z;:i=1,...r}.

3. Z@(Cj) — 5@'3', 1 = 1,2...7“.

4. The following partition of unity holds on 7'M,
respectively on 7* M

r r
[=TQ+Y Zi®dy, — [=Q0+Y do®Z,
1=1 1=1
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preliminaries

presymplectic form Q plays the role of an 'inverse’ of
0isson bivector II in the sense that on any symplectic
leaf of the foliation defined by ker II, the restrictions of
() and II are inverses of each other.

Gauge freedom for the dual pair (11, ©2), where
dc; € kerIT and Z; € ker ().
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preliminaries

presymplectic form Q plays the role of an 'inverse’ of
0isson bivector II in the sense that on any symplectic
leaf of the foliation defined by ker II, the restrictions of
() and II are inverses of each other.

Gauge freedom for the dual pair (11, ©2), where
dc; € kerIT and Z; € ker ().
Let ©2 be dual to II, then Q' is another dual if

O =Q+df Ade;,  fi € C(M)
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preliminaries

presymplectic form Q plays the role of an 'inverse’ of
0isson bivector II in the sense that on any symplectic
leaf of the foliation defined by ker I1, the restrictions of
() and II are inverses of each other.

Gauge freedom for the dual pair (11, ©2), where
dc; € kerIT and Z; € ker ().
Let ©2 be dual to II, then Q' is another dual if

O =Q+df Ade;,  fi € C(M)

where

Zi(fi) — Z;(f;) + (df;,df;) =0 forall i, .
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preliminaries

() and II are inverses of each other.

Gauge freedom for the dual pair (11, ©2), where
dc; € kerIT and Z; € ker ().
Let ©2 be dual to II, then Q' is another dual if

O =Q+df Ade;,  fi € C(M)

where
Zi(fi) — Z;(f;) + (df;,df;) =0 forall i, .

The respective freedom exists for a new II’ dual to .

. Bi-nresvmplectic separabilitv theorv

presymplectic form Q plays the role of an 'inverse’ of
0isson bivector II in the sense that on any symplectic
leaf of the foliation defined by ker I1, the restrictions of

—n. 9/31



Preliminaries

I the degenerate case the Hamiltonian and the
verse Hamiltonian vector fields do not coincide.
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Preliminaries

I the degenerate case the Hamiltonian and the
verse Hamiltonian vector fields do not coincide.

Assume that (I1,Q2) is a dual pair, Xp =IIdF' IS a

Hamiltonian vector field and dF = QX! is an inverse
Hamiltonian one-form, where Xt is an inverse
Hamiltonian vector field.
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Preliminaries

I the degenerate case the Hamiltonian and the
verse Hamiltonian vector fields do not coincide.

Assume that (I1,Q2) is a dual pair, Xp =IIdF' IS a

Hamiltonian vector field and dF = QX! is an inverse
Hamiltonian one-form, where Xt is an inverse
Hamiltonian vector field.

Then,

dF = Q(Xp)+ Y Zi(F)de;,  Xp=X"-Y X"(c;)Z;.
1=1 1=1
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Preliminaries

I the degenerate case the Hamiltonian and the
Inverse Hamiltonian vector fields do not coincide.

Assume that (I1,Q2) is a dual pair, Xp =IIdF' IS a

Hamiltonian vector field and dF = QX! is an inverse
Hamiltonian one-form, where Xt is an inverse
Hamiltonian vector field.

Then,

dF = Q(Xp) + Y  Zi(F)de;, Xp=X"=Y" X"(c))Zs.
1=1 1=1

It means that an inverse Hamiltonian vector field X’ is
simultaneously a Hamiltonian vector field X, I.e.
X = Xp, if dF is annihilated by ker(Q2) and X" is

= annihilated by ker(IT).
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preliminaries

ny dual pair (I1, Q) defines a Poisson algebra on
(M)

(F,GY := II(dF,dG) = Q(IIdF, 11dG)
= O(Xp, Xg) = {F,G}", F,GeC®M).
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d-compatibility
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d-compatibility

ow we develop a concept of d-compatibility which is
ucial for our further considerations. Let us start with
non degenerate case.
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d-compatibility

ow we develop a concept of d-compatibility which is
ucial for our further considerations. Let us start with
a non degenerate case.

We say that a closed two-form €, iIs d-compatible with
a symplectic form Qg If I1oQ2, 11, Is a Poisson tensor and

Iy = " is dual to €.
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d-compatibility

ow we develop a concept of d-compatibility which is
ucial for our further considerations. Let us start with
a non degenerate case.

We say that a closed two-form €, iIs d-compatible with
a symplectic form Q if 1o, 11, is a Poisson tensor and

Iy = Q" is dual to Q.
We say that a Poisson tensor I1; is d-compatible with

an implectic tensor II; if QyI11Q Is closed and
() = II,* is dual to .
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d-compatibility

ow we develop a concept of d-compatibility which is
crucial for our further considerations. Let us start with
a non degenerate case.

We say that a closed two-form €, iIs d-compatible with
a symplectic form Q if 1o, 11, is a Poisson tensor and

Iy = Q" is dual to Q.
We say that a Poisson tensor I1; is d-compatible with

an implectic tensor II; if QyI11Q Is closed and
() = II,* is dual to .

d-compatibility < compatibility
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d-compatibility

he following lemma relates d-compatible Poisson
ructures, of which one is implectic, and d-compatible
o-forms, of which one is symplectic.
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d-compatibility

he following lemma relates d-compatible Poisson
structures, of which one is implectic, and d-compatible
two-forms, of which one is symplectic.

Lemma Let (I1y, Qo) be a dual implectic-symplectic
pailr.

(1) Let a Poisson tensor II; be d-compatible with II,.
Then, Q; = QuIl; Q) IS closed two-form d-compatible

(1) Let a closed two-form Q; be d-compatible with .
Then, II; = 1o 11 Is a Poisson tensor d-compatible
with I1y.
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d-compatibility

he following lemma relates d-compatible Poisson

Structures, of which one is implectic, and d-compatible

two-forms, of which one is symplectic.

Lemma Let (I1y, Qo) be a dual implectic-symplectic
pailr.

(1) Let a Poisson tensor II; be d-compatible with II,.
Then, Q; = QuIl; Q) IS closed two-form d-compatible

(1) Let a closed two-form €; be d-compatible with Q.

Then, II; = 1o 11 Is a Poisson tensor d-compatible
with I1p.

Let us extend the notion of d-compatibility onto the
- degenerate case.
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d-compatibility

closed two-form ©; Is d-compatible with a closed
o-form Qg If there exists a Poisson tensor I1,, dual to
)y, such that 11,11, Is Poisson. Then we say that the
pair (29, Q1) Is d-compatible with respect to I1j.
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d-compatibility

closed two-form € i1s d-compatible with a closed
o-form Qg If there exists a Poisson tensor I1,, dual to
)y, such that 11,11, Is Poisson. Then we say that the
pair (Qg, €21) Is d-compatible with respect to II,.

A Poisson tensor II; Is d-compatible with a Poisson
tensor I1j If there exists a presymplectic form Q, dual
to 11y, such that QyII,Q Is closed. Then we say that
the pair (11, IT;) Is d-compatible with respect to €.
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d-compatibility

closed two-form € i1s d-compatible with a closed
two-form Qq If there exists a Poisson tensor I1,, dual to
)y, such that 11,11, Is Poisson. Then we say that the
pair (Qg, €21) Is d-compatible with respect to II,.

A Poisson tensor II; Is d-compatible with a Poisson
tensor I1j If there exists a presymplectic form Q, dual
to 11y, such that QyII,Q Is closed. Then we say that
the pair (11, IT;) Is d-compatible with respect to €.

d-compatibility = compatibility
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d-compatibility

closed two-form € i1s d-compatible with a closed
two-form Qg If there exists a Poisson tensor 11, dual to
)y, such that 11,11, Is Poisson. Then we say that the
pair (Qg, €21) Is d-compatible with respect to II,.

A Poisson tensor II; Is d-compatible with a Poisson
tensor I1j If there exists a presymplectic form Q, dual
to 11y, such that QyII,Q Is closed. Then we say that
the pair (11, IT;) Is d-compatible with respect to €.

d-compatibility = compatibility
The inverse relation is true provided that

Qo(Lz 1) = 0, i=1,...1



Bi-presymplectic chains
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Bi-presymplectic chains

ssume we have a pair of presymplectic forms
(20, 21), d-compatible with respect to some I, dual to
()p, both of rank 2n and co-rank r.
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Bi-presymplectic chains

ssume we have a pair of presymplectic forms
(20, 21), d-compatible with respect to some I, dual to
()p, both of rank 2n and co-rank r.

Assume further, that they form bi-presymplectic chains
of one-forms

ﬁz(k) ZQQ)/Z('ZC) :Ql}/;.(_l?’ 1 = 1,2,...,nk
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Bi-presymplectic chains

ssume we have a pair of presymplectic forms
(20, 21), d-compatible with respect to some I, dual to
()g, both of rank 2n and co-rank r.

Assume further, that they form bi-presymplectic chains
of one-forms

ﬁz(k) :QQ)/Z(]G) :Qly;'(—]?’ 1 = 1,2,...,71]C

where k. =1,....r, ny + ... + n, = n and each chain starts
with a kernel vector field YO(’“) of 0y and terminates with

a kernel vector field Y, of Q;.
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Bi-presymplectic chains
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Bi-presymplectic chains

QO(Y;(k), )/J(m)) _ Ql()/z(k); )/J(m)) = 0,

fork,m=1,...r,i=1,2,....np, 1 =1,2, ... 1y,

Moreover, let us assume that

XM = 11o8" = mpar ™,

( 1

fork=1,...,r,i=1,2,... n.
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Bi-presymplectic chains

QO()/Z('ZC)7 )/J(m)) _ Ql(Y;(k)a )/J(m)) = 0,

fork,m=1,...r,i=1,2,....np, 1 =1,2, ... 1y,

Moreover, let us assume that

XM = 118" = pan ™,

1

fork=1,...,r,i=1,2,...,n,. Then,

()

and bi-presymplectic chain defines a Liouville

l i nte (] rabl e SVSte m . Bi-nresvmplectic separabilitv theorv
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Bi-presymplectic chains
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Bi-presymplectic chains

where IIpdHy =0, m=1,....,r,i=1,2....,n,, then

(111) vector fields X ) form bi-Hamiltonian chains
X® = 1gdmg™ =mae™, i=1,2,....n

where
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Bi-presymplectic chains

My = oIl + 5, X\ A v™,

Each chain starts with 7", a Casimir of I, and

terminates with Hf,%) a Casimir of II;. Moreover the
Poisson pair (Ily, ITy) Is d-compatible with respect to
(.
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Bi-presymplectic chains

My = oIl + 5, X\ A v™,

Each chain starts with 7", a Casimir of I, and

terminates with Hf,%) a Casimir of II;. Moreover the
Poisson pair (Ily, ITy) Is d-compatible with respect to
(.

Algorithmic procedure of separability.
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Bi-presymplectic chains

My = oIl + 5, X\ A v™,

Each chain starts with 7", a Casimir of I, and

terminates with H,S’,‘j) a Casimir of II;. Moreover the
Poisson pair (Ily, ITy) Is d-compatible with respect to
(.

Algorithmic procedure of separability.

wp, w1- restrictions of Qy and ©; to any symplectic leaf
of I1y. Separation coordinates are eigenvalues of the
recursion operator

N = wo_lwl.
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Stackel system
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Stackel system

onsider Liouville integrable system {4;}" , which is
tackel separable.
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Stackel system

onsider Liouville integrable system {4;}" , which is
tackel separable.

Separation coordinates (), 1) and separation relations:

n
D SF(N i) ak = Vi A, ), i=1,...,n,
k=1
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Stackel system

onsider Liouville integrable system {4;}" , which is
Stackel separable.

Separation coordinates (), 1) and separation relations:
n
D SF(N i) ak = Vi A, ), i=1,...,n,
k=1

where a;, = hi.(\, 1) and matrix S = (S¥) is called a
generalized Stackel matrix.
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Stackel system

r further convenience, let us collect the terms from
e |.h.s. as follows:

Z% ) =N w),  i=1,...,m,
where
PEO) =3 A e =
1=1
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Stackel system

r further convenience, let us collect the terms from
e |.h.s. as follows:

Z% ) =N w),  i=1,...,m,
where
PEO) =3 A e =
1=1

On the extended phase space M — M :
(A, 1) — (N, p, ¢), where dim M = 2n + r, differentials

%) form bi-inverse-Hamiltonian chains

(/
. Bi-nresvmplectic separabilitv theorv
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Stackel system

Q()Yz()—dh( )1—913/() i:1,2,...,nk, kZI,...,’I“,

which starts with a kernel vector field YO(’“) = 5 of
and terminates with a kernel vector field Yéf) of ),
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Stackel system

Q()Y,L()—dh( )1—913/() i:1,2,...,nk, kZI,...,T,

which starts with a kernel vector field YO(’“) = 5 of
and terminates with a kernel vector field Yéf) of ),

= dN A dp, Z)\Zd)\z/\duﬁz:dh A deg,
) k=1
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Stackel system

Qv =dh™ =y =12 g, k=1,

which starts with a kernel vector field YO(’“) = 5 of
and terminates with a kernel vector field Yé,’f) of ),

= dN A dp, Z)\Zd)\’/\dumtz(ih A deg,
) k=1

r

(k) (k) (k,l (1)
v\ =11gani® — 3" FM v, HO_Z
— O\ 5’@2

and F,&.(’“’l) are an appropriate separable potentials.
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Stackel system

oreover, )y and Q; are d-compatible with respect to
o but vector fields X = 11,dn*) are not

bi-Hamiltonian as v:\* (n{") = — F*! = 0 while
y M (H™) = 0.

(;
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Stackel system

oreover, y and €; are d-compatible with respect to
o but vector fields x* = 11ydn!*) are not

bi-Hamiltonian as v:\* (n{") = — F*! = 0 while
Yo" ™y = o.

7

In order to construct on M related bi-Hamiltonian
chains of vector fields, one has to extend the original
Hamiltonians

]

W8 g 8 S kD o1
=1
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Stackel system

o but vector fields X = 11,dn*) are not
bi-Hamiltonian as v:\* (n{") = — F*! = 0 while
y M (H™) = 0.

7

In order to construct on M related bi-Hamiltonian
chains of vector fields, one has to extend the original
Hamiltonians

;T = ZFkl izl,...,n.

Then, on M, vector fields KZ.( ) — HOdH ) form a
bi-Hamiltonian chains

. Bi-nresvmplectic separabilitv theorv

oreover, y and €; are d-compatible with respect to
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Stackel system
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Stackel system

—ThdH", i=1,2,.. . np k=1,..7

.
0 = MMl + Y K™ A vy™,

m=1
Each chain starts with the Casimir of I1y: H ék) = Cg,

and terminates with the Casimir of IT;: A f,ﬁk). Poisson
tensors 11y and II; are d-compatible with respect to €.
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Stackel system

—ThdH", i=1,2,.. . np k=1,..7

0 = MMl + Y K™ A vy™,
m=1
Each chain starts with the Casimir of I1: H (’“) = ¢,

and terminates with the Casimir of IT;: A ﬁk). Poisson
tensors I, and II; are d-compatible with respect to .

Differentials H ) do not form bi-inverse-Hamoltonian
chains as

: (k.
. Bi-nresvmplectic separabilitv theorv —n. 23/31



Example

n M = R* consider separation relations

1 .
hiA;i + ho = 5)\2'/17? -+ )\,i-l, 1 =1,2
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Example

n M = R* consider separation relations
hiXi + hg = —Azuz + 0, i=1,2

The canonical point transformation
1

=M+ Ae, @ =M

transforms the system to flat coordinates (¢, p) with
1 1 1
h/ _ 2 -2
2191'+ 2pz‘+<h_+‘2
1 1 1 1
ho — — - 2 4
2 = 592P1P2 2@1P2'+ 1GQ2-+'4
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Example

n M = R* consider separation relations
hiXi + hg = —Azuz + 0, i=1,2

The canonical point transformation
1

=M+ Ae, @ =M

transforms the system to flat coordinates (¢, p) with
1 1 1
h/ _ 2 -2
2pl'+ 2pz‘+<h_+‘2
1 1 1 1
ho — — - 2 4
2 = 592P1P2 2@1P2'+ 16@2'+'4

We recognize the Henon-Helles system.

. Bi-nresvmplectic separabilitv theorv —n. 24/31
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Example

n M = R° differentials dh; and dh, form
-lnverse-Hamiltonian chain

Yy =0

QoY1 = dh; = 1Y)

oYy = dhy = (11Y]
0=0Y5
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Example

n M = R° differentials dh; and dh, form
-lnverse-Hamiltonian chain

QoY =0
Q()Yl = dhy = 91Y()
Q()YQ = dhz = Qlyl

0=0Y
with vector fields
Yy = (0,0,0,0,1)T
1
Yl — (p17p27 _SQ% T §qga —q142, _Q1)T
1 1 1 1
Vi — (= + _ Lt L9
5 (2Q2p2, 502P1 — @1P1, 5Py — 54142,
1 1, 1, 1 57
l SP1P2 — 743 — 54142 4612)

Bi-nresvmplectic separabilitv theorv

—n. 25/31



Example

d presymplectic forms

(00 -1 0 0)
00 0 —10
Q=10 0 0 0],
01 0 0 0
\ 00 0 0 0
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d presymplectic forms

Example

(00 -1 0 0)
00 0 —10
Q=10 0 0 0],
01 0 0 0
\ 00 0 0 0
( 0 —3p2  —q1 —5@ 3¢+ 3 %\
D2 0 -3¢ O q192
q 52 0 0 p1
502 0 0 0 P2

Bi-nresvmplectic separabilitv theorv

—n. 26/31



Example

hich are d-compatible with respect to the canonical
oisson tensor 11, dual to 2y one.
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Example

hich are d-compatible with respect to the canonical
oisson tensor 11, dual to 2y one.

amiltonians h; and h, do not form bi-Hamiltonian
chain.
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Example

hich are d-compatible with respect to the canonical
oisson tensor 11, dual to 2y one.

amiltonians h; and h, do not form bi-Hamiltonian
chain.

In order to construct a bi-Hamiltonian chain one has to
extend h; and hs:

1
Hy =hy —cq, Hz=hy— ZC(J%-

. Bi-nresvmplectic separabilitv theorv —n. 27/31



Example

hich are d-compatible with respect to the canonical
oisson tensor 11, dual to 2y one.

Hamiltonians h; and h, do not form bi-Hamiltonian
chain.

In order to construct a bi-Hamiltonian chain one has to
extend h; and hs:

1
Hy =hy —cq, Hz=hy— ZC(J%-

Then
modHp = 0
modH, = K1 = midHy
modHo = K9 = m1dH;y
0 =mdH>

. Bi-nresvmplectic separabilitv theorv —n. 27/31



[\

DO —
()

N~ NI O
R

Example

o O O O
o O O = O
-




Example

o O O O
o O O = O
-

I1; is d-compatible to II, with respect to €.

Bi-presyv!

mplec

tic

separabilitv theorv

0 1q p1
0 0 1q 0 D9
¢ =3 0 a2 —3(¢")? — 3(¢*)° +c
-3¢ 0 — 2D 0 —q'q?
\ -1 2 3¢+ 5P —c ¢t 0

—n. 28/31



Example

otice that

o 1 50
Y1 = X1 Q50 Yo = X9 — qu&-
L,
Hiy=h — qc, H2=h2—161207

X; = Hodh;, K; = TydH;.
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THE END
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