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Preliminaries

Given a manifold M of dimM = m, a Poisson operator
Π of co-rank r on M is a bivector Π ∈ Λ2(M) with
vanishing Schouten bracket:

[Π,Π]S = 0,

whose kernel is spanned by exact one-forms

ker Π = Sp{dci}i=1,...,r.

ci functions are called Casimirs.
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Preliminaries

Given a manifold M of dimM = m, a Poisson operator
Π of co-rank r on M is a bivector Π ∈ Λ2(M) with
vanishing Schouten bracket:

[Π,Π]S = 0,

whose kernel is spanned by exact one-forms

ker Π = Sp{dci}i=1,...,r.

ci functions are called Casimirs. In a local coordinate
system (x1, . . . , xm) on M we have

Π =
m

∑

i<j

Πij ∂

∂xi
∧

∂

∂xj
,
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Preliminaries

while the Poisson property takes the form

∑

l

(Πjl∂lΠ
ik + Πil∂lΠ

kj + Πkl∂lΠ
ji) = 0, ∂i :=

∂

∂xi
.
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Preliminaries

while the Poisson property takes the form

∑

l

(Πjl∂lΠ
ik + Πil∂lΠ

kj + Πkl∂lΠ
ji) = 0, ∂i :=

∂

∂xi
.

Let C(M) denote the space of all smooth real-valued
functions on M.
Having a Poisson tensor we can define a Hamiltonian
vector fields on M. A vector field XF related to a
function F ∈ C(M) by the relation

XF = ΠdF, (3)

is called the Hamiltonian vector field with respect to
the Poisson operator Π.
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Preliminaries

A linear combination Πλ = Π1 + λΠ0 (λ ∈ R) of two
Poisson operators Π0 and Π1 is called a Poisson pencil
if the operator Πλ is Poisson for any value of the
parameter λ.
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if the operator Πλ is Poisson for any value of the
parameter λ.

In this case we say that Π0 and Π1 are compatible.
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Preliminaries

A linear combination Πλ = Π1 + λΠ0 (λ ∈ R) of two
Poisson operators Π0 and Π1 is called a Poisson pencil
if the operator Πλ is Poisson for any value of the
parameter λ.

In this case we say that Π0 and Π1 are compatible.

When all Casimir functions of Πλ are polynomials in
parameter λ then we say that the pencil is of
Gel’fand-Zakharevich (GZ) type.
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Further, a presymplectic operator Ω on M is defined
by a two-form that is closed, i.e. dΩ = 0, degenerated
in general.
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Preliminaries

Further, a presymplectic operator Ω on M is defined
by a two-form that is closed, i.e. dΩ = 0, degenerated
in general.

Moreover, the kernel of any presymplectic form is an
integrable distribution.

In local coordinate system (x1, . . . , xm) on M we can
represent Ω as

Ω =

m
∑

i<j

Ωijdx
i ∧ dxj ,

where the closeness condition takes the form

∂iΩjk + ∂kΩij + ∂jΩki = 0.
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Preliminaries

A vector field XF related to a function F ∈ C(M) by the
relation

ΩXF = dF

is called the inverse Hamiltonian vector field with
respect to the presymplectic operator Ω.
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A vector field XF related to a function F ∈ C(M) by the
relation

ΩXF = dF

is called the inverse Hamiltonian vector field with
respect to the presymplectic operator Ω.

As in the case of presymplectic forms their linear
combination is always presymplectic, hence the notion
of compatibility, as it was defined for Poisson tensors,
does not make sense.
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Preliminaries

A vector field XF related to a function F ∈ C(M) by the
relation

ΩXF = dF

is called the inverse Hamiltonian vector field with
respect to the presymplectic operator Ω.

As in the case of presymplectic forms their linear
combination is always presymplectic, hence the notion
of compatibility, as it was defined for Poisson tensors,
does not make sense.

Any non-degenerate closed two form on M is called a
symplectic form. The inverse of a symplectic form is
an implectic operator, i.e. invertible Poisson tensor.
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Preliminaries

A pair (Π, Ω) is called dual implectic-symplectic pair on
M if Π is non-degenerate Poisson tensor, Ω is
non-degenerate closed two-form and the following
partition of unity holds on TM, respectively on T ∗M:

I = ΠΩ and I = ΩΠ.
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Preliminaries

A pair (Π, Ω) is called dual implectic-symplectic pair on
M if Π is non-degenerate Poisson tensor, Ω is
non-degenerate closed two-form and the following
partition of unity holds on TM, respectively on T ∗M:

I = ΠΩ and I = ΩΠ.

So, in the non-degenerate case, a dual pair is a pair of
mutually inverse operators on M.

Moreover, the Hamiltonian and the inverse
Hamiltonian representations are equivalent as for any
implectic bivector Π there is a unique dual symplectic
form Ω = Π−1 and hence a vector field Hamiltonian
with respect to Π is an inverse Hamiltonian with
respect to Ω.
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preliminaries

Let us extend these considerations onto a degenerate
case.
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Let us extend these considerations onto a degenerate
case.

A pair of tensor fields (Π,Ω) on M of co-rank r is called
a dual pair if there exists r one-forms dci and r linearly
independent vector fields Zi, such that:
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Let us extend these considerations onto a degenerate
case.

A pair of tensor fields (Π,Ω) on M of co-rank r is called
a dual pair if there exists r one-forms dci and r linearly
independent vector fields Zi, such that:
1. ker Π = Sp{dci : i = 1, . . . r}.
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a dual pair if there exists r one-forms dci and r linearly
independent vector fields Zi, such that:
1. ker Π = Sp{dci : i = 1, . . . r}.
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preliminaries

Let us extend these considerations onto a degenerate
case.

A pair of tensor fields (Π,Ω) on M of co-rank r is called
a dual pair if there exists r one-forms dci and r linearly
independent vector fields Zi, such that:
1. ker Π = Sp{dci : i = 1, . . . r}.
2. ker Ω = Sp{Zi : i = 1, . . . r}.
3. Zi(cj) = δij, i = 1, 2 . . . r.
4. The following partition of unity holds on TM,
respectively on T ∗M

I = ΠΩ +
r

∑

i=1

Zi ⊗ dci, I = ΩΠ +
r

∑

i=1

dci ⊗ Zi,
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A presymplectic form Ω plays the role of an ’inverse’ of
Poisson bivector Π in the sense that on any symplectic
leaf of the foliation defined by ker Π, the restrictions of
Ω and Π are inverses of each other.

Gauge freedom for the dual pair (Π,Ω), where
dci ∈ ker Π and Zi ∈ ker Ω.
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∑

i
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A presymplectic form Ω plays the role of an ’inverse’ of
Poisson bivector Π in the sense that on any symplectic
leaf of the foliation defined by ker Π, the restrictions of
Ω and Π are inverses of each other.

Gauge freedom for the dual pair (Π,Ω), where
dci ∈ ker Π and Zi ∈ ker Ω.
Let Ω be dual to Π, then Ω′ is another dual if

Ω′ = Ω +
∑

i

dfi ∧ dci, fi ∈ C(M)

where

Zi(fj) − Zj(fi) + Π(dfi, dfj) = 0 for all i, j.
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preliminaries

A presymplectic form Ω plays the role of an ’inverse’ of
Poisson bivector Π in the sense that on any symplectic
leaf of the foliation defined by ker Π, the restrictions of
Ω and Π are inverses of each other.

Gauge freedom for the dual pair (Π,Ω), where
dci ∈ ker Π and Zi ∈ ker Ω.
Let Ω be dual to Π, then Ω′ is another dual if

Ω′ = Ω +
∑

i

dfi ∧ dci, fi ∈ C(M)

where

Zi(fj) − Zj(fi) + Π(dfi, dfj) = 0 for all i, j.

The respective freedom exists for a new Π′ dual to Ω.
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Preliminaries

For the degenerate case the Hamiltonian and the
inverse Hamiltonian vector fields do not coincide.
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Preliminaries

For the degenerate case the Hamiltonian and the
inverse Hamiltonian vector fields do not coincide.

Assume that (Π,Ω) is a dual pair, XF = ΠdF is a
Hamiltonian vector field and dF = ΩXF is an inverse
Hamiltonian one-form, where XF is an inverse
Hamiltonian vector field.
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Preliminaries

For the degenerate case the Hamiltonian and the
inverse Hamiltonian vector fields do not coincide.

Assume that (Π,Ω) is a dual pair, XF = ΠdF is a
Hamiltonian vector field and dF = ΩXF is an inverse
Hamiltonian one-form, where XF is an inverse
Hamiltonian vector field.

Then,

dF = Ω(XF ) +
r

∑

i=1

Zi(F )dci, XF = XF −
r

∑

i=1

XF (ci)Zi.
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Preliminaries

For the degenerate case the Hamiltonian and the
inverse Hamiltonian vector fields do not coincide.

Assume that (Π,Ω) is a dual pair, XF = ΠdF is a
Hamiltonian vector field and dF = ΩXF is an inverse
Hamiltonian one-form, where XF is an inverse
Hamiltonian vector field.

Then,

dF = Ω(XF ) +
r

∑

i=1

Zi(F )dci, XF = XF −
r

∑

i=1

XF (ci)Zi.

It means that an inverse Hamiltonian vector field XF is
simultaneously a Hamiltonian vector field XF , i.e.
XF = XF , if dF is annihilated by ker(Ω) and XF is
annihilated by ker(Π).

Bi-presymplectic separability theory – p. 10/31



preliminaries

Any dual pair (Π,Ω) defines a Poisson algebra on
C∞(M)

{F,G}Π := Π(dF, dG) = Ω(ΠdF,ΠdG)

= Ω(XF , XG) =: {F,G}Ω, F,G ∈ C∞(M).
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Now we develop a concept of d-compatibility which is
crucial for our further considerations. Let us start with
a non degenerate case.
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Π0 = Ω−1
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a symplectic form Ω0 if Π0Ω1Π0 is a Poisson tensor and
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d-compatibility

Now we develop a concept of d-compatibility which is
crucial for our further considerations. Let us start with
a non degenerate case.

We say that a closed two-form Ω1 is d-compatible with
a symplectic form Ω0 if Π0Ω1Π0 is a Poisson tensor and
Π0 = Ω−1

0 is dual to Ω0.

We say that a Poisson tensor Π1 is d-compatible with
an implectic tensor Π0 if Ω0Π1Ω0 is closed and
Ω0 = Π−1

0 is dual to Π0.

d-compatibility ⇔ compatibility
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d-compatibility

The following lemma relates d-compatible Poisson
structures, of which one is implectic, and d-compatible
two-forms, of which one is symplectic.
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d-compatibility

The following lemma relates d-compatible Poisson
structures, of which one is implectic, and d-compatible
two-forms, of which one is symplectic.

Lemma Let (Π0,Ω0) be a dual implectic-symplectic
pair.

(i) Let a Poisson tensor Π1 be d-compatible with Π0.
Then, Ω1 = Ω0Π1Ω0 is closed two-form d-compatible
with Ω0.

(ii) Let a closed two-form Ω1 be d-compatible with Ω0.
Then, Π1 = Π0Ω1Π0 is a Poisson tensor d-compatible
with Π0.
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d-compatibility

The following lemma relates d-compatible Poisson
structures, of which one is implectic, and d-compatible
two-forms, of which one is symplectic.

Lemma Let (Π0,Ω0) be a dual implectic-symplectic
pair.

(i) Let a Poisson tensor Π1 be d-compatible with Π0.
Then, Ω1 = Ω0Π1Ω0 is closed two-form d-compatible
with Ω0.

(ii) Let a closed two-form Ω1 be d-compatible with Ω0.
Then, Π1 = Π0Ω1Π0 is a Poisson tensor d-compatible
with Π0.

Let us extend the notion of d-compatibility onto the
degenerate case.
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d-compatibility

A closed two-form Ω1 is d-compatible with a closed
two-form Ω0 if there exists a Poisson tensor Π0, dual to
Ω0, such that Π0Ω1Π0 is Poisson. Then we say that the
pair (Ω0, Ω1) is d-compatible with respect to Π0.
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Ω0, such that Π0Ω1Π0 is Poisson. Then we say that the
pair (Ω0, Ω1) is d-compatible with respect to Π0.

A Poisson tensor Π1 is d-compatible with a Poisson
tensor Π0 if there exists a presymplectic form Ω0, dual
to Π0, such that Ω0Π1Ω0 is closed. Then we say that
the pair (Π0,Π1) is d-compatible with respect to Ω0.
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d-compatibility

A closed two-form Ω1 is d-compatible with a closed
two-form Ω0 if there exists a Poisson tensor Π0, dual to
Ω0, such that Π0Ω1Π0 is Poisson. Then we say that the
pair (Ω0, Ω1) is d-compatible with respect to Π0.

A Poisson tensor Π1 is d-compatible with a Poisson
tensor Π0 if there exists a presymplectic form Ω0, dual
to Π0, such that Ω0Π1Ω0 is closed. Then we say that
the pair (Π0,Π1) is d-compatible with respect to Ω0.

d-compatibility ⇒ compatibility

The inverse relation is true provided that

Ω0(LZi
Π1)Ω0 = 0, i = 1, ..., r.
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Bi-presymplectic chains

Assume we have a pair of presymplectic forms
(Ω0,Ω1), d-compatible with respect to some Π0 dual to
Ω0, both of rank 2n and co-rank r.
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Bi-presymplectic chains

Assume we have a pair of presymplectic forms
(Ω0,Ω1), d-compatible with respect to some Π0 dual to
Ω0, both of rank 2n and co-rank r.

Assume further, that they form bi-presymplectic chains
of one-forms

β
(k)
i = Ω0Y

(k)
i = Ω1Y

(k)
i−1, i = 1, 2, . . . , nk
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Bi-presymplectic chains

Assume we have a pair of presymplectic forms
(Ω0,Ω1), d-compatible with respect to some Π0 dual to
Ω0, both of rank 2n and co-rank r.

Assume further, that they form bi-presymplectic chains
of one-forms

β
(k)
i = Ω0Y

(k)
i = Ω1Y

(k)
i−1, i = 1, 2, . . . , nk

where k = 1, ..., r, n1 + ...+ nr = n and each chain starts
with a kernel vector field Y

(k)
0 of Ω0 and terminates with

a kernel vector field Y
(k)
nk

of Ω1.
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Bi-presymplectic chains

Then
(i)

Ω0(Y
(k)
i , Y

(m)
j ) = Ω1(Y

(k)
i , Y

(m)
j ) = 0,

for k,m = 1, ..., r, i = 1, 2, . . . , nk, j = 1, 2, . . . , nm.
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Bi-presymplectic chains

Then
(i)

Ω0(Y
(k)
i , Y

(m)
j ) = Ω1(Y

(k)
i , Y

(m)
j ) = 0,

for k,m = 1, ..., r, i = 1, 2, . . . , nk, j = 1, 2, . . . , nm.

Moreover, let us assume that

X
(k)
i = Π0β

(k)
i = Π0dH

(k)
i ,

for k = 1, ..., r, i = 1, 2, . . . , nk.
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Bi-presymplectic chains

Then
(i)

Ω0(Y
(k)
i , Y

(m)
j ) = Ω1(Y

(k)
i , Y

(m)
j ) = 0,

for k,m = 1, ..., r, i = 1, 2, . . . , nk, j = 1, 2, . . . , nm.

Moreover, let us assume that

X
(k)
i = Π0β

(k)
i = Π0dH

(k)
i ,

for k = 1, ..., r, i = 1, 2, . . . , nk. Then,

(ii)

Π0(dH
(k)
i , dH

(m)
j ) = 0, [X

(k)
i , X

(m)
j ] = 0

and bi-presymplectic chain defines a Liouville
integrable system. Bi-presymplectic separability theory – p. 16/31



Bi-presymplectic chains

Additionally, if

Y
(k)
0 (H

(m)
1 ) = Y

(m)
0 (H

(k)
1 )

and
Y

(k)
0 (H

(m)
i ) = Y

(m)
i (H

(k)
0 ),

where Π0dH0 = 0, m = 1, ..., r, i = 1, 2, . . . , nm, then
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Bi-presymplectic chains

Additionally, if

Y
(k)
0 (H

(m)
1 ) = Y

(m)
0 (H

(k)
1 )

and
Y

(k)
0 (H

(m)
i ) = Y

(m)
i (H

(k)
0 ),

where Π0dH0 = 0, m = 1, ..., r, i = 1, 2, . . . , nm, then

(iii) vector fields X(k)
i form bi-Hamiltonian chains

X
(k)
i = Π0dH

(k)
i = Π1dH

(k)
i−1, i = 1, 2, . . . , n

where
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Bi-presymplectic chains

Π1 = Π0Ω1Π0 +
∑

mX
(m)
1 ∧ Y

(m)
0 ,

Each chain starts with H
(k)
0 , a Casimir of Π0, and

terminates with H
(k)
nk

, a Casimir of Π1. Moreover the
Poisson pair (Π0,Π1) is d-compatible with respect to
Ω0.

Bi-presymplectic separability theory – p. 18/31
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Π1 = Π0Ω1Π0 +
∑

mX
(m)
1 ∧ Y

(m)
0 ,

Each chain starts with H
(k)
0 , a Casimir of Π0, and

terminates with H
(k)
nk

, a Casimir of Π1. Moreover the
Poisson pair (Π0,Π1) is d-compatible with respect to
Ω0.

Algorithmic procedure of separability.
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Bi-presymplectic chains

Π1 = Π0Ω1Π0 +
∑

mX
(m)
1 ∧ Y

(m)
0 ,

Each chain starts with H
(k)
0 , a Casimir of Π0, and

terminates with H
(k)
nk

, a Casimir of Π1. Moreover the
Poisson pair (Π0,Π1) is d-compatible with respect to
Ω0.

Algorithmic procedure of separability.
ω0, ω1- restrictions of Ω0 and Ω1 to any symplectic leaf
of Π0. Separation coordinates are eigenvalues of the
recursion operator

N = ω−1
0 ω1.
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Stäckel system

Consider Liouville integrable system {hi}
n
i=1 which is

Stäckel separable.
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Stäckel system

Consider Liouville integrable system {hi}
n
i=1 which is

Stäckel separable.

Separation coordinates (λ, µ) and separation relations:

n
∑

k=1

Sk
i (λi, µi)ak = ψi(λi, µi), i = 1, . . . , n,

Bi-presymplectic separability theory – p. 19/31



Stäckel system

Consider Liouville integrable system {hi}
n
i=1 which is

Stäckel separable.

Separation coordinates (λ, µ) and separation relations:

n
∑

k=1

Sk
i (λi, µi)ak = ψi(λi, µi), i = 1, . . . , n,

where ak = hk(λ, µ) and matrix S = (Sk
i ) is called a

generalized Stäckel matrix.
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Stäckel system

For further convenience, let us collect the terms from
the l.h.s. as follows:

r
∑

k=1

ϕk
i (λ

i, µi)h
(k)(λi) = ψi(λ

i, µi), i = 1, . . . , n,

where

h(k)(λ) =

nk
∑

i=1

λnk−ih
(k)
i , n1 + · · · + nr = n.

Bi-presymplectic separability theory – p. 20/31



Stäckel system

For further convenience, let us collect the terms from
the l.h.s. as follows:

r
∑

k=1

ϕk
i (λ

i, µi)h
(k)(λi) = ψi(λ

i, µi), i = 1, . . . , n,

where

h(k)(λ) =

nk
∑

i=1

λnk−ih
(k)
i , n1 + · · · + nr = n.

On the extended phase space M → M :
(λ, µ) → (λ, µ, c), where dimM = 2n+ r, differentials
dh

(k)
i form bi-inverse-Hamiltonian chains
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Stäckel system

Ω0Y
(k)
i+1 = dh

(k)
i+1 = Ω1Y

(k)
i , i = 1, 2, . . . , nk, k = 1, ..., r,

which starts with a kernel vector field Y
(k)
0 = ∂

∂ck
of Ω0

and terminates with a kernel vector field Y
(k)
nk

of Ω1,
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Stäckel system

Ω0Y
(k)
i+1 = dh

(k)
i+1 = Ω1Y

(k)
i , i = 1, 2, . . . , nk, k = 1, ..., r,

which starts with a kernel vector field Y
(k)
0 = ∂

∂ck
of Ω0

and terminates with a kernel vector field Y
(k)
nk

of Ω1,

Ω0 = −
∑

i

dλi ∧ dµi, Ω1 = −
∑

i

λidλi ∧ dµi +
r

∑

k=1

dh
(k)
1 ∧ dck,
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Stäckel system

Ω0Y
(k)
i+1 = dh

(k)
i+1 = Ω1Y

(k)
i , i = 1, 2, . . . , nk, k = 1, ..., r,

which starts with a kernel vector field Y
(k)
0 = ∂

∂ck
of Ω0

and terminates with a kernel vector field Y
(k)
nk

of Ω1,

Ω0 = −
∑

i

dλi ∧ dµi, Ω1 = −
∑

i

λidλi ∧ dµi +
r

∑

k=1

dh
(k)
1 ∧ dck,

Y
(k)
i = Π0dh

(k)
i −

r
∑

l=1

F
(k,l)
i Y

(l)
0 , Π0 =

∑

i

∂

∂λi
∧

∂

∂µi

and F
(k,l)
i are an appropriate separable potentials.
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Stäckel system

Moreover, Ω0 and Ω1 are d-compatible with respect to
Π0 but vector fields X(k)

i = Π0dh
(k)
i are not

bi-Hamiltonian as Y (k)
i (h

(l)
0 ) = −F

(k,l)
i 6= 0 while

Y
(k)
0 (H

(m)
i ) = 0.
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Stäckel system

Moreover, Ω0 and Ω1 are d-compatible with respect to
Π0 but vector fields X(k)

i = Π0dh
(k)
i are not

bi-Hamiltonian as Y (k)
i (h

(l)
0 ) = −F

(k,l)
i 6= 0 while

Y
(k)
0 (H

(m)
i ) = 0.

In order to construct on M related bi-Hamiltonian
chains of vector fields, one has to extend the original
Hamiltonians

h
(k)
i → H

(k)
i = h

(k)
i −

r
∑

l=1

F
(k,l)
i cl, i = 1, ..., n.
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Stäckel system

Moreover, Ω0 and Ω1 are d-compatible with respect to
Π0 but vector fields X(k)

i = Π0dh
(k)
i are not

bi-Hamiltonian as Y (k)
i (h

(l)
0 ) = −F

(k,l)
i 6= 0 while

Y
(k)
0 (H

(m)
i ) = 0.

In order to construct on M related bi-Hamiltonian
chains of vector fields, one has to extend the original
Hamiltonians

h
(k)
i → H

(k)
i = h

(k)
i −

r
∑

l=1

F
(k,l)
i cl, i = 1, ..., n.

Then, on M, vector fields K(k)
i = Π0dH

(k)
i form a

bi-Hamiltonian chains

Bi-presymplectic separability theory – p. 22/31



Stäckel system

Π0dH
(k)
i+1 = K

(k)
i+1 = Π1dH

(k)
i , i = 1, 2, . . . , nk, k = 1, ..., r,
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Stäckel system

Π0dH
(k)
i+1 = K

(k)
i+1 = Π1dH

(k)
i , i = 1, 2, . . . , nk, k = 1, ..., r,

where

Π1 = Π0Ω1Π0 +
r

∑

m=1

K
(m)
1 ∧ Y

(m)
0 .

Each chain starts with the Casimir of Π0: H
(k)
0 = ck,

and terminates with the Casimir of Π1: H
(k)
nk

. Poisson
tensors Π0 and Π1 are d-compatible with respect to Ω0.
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Stäckel system

Π0dH
(k)
i+1 = K

(k)
i+1 = Π1dH

(k)
i , i = 1, 2, . . . , nk, k = 1, ..., r,

where

Π1 = Π0Ω1Π0 +
r

∑

m=1

K
(m)
1 ∧ Y

(m)
0 .

Each chain starts with the Casimir of Π0: H
(k)
0 = ck,

and terminates with the Casimir of Π1: H
(k)
nk

. Poisson
tensors Π0 and Π1 are d-compatible with respect to Ω0.

Differentials H(k)
i do not form bi-inverse-Hamoltonian

chains as

Y
(k)
0 (H

(m)
1 ) = −F

(m,k)
1 6= −F

(k,m)
1 = Y

(m)
0 (H

(k)
1 ).
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Example

On M = R
4 consider separation relations

h1λi + h2 =
1

2
λiµ

2
i + λ4

i , i = 1, 2
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Example

On M = R
4 consider separation relations

h1λi + h2 =
1

2
λiµ

2
i + λ4

i , i = 1, 2

The canonical point transformation

q1 = λ1 + λ2,
1

4
q22 = −λ1λ2,

transforms the system to flat coordinates (q, p) with

h1 =
1

2
p2
1 +

1

2
p2
2 + q31 +

1

2
q1q

2
2,

h2 =
1

2
q2p1p2 −

1

2
q1p

2
2 +

1

16
q42 +

1

4
q21q

2
2.
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Example

On M = R
4 consider separation relations

h1λi + h2 =
1

2
λiµ

2
i + λ4

i , i = 1, 2

The canonical point transformation

q1 = λ1 + λ2,
1

4
q22 = −λ1λ2,

transforms the system to flat coordinates (q, p) with

h1 =
1

2
p2
1 +

1

2
p2
2 + q31 +

1

2
q1q

2
2,

h2 =
1

2
q2p1p2 −

1

2
q1p

2
2 +

1

16
q42 +

1

4
q21q

2
2.

We recognize the Henon-Heiles system.
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Example

On M = R
5 differentials dh1 and dh2 form

bi-inverse-Hamiltonian chain

Ω0Y0 = 0

Ω0Y1 = dh1 = Ω1Y0

Ω0Y2 = dh2 = Ω1Y1

0 = Ω1Y2
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Example

On M = R
5 differentials dh1 and dh2 form

bi-inverse-Hamiltonian chain

Ω0Y0 = 0

Ω0Y1 = dh1 = Ω1Y0

Ω0Y2 = dh2 = Ω1Y1

0 = Ω1Y2

with vector fields
Y0 = (0, 0, 0, 0, 1)T

Y1 = (p1, p2,−3q21 −
1

2
q22,−q1q2,−q1)

T

Y2 = (
1

2
q2p2,

1

2
q2p1 − q1p1,

1

2
p2
2 −

1

2
q1q

2
2,

−
1

2
p1p2 −

1

4
q32 −

1

2
q21q2,−

1

4
q22)

T
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Example

and presymplectic forms

Ω0 =

















0 0 −1 0 0

0 0 0 −1 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

















,
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Example

and presymplectic forms

Ω0 =

















0 0 −1 0 0

0 0 0 −1 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

















,

Ω1 =

















0 −1
2p2 −q1 −1

2q2 3q21 + 1
2q

2
2

1
2p2 0 −1

2q2 0 q1q2

q1
1
2q2 0 0 p1

1
2q2 0 0 0 p2

−3q21 −
1
2q

2
2 −q1q2 −p1 −p2 0

















.
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Example

which are d-compatible with respect to the canonical
Poisson tensor Π0 dual to Ω0 one.
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Example

which are d-compatible with respect to the canonical
Poisson tensor Π0 dual to Ω0 one.
Hamiltonians h1 and h2 do not form bi-Hamiltonian
chain.
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Example

which are d-compatible with respect to the canonical
Poisson tensor Π0 dual to Ω0 one.
Hamiltonians h1 and h2 do not form bi-Hamiltonian
chain.
In order to construct a bi-Hamiltonian chain one has to
extend h1 and h2:

H1 = h1 − cq1, H2 = h2 −
1

4
cq22.
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Example

which are d-compatible with respect to the canonical
Poisson tensor Π0 dual to Ω0 one.
Hamiltonians h1 and h2 do not form bi-Hamiltonian
chain.
In order to construct a bi-Hamiltonian chain one has to
extend h1 and h2:

H1 = h1 − cq1, H2 = h2 −
1

4
cq22.

Then
π0dH0 = 0

π0dH1 = K1 = π1dH0

π0dH2 = K2 = π1dH1

0 = π1dH2
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Example

where

Π0 =

















0 0 1 0 0

0 0 0 1 0

−1 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

















Π1 =

















0 0 q1 1
2q

2 p1

0 0 1
2q

2 0 p2

−q1 −1
2q

2 0 1
2p2 −3(q1)2 − 1

2(q2)2 + c

−1
2q

2 0 −1
2p2 0 −q1q2

−p1 −p2 3(q1)2 + 1
2(q2)2 − c q1q2 0

















.
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Example

where

Π0 =

















0 0 1 0 0

0 0 0 1 0

−1 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

















Π1 =

















0 0 q1 1
2q

2 p1

0 0 1
2q

2 0 p2

−q1 −1
2q

2 0 1
2p2 −3(q1)2 − 1

2(q2)2 + c

−1
2q

2 0 −1
2p2 0 −q1q2

−p1 −p2 3(q1)2 + 1
2(q2)2 − c q1q2 0

















.

Π1 is d-compatible to Π0 with respect to Ω0.
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Example

Notice that

Y1 = X1 − q1
∂

∂c
, Y2 = X2 −

1

4
q22
∂

∂c
.

H1 = h1 − q1c, H2 = h2 −
1

4
q22c,

Xi = Π0dhi, Ki = Π0dHi.
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THE END
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