Symplectization of 1-jet space $J^1\mathbb{R}^n$
and point classification of PDE's

Pavel Bibikov
Institute of Control Sciences, Moscow, Russia

[14.10.2013]
Let \mathbb{R}^n be real space with coordinates $x := (x_1, \ldots, x_n)$, $J^1\mathbb{R}^n$ be 1-jet space of smooth functions $f: \mathbb{R}^n \to \mathbb{R}$ with canonic coordinates (x, y, y'), where $y' = (y_1, \ldots, y_n)$ and

$$x([f]_a^1) = a, \quad y([f]_a^1) = f(a), \quad y_k([f]_a^1) = \frac{\partial f}{\partial x_k}(a).$$

Abel partial differential equation of degree d is a differential equation, which is polynomial in derivatives y_k:

$$\sum_{i_1 + \ldots + i_n \leq d} A_{i_1 \ldots i_n}(x, y) \cdot y_1^{i_1} \ldots y_n^{i_n} = 0.$$
Problem

Let \mathbb{R}^n be real space with coordinates $x := (x_1, \ldots, x_n)$,

$J^1\mathbb{R}^n$ be 1-jet space of smooth functions $f : \mathbb{R}^n \to \mathbb{R}$

with canonic coordinates (x, y, y'), where $y' = (y_1, \ldots, y_n)$ and

$$x([f]^1_a) = a, \quad y([f]^1_a) = f(a), \quad y_k([f]^1_a) = \frac{\partial f}{\partial x_k}(a).$$

Abel partial differential equation of degree d is a differential equation, which is polynomial in derivatives y_k:

$$\sum_{i_1 + \ldots + i_n \leq d} A_{i_1 \ldots i_n}(x, y) \cdot y_1^{i_1} \ldots y_n^{i_n} = 0.$$
Let \mathbb{R}^n be real space with coordinates $x := (x_1, \ldots, x_n)$,

$J^1\mathbb{R}^n$ be 1-jet space of smooth functions $f : \mathbb{R}^n \rightarrow \mathbb{R}$

with canonic coordinates (x, y, y'), where $y' = (y_1, \ldots, y_n)$ and

$$x([f]_a^1) = a, \quad y([f]_a^1) = f(a), \quad y_k([f]_a^1) = \frac{\partial f}{\partial x_k}(a).$$

Abel partial differential equation of degree d is a differential equation, which is polynomial in derivatives y_k:

$$\sum_{i_1 + \ldots + i_n \leq d} A_{i_1 \ldots i_n}(x, y) \cdot y_1^{i_1} \ldots y_n^{i_n} = 0.$$
Problem

Let \mathbb{R}^n be real space with coordinates $\mathbf{x} := (x_1, \ldots, x_n)$,

$J^1\mathbb{R}^n$ be 1-jet space of smooth functions $f : \mathbb{R}^n \to \mathbb{R}$

with canonic coordinates (\mathbf{x}, y, y'), where $y' = (y_1, \ldots, y_n)$ and

$$
\mathbf{x}([f]_a^1) = \mathbf{a}, \quad y([f]_a^1) = f(\mathbf{a}), \quad y_k([f]_a^1) = \frac{\partial f}{\partial x_k}(\mathbf{a}).
$$

Abel partial differential equation of degree d is a differential equation, which is polynomial in derivatives y_k:

$$
\sum_{i_1 + \ldots + i_n \leq d} A_{i_1 \ldots i_n}(\mathbf{x}, y) \cdot y_1^{i_1} \ldots y_n^{i_n} = 0.
$$
Problem

Let \mathbb{R}^n be real space with coordinates $x := (x_1, \ldots, x_n)$,

$J^1\mathbb{R}^n$ be 1-jet space of smooth functions $f : \mathbb{R}^n \to \mathbb{R}$

with canonic coordinates (x, y, y'), where $y' = (y_1, \ldots, y_n)$ and

$$x([f]_a^1) = a, \quad y([f]_a^1) = f(a), \quad y_k([f]_a^1) = \frac{\partial f}{\partial x_k}(a).$$

Abel partial differential equation of degree d is a differential equation, which is polynomial in derivatives y_k:

$$\sum_{i_1 + \ldots + i_n \leq d} A_{i_1 \ldots i_n}(x, y) \cdot y_1^{i_1} \ldots y_n^{i_n} = 0.$$
Problem

Let \(\mathbb{R}^n \) be real space with coordinates \(x := (x_1, \ldots, x_n) \),

\(J^1\mathbb{R}^n \) be 1-jet space of smooth functions \(f : \mathbb{R}^n \to \mathbb{R} \)

with canonic coordinates \((x, y, y')\), where \(y' = (y_1, \ldots, y_n) \) and

\[
x([f]^1_a) = a, \quad y([f]^1_a) = f(a), \quad y_k([f]^1_a) = \frac{\partial f}{\partial x_k}(a).
\]

*Abel partial differential equation of degree \(d \) is a differential equation, which is polynomial in derivatives \(y_k \):

\[
\sum_{i_1 + \ldots + i_n \leq d} A_{i_1 \ldots i_n}(x, y) \cdot y_1^{i_1} \ldots y_n^{i_n} = 0.
\]
Problem

Point pseudogroup is pseudogroup $G := \text{Diff}(J^0 \mathbb{R}^n)$ of diffeomorphisms of space $J^0 \mathbb{R}^n \cong \mathbb{R}^{n+1}$. It acts on Abel differential equations:

$$
x \mapsto X = X(x, y), \quad y \mapsto Y = Y(x, y), \quad y' \mapsto Y' = \frac{Y_y + Y_x \cdot y'}{X_y + X_x \cdot y'}.
$$

Problem

Classify Abel partial differential equations with respect to the action of point pseudogroup.
Point pseudogroup is pseudogroup $G := \text{Diff}(J^0\mathbb{R}^n)$ of diffeomorphisms of space $J^0\mathbb{R}^n \cong \mathbb{R}^{n+1}$. It acts on Abel differential equations:

$$x \mapsto X = X(x, y), \quad y \mapsto Y = Y(x, y), \quad y' \mapsto Y' = \frac{Y_y + Y_x \cdot y'}{X_y + X_x \cdot y'}.$$

Problem

Classify Abel partial differential equations with respect to the action of point pseudogroup.
Problem

Point pseudogroup is pseudogroup $G := \text{Diff}(J^0\mathbb{R}^n)$ of diffeomorphisms of space $J^0\mathbb{R}^n \cong \mathbb{R}^{n+1}$. It acts on Abel differential equations:

$$x \mapsto X = X(x, y), \quad y \mapsto Y = Y(x, y), \quad y' \mapsto Y' = \frac{Y_y + Y_x \cdot y'}{X_y + X_x \cdot y'}.$$

Problem

Classify Abel partial differential equations with respect to the action of point pseudogroup.
Problem

Point pseudogroup is pseudogroup $G := \text{Diff}(J^0\mathbb{R}^n)$ of diffeomorphisms of space $J^0\mathbb{R}^n \cong \mathbb{R}^{n+1}$. It acts on Abel differential equations:

$$x \mapsto X = X(x, y), \quad y \mapsto Y = Y(x, y), \quad y' \mapsto Y' = \frac{Y_y + Y_x \cdot y'}{X_y + X_x \cdot y'}.$$

Problem

Classify Abel partial differential equations with respect to the action of point pseudogroup.
Why is this problem complicated? The action of point pseudogroup on the fiber \mathbb{RP}^n of the canonic projection $\pi_{1,0}: J^1 \mathbb{R}^n \to J^0 \mathbb{R}^n$ is projective

\Rightarrow it is difficult to calculate invariants of such action

(for example, affine curvature of the plane curve has order 3, whereas projective curvature of the plane curve has order 7).

Main idea. We replace projection $\pi_{1,0}: J^1 \mathbb{R}^n \to J^0 \mathbb{R}^n$ by some bundle with the base $J^0 \mathbb{R}^n$ and fiber \mathbb{R}^{n+1}, with the linear (not projective) action of the point pseudogroup on the fibers.

So, we just “homogenize” the fiber \mathbb{RP}^n and obtain the fiber \mathbb{R}^{n+1}, whose projectivization is \mathbb{RP}^n.
Why is this problem complicated? The action of point pseudogroup on the fiber $\mathbb{R}P^n$ of the canonic projection $\pi_{1,0} : J^1\mathbb{R}^n \to J^0\mathbb{R}^n$ is projective

⇒ it is difficult to calculate invariants of such action

(for example, affine curvature of the plane curve has order 3, whereas projective curvature of the plane curve has order 7).

Main idea. We replace projection $\pi_{1,0} : J^1\mathbb{R}^n \to J^0\mathbb{R}^n$ by some bundle with the base $J^0\mathbb{R}^n$ and fiber \mathbb{R}^{n+1}, with the linear (not projective) action of the point pseudogroup on the fibers.

So, we just “homogenize” the fiber $\mathbb{R}P^n$ and obtain the fiber \mathbb{R}^{n+1}, whose projectivization is $\mathbb{R}P^n$.
Why is this problem complicated? The action of point pseudogroup on the fiber \mathbb{RP}^n of the canonic projection $\pi_{1,0} : J^1\mathbb{R}^n \to J^0\mathbb{R}^n$ is projective

⇒ it is difficult to calculate invariants of such action

(for example, affine curvature of the plane curve has order 3, whereas projective curvature of the plane curve has order 7).

Main idea. We replace projection $\pi_{1,0} : J^1\mathbb{R}^n \to J^0\mathbb{R}^n$ by some bundle with the base $J^0\mathbb{R}^n$ and fiber \mathbb{R}^{n+1}, with the linear (not projective) action of the point pseudogroup on the fibers.

So, we just “homogenize” the fiber \mathbb{RP}^n and obtain the fiber \mathbb{R}^{n+1}, whose projectivization is \mathbb{RP}^n.
Why is this problem complicated? The action of point pseudogroup on the fiber $\mathbb{R}P^n$ of the canonic projection $\pi_{1,0} : J^1\mathbb{R}^n \rightarrow J^0\mathbb{R}^n$ is projective

\Rightarrow it is difficult to calculate invariants of such action

(for example, affine curvature of the plane curve has order 3, whereas projective curvature of the plane curve has order 7).

Main idea. We replace projection $\pi_{1,0} : J^1\mathbb{R}^n \rightarrow J^0\mathbb{R}^n$ by some bundle with the base $J^0\mathbb{R}^n$ and fiber \mathbb{R}^{n+1}, with the linear (not projective) action of the point pseudogroup on the fibers.

So, we just “homogenize” the fiber $\mathbb{R}P^n$ and obtain the fiber \mathbb{R}^{n+1}, whose projectivization is $\mathbb{R}P^n$.
Why is this problem complicated? The action of point pseudogroup on the fiber \mathbb{RP}^n of the canonic projection $\pi_{1,0}: J^1\mathbb{R}^n \rightarrow J^0\mathbb{R}^n$ is projective

\Rightarrow it is difficult to calculate invariants of such action

(for example, affine curvature of the plane curve has order 3, whereas projective curvature of the plane curve has order 7).

Main idea. We replace projection $\pi_{1,0}: J^1\mathbb{R}^n \rightarrow J^0\mathbb{R}^n$ by some bundle with the base $J^0\mathbb{R}^n$ and fiber \mathbb{R}^{n+1}, with the linear (not projective) action of the point pseudogroup on the fibers.

So, we just “homogenize” the fiber \mathbb{RP}^n and obtain the fiber \mathbb{R}^{n+1}, whose projectivization is \mathbb{RP}^n.
Why is this problem complicated? The action of point pseudogroup on the fiber $\mathbb{R}P^n$ of the canonic projection $\pi_{1,0}: J^1\mathbb{R}^n \to J^0\mathbb{R}^n$ is projective

\implies it is difficult to calculate invariants of such action

(for example, affine curvature of the plane curve has order 3, whereas projective curvature of the plane curve has order 7).

Main idea. We replace projection $\pi_{1,0}: J^1\mathbb{R}^n \to J^0\mathbb{R}^n$ by some bundle with the base $J^0\mathbb{R}^n$ and fiber \mathbb{R}^{n+1}, with the *linear* (not projective) action of the point pseudogroup on the fibers.

So, we just “homogenize” the fiber $\mathbb{R}P^n$ and obtain the fiber \mathbb{R}^{n+1}, whose projectivization is $\mathbb{R}P^n$.
Why is this problem complicated? The action of point pseudogroup on the fiber $\mathbb{R}P^n$ of the canonic projection $\pi_{1,0}: J^1\mathbb{R}^n \to J^0\mathbb{R}^n$ is projective

\Rightarrow it is difficult to calculate invariants of such action

(for example, affine curvature of the plane curve has order 3, whereas projective curvature of the plane curve has order 7).

Main idea. We replace projection $\pi_{1,0}: J^1\mathbb{R}^n \to J^0\mathbb{R}^n$ by some bundle with the base $J^0\mathbb{R}^n$ and fiber \mathbb{R}^{n+1}, with the linear (not projective) action of the point pseudogroup on the fibers.

So, we just “homogenize” the fiber $\mathbb{R}P^n$ and obtain the fiber \mathbb{R}^{n+1}, whose projectivization is $\mathbb{R}P^n$.
Symplectization of contact space $J^1\mathbb{R}$

Further we will assume that $n = 1$; all constructions and theorems can be easily generated on arbitrary n.

Cartan distribution $\mathcal{C} : \theta \mapsto \mathcal{C}_\theta$ on $J^1\mathbb{R}$ is defined by Cartan differential 1-form $\kappa := dy - y_1\,dx$, i.e.

$$\mathcal{C}_\theta = \ker \kappa_\theta,$$

where $\theta \in J^1\mathbb{R}$.

\Rightarrow contact structure on $J^1\mathbb{R}$.

Linear 1-form $\alpha_\theta \in T^*_\theta(J^1\mathbb{R})$ is said to be contact, if $\ker \alpha_\theta = \mathcal{C}_\theta$.

It is clear that $\alpha_\theta = \lambda \cdot \kappa_\theta$, where $\lambda \in \mathbb{R}^*$.

Definition

Symplectization $\text{Symp}(J^1\mathbb{R})$ of contact space $J^1\mathbb{R}$ is the set of all contact 1-forms α_θ.

Natural bundle $\pi : \text{Symp}(J^1\mathbb{R}) \rightarrow J^1\mathbb{R}$ with fiber \mathbb{R}^* and coordinate λ.
Symplectization of contact space $J^1\mathbb{R}$

Further we will assume that $n = 1$; all constructions and theorems can be easily generated on arbitrary n.

Cartan distribution $C : \theta \mapsto C_\theta$ on $J^1\mathbb{R}$ is defined by Cartan differential 1-form $\kappa := dy - y_1 \, dx$, i.e.

$$C_\theta = \ker \kappa_\theta, \quad \text{where } \theta \in J^1\mathbb{R}.$$

\Rightarrow *contact structure* on $J^1\mathbb{R}$.

Linear 1-form $\alpha_\theta \in T^*_\theta(J^1\mathbb{R})$ is said to be *contact*, if $\ker \alpha_\theta = C_\theta$.

It is clear that $\alpha_\theta = \lambda \cdot \kappa_\theta$, where $\lambda \in \mathbb{R}^*$.

Definition

Symplectization $\text{Symp}(J^1\mathbb{R})$ of contact space $J^1\mathbb{R}$ is the set of all contact 1-forms α_θ.

Natural bundle $\pi : \text{Symp}(J^1\mathbb{R}) \to J^1\mathbb{R}$ with fiber \mathbb{R}^* and coordinate λ.
Further we will assume that $n = 1$; all constructions and theorems can be easily generated on arbitrary n.

Cartan distribution $\mathcal{C}: \theta \mapsto \mathcal{C}_\theta$ on $J^1\mathbb{R}$ is defined by Cartan differential 1-form $\kappa := dy - y_1 \, dx$, i.e.

$$\mathcal{C}_\theta = \ker \kappa_\theta, \quad \text{where } \theta \in J^1\mathbb{R}.$$

\Rightarrow *contact structure* on $J^1\mathbb{R}$.

Linear 1-form $\alpha_\theta \in T^*_\theta(J^1\mathbb{R})$ is said to be *contact*, if $\ker \alpha_\theta = \mathcal{C}_\theta$.

It is clear that $\alpha_\theta = \lambda \cdot \kappa_\theta$, where $\lambda \in \mathbb{R}^*$.

Definition

Symplectization $\text{Symp}(J^1\mathbb{R})$ of contact space $J^1\mathbb{R}$ is the set of all contact 1-forms α_θ.

Natural bundle $\pi: \text{Symp}(J^1\mathbb{R}) \to J^1\mathbb{R}$ with fiber \mathbb{R}^* and coordinate λ.
Further we will assume that $n = 1$; all constructions and theorems can be easily generated on arbitrary n.

Cartan distribution $\mathcal{C} : \theta \mapsto \mathcal{C}_\theta$ on $J^1\mathbb{R}$ is defined by Cartan differential 1-form $\kappa := dy - y_1 \, dx$, i.e.

$$\mathcal{C}_\theta = \ker \kappa_\theta, \quad \text{where } \theta \in J^1\mathbb{R}. \Rightarrow \text{contact structure on } J^1\mathbb{R}.$$

Linear 1-form $\alpha_\theta \in T^*_\theta(J^1\mathbb{R})$ is said to be contact, if $\ker \alpha_\theta = \mathcal{C}_\theta$.

It is clear that $\alpha_\theta = \lambda \cdot \kappa_\theta$, where $\lambda \in \mathbb{R}^*$.

Definition

Symplectization $\text{Symp}(J^1\mathbb{R})$ of contact space $J^1\mathbb{R}$ is the set of all contact 1-forms α_θ.

Natural bundle $\pi : \text{Symp}(J^1\mathbb{R}) \to J^1\mathbb{R}$ with fiber \mathbb{R}^* and coordinate λ.

Pavel Bibikov
Teplice nad Bečvou–2013
Further we will assume that $n = 1$; all constructions and theorems can be easily generated on arbitrary n.

Cartan distribution $C : \theta \mapsto C_\theta$ on $J^1\mathbb{R}$ is defined by Cartan differential 1-form $\kappa := dy - y_1 \, dx$, i.e.

$$C_\theta = \ker \kappa_\theta,$$

where $\theta \in J^1\mathbb{R}$.

\Rightarrow contact structure on $J^1\mathbb{R}$.

Linear 1-form $\alpha_\theta \in T^*_\theta(J^1\mathbb{R})$ is said to be contact, if $\ker \alpha_\theta = C_\theta$.

It is clear that $\alpha_\theta = \lambda \cdot \kappa_\theta$, where $\lambda \in \mathbb{R}^*$.

Definition

Symplectization $\text{Symp}(J^1\mathbb{R})$ of contact space $J^1\mathbb{R}$ is the set of all contact 1-forms α_θ.

Natural bundle $\pi : \text{Symp}(J^1\mathbb{R}) \to J^1\mathbb{R}$ with fiber \mathbb{R}^* and coordinate λ.
Symplectization of contact space $J^1\mathbb{R}$

Further we will assume that $n = 1$; all constructions and theorems can be easily generated on arbitrary n.

Cartan distribution $\mathcal{C} : \theta \mapsto C_\theta$ on $J^1\mathbb{R}$ is defined by Cartan differential 1-form $\kappa := dy - y_1 \, dx$, i.e.

$$C_\theta = \ker \kappa_\theta, \quad \text{where } \theta \in J^1\mathbb{R}.$$

\Rightarrow *contact structure* on $J^1\mathbb{R}$.

Linear 1-form $\alpha_\theta \in T^*_\theta (J^1\mathbb{R})$ is said to be *contact*, if $\ker \alpha_\theta = C_\theta$.

It is clear that $\alpha_\theta = \lambda \cdot \kappa_\theta$, where $\lambda \in \mathbb{R}^*$.

Definition

Symplectization $\text{Symp}(J^1\mathbb{R})$ of contact space $J^1\mathbb{R}$ is the set of all contact 1-forms α_θ.

Natural bundle $\pi : \text{Symp}(J^1\mathbb{R}) \to J^1\mathbb{R}$ with fiber \mathbb{R}^* and coordinate λ.

Pavel Bibikov

Teplice nad Bečvou–2013
Symplectization of contact space $J^1\mathbb{R}$

Further we will assume that $n = 1$; all constructions and theorems can be easily generated on arbitrary n.

Cartan distribution $\mathcal{C} : \theta \mapsto \mathcal{C}_\theta$ on $J^1\mathbb{R}$ is defined by Cartan differential 1-form $\kappa := dy - y_1 dx$, i.e.

$$\mathcal{C}_\theta = \ker \kappa_\theta, \quad \text{where } \theta \in J^1\mathbb{R}.$$

\Rightarrow *contact structure* on $J^1\mathbb{R}$.

Linear 1-form $\alpha_\theta \in T^*_\theta (J^1\mathbb{R})$ is said to be *contact*, if $\ker \alpha_\theta = \mathcal{C}_\theta$.

It is clear that $\alpha_\theta = \lambda \cdot \kappa_\theta$, where $\lambda \in \mathbb{R}^*$.

Definition

Symplectization $\text{Symp}(J^1\mathbb{R})$ of contact space $J^1\mathbb{R}$ is the set of all contact 1-forms α_θ.

Natural bundle $\pi : \text{Symp}(J^1\mathbb{R}) \to J^1\mathbb{R}$ with fiber \mathbb{R}^* and coordinate λ.
Symplectic structure

Theorem

The following diffeomorphism holds:

\[\text{Symp}(J^1\mathbb{R}) \simeq T^*(J^0\mathbb{R}) \setminus \{s_0\}, \]

where \(s_0 \) is the image of zero section of cotangent bundle \(T^*(J^0\mathbb{R}) \).

Proof.

We construct diffeomorphism \(T^*(J^0\mathbb{R}) \setminus \{s_0\} \cong \text{Symp}(J^1\mathbb{R}) \).

Let \(\beta_a \in T_a^*(J^0\mathbb{R}) \Rightarrow L_a := \ker \beta_a \subset T_a(J^0\mathbb{R}) \Rightarrow (a, L_a) =: \theta \in J^1\mathbb{R} \Rightarrow \alpha_\theta := \pi_{1,0}^*(\beta_a). \)

\[\alpha_\theta |_{C_\theta} = \beta_a |_{L_a} = 0 \]

\(\Rightarrow \alpha_\theta \) is contact.

\[\square \]
The following diffeomorphism holds:

$$\text{Symp}(J^1\mathbb{R}) \simeq T^*(J^0\mathbb{R}) \setminus \{s_0\},$$

where s_0 is the image of zero section of cotangent bundle $T^*(J^0\mathbb{R})$.

Proof.

We construct diffeomorphism $T^*(J^0\mathbb{R}) \setminus \{s_0\} \simeq \text{Symp}(J^1\mathbb{R})$.

Let $\beta_a \in T^*_a(J^0\mathbb{R}) \Rightarrow L_a := \ker \beta_a \subset T_a(J^0\mathbb{R})
\Rightarrow (a, L_a) =: \theta \in J^1\mathbb{R} \Rightarrow \alpha_\theta := \pi_{1,0}^*(\beta_a).$

$$\alpha_\theta |_{c_\theta} = \beta_a |_{L_a} = 0$$

$\Rightarrow \alpha_\theta$ is contact.
The following diffeomorphism holds:

\[\text{Symp}(J^1\mathbb{R}) \cong T^*(J^0\mathbb{R}) \setminus \{s_0\}, \]

where \(s_0 \) is the image of zero section of cotangent bundle \(T^*(J^0\mathbb{R}) \).

Proof.

We construct diffeomorphism \(T^*(J^0\mathbb{R}) \setminus \{s_0\} \cong \text{Symp}(J^1\mathbb{R}) \).

Let \(\beta_a \in T^*_a(J^0\mathbb{R}) \Rightarrow L_a := \ker \beta_a \subset T_a(J^0\mathbb{R}) \Rightarrow (a, L_a) =: \theta \in J^1\mathbb{R} \Rightarrow \alpha_\theta := \pi^*_1,0(\beta_a). \)

\[\alpha_\theta |_{C_\theta} = \beta_a |_{L_a} = 0 \]

\(\Rightarrow \alpha_\theta \) is contact.
Symplectic structure

Theorem

The following diffeomorphism holds:

\[\text{Symp}(J^1 \mathbb{R}) \simeq T^*(J^0 \mathbb{R}) \setminus \{s_0\}, \]

where \(s_0 \) is the image of zero section of cotangent bundle \(T^*(J^0 \mathbb{R}) \).

Proof.

We construct diffeomorphism \(T^*(J^0 \mathbb{R}) \setminus \{s_0\} \sim \text{Symp}(J^1 \mathbb{R}) \).

Let \(\beta_a \in T^*_a(J^0 \mathbb{R}) \Rightarrow L_a := \ker \beta_a \subset T_a(J^0 \mathbb{R}) \Rightarrow (a, L_a) =: \theta \in J^1 \mathbb{R} \Rightarrow \alpha_\theta := \pi^*_{1,0}(\beta_a). \)

\[\alpha_\theta |_{C_\theta} = \beta_a |_{L_a} = 0 \]

\(\Rightarrow \alpha_\theta \) is contact.
Theorem

The following diffeomorphism holds:

$$\text{Symp}(J^1 \mathbb{R}) \simeq T^*(J^0 \mathbb{R}) \setminus \{s_0\},$$

where s_0 is the image of zero section of cotangent bundle $T^*(J^0 \mathbb{R})$.

Proof.

We construct diffeomorphism $T^*(J^0 \mathbb{R}) \setminus \{s_0\} \stackrel{\sim}{\rightarrow} \text{Symp}(J^1 \mathbb{R})$.

Let $\beta_a \in T^*_a(J^0 \mathbb{R}) \Rightarrow L_a := \ker \beta_a \subset T_a(J^0 \mathbb{R})$

$\Rightarrow (a, L_a) =: \theta \in J^1 \mathbb{R} \Rightarrow \alpha_\theta := \pi_{1,0}^*(\beta_a)$.

$$\alpha_\theta \mid_{C_\theta} = \beta_a \mid_{L_a} = 0$$

$\Rightarrow \alpha_\theta$ is contact.
Theorem

The following diffeomorphism holds:

\[\text{Symp}(J^1\mathbb{R}) \simeq T^*(J^0\mathbb{R}) \setminus \{s_0\}, \]

where \(s_0 \) is the image of zero section of cotangent bundle \(T^*(J^0\mathbb{R}) \).

Proof.

We construct diffeomorphism \(T^*(J^0\mathbb{R}) \setminus \{s_0\} \xrightarrow{\sim} \text{Symp}(J^1\mathbb{R}) \).

Let \(\beta_a \in T^*_a(J^0\mathbb{R}) \Rightarrow L_a := \ker \beta_a \subset T_a(J^0\mathbb{R}) \)
\[\Rightarrow (a, L_a) =: \theta \in J^1\mathbb{R} \Rightarrow \alpha_{\theta} := \pi^*_{1,0}(\beta_a). \]

\[\alpha_{\theta} |_{c_\theta} = \beta_a |_{L_a} = 0 \]

\(\Rightarrow \alpha_{\theta} \) is contact.
The following diffeomorphism holds:

\[
\text{Symp}(J^1 \mathbb{R}) \simeq T^*(J^0 \mathbb{R}) \setminus \{ s_0 \},
\]

where \(s_0 \) is the image of zero section of cotangent bundle \(T^*(J^0 \mathbb{R}) \).

Proof.

We construct diffeomorphism \(T^*(J^0 \mathbb{R}) \setminus \{ s_0 \} \sim \text{Symp}(J^1 \mathbb{R}) \).

Let \(\beta_a \in T^*_a(J^0 \mathbb{R}) \Rightarrow L_a := \ker \beta_a \subset T_a(J^0 \mathbb{R}) \)

\(\Rightarrow (a, L_a) =: \theta \in J^1 \mathbb{R} \Rightarrow \alpha_\theta := \pi^{*}_{1,0}(\beta_a) \).

\[
\alpha_\theta \mid_{C_\theta} = \beta_a \mid_{L_a} = 0
\]

\(\Rightarrow \alpha_\theta \) is contact.
Theorem

The following diffeomorphism holds:

$$\text{Symp}(J^1\mathbb{R}) \simeq T^*(J^0\mathbb{R}) \setminus \{s_0\},$$

where s_0 is the image of zero section of cotangent bundle $T^*(J^0\mathbb{R})$.

Proof.

We construct diffeomorphism $T^*(J^0\mathbb{R}) \setminus \{s_0\} \tilde{\rightarrow} \text{Symp}(J^1\mathbb{R})$.

Let $\beta_a \in T^*_a(J^0\mathbb{R}) \Rightarrow L_a := \ker \beta_a \subset T_a(J^0\mathbb{R})$

$\Rightarrow (a, L_a) =: \theta \in J^1\mathbb{R} \Rightarrow \alpha_\theta := \pi_{1,0}^*(\beta_a)$.

$$\alpha_\theta \mid_{C_\theta} = \beta_a \mid_{L_a} = 0$$

$\Rightarrow \alpha_\theta$ is contact.
Theorem

The following diffeomorphism holds:

$$\text{Symp}(J^1\mathbb{R}) \cong T^*(J^0\mathbb{R}) \setminus \{s_0\},$$

where s_0 is the image of zero section of cotangent bundle $T^*(J^0\mathbb{R})$.

Proof.

We construct diffeomorphism $T^*(J^0\mathbb{R}) \setminus \{s_0\} \cong \text{Symp}(J^1\mathbb{R})$.

Let $\beta_a \in T_a^*(J^0\mathbb{R}) \Rightarrow L_a := \ker \beta_a \subset T_a(J^0\mathbb{R})$

$\Rightarrow (a, L_a) \models \theta \in J^1\mathbb{R} \Rightarrow \alpha_\theta := \pi_{1,0}^*(\beta_a)$.

$$\alpha_\theta |_{C_\theta} = \beta_a |_{L_a} = 0$$

$\Rightarrow \alpha_\theta$ is contact.
Put

\[q := (x, y) \quad \text{and} \quad p := (-\lambda y_1, \lambda). \]

Then

\[\omega := \lambda \cdot \pi^*(\kappa) = p \, dq \]

is canonic 1-form

and

\[\Omega := d\omega = dp \wedge dq \]

is symplectic structure on symplectization \(\text{Symp}(J^1\mathbb{R}) \).
Put

\[q := (x, y) \quad \text{and} \quad p := (-\lambda y_1, \lambda). \]

Then

\[\omega := \lambda \cdot \pi^*(\kappa) = p \, dq \]

is canonic 1-form

and

\[\Omega := d\omega = dp \wedge dq \]

is symplectic structure on symplectization \(\text{Symp}(J^1\mathbb{R}) \).
Put
\[q := (x, y) \quad \text{and} \quad p := (-\lambda y_1, \lambda). \]
Then
\[\omega := \lambda \cdot \pi^*(\pi) = p \, dq \]
is canonic 1-form
and
\[\Omega := d\omega = dp \wedge dq \]
is symplectic structure on symplectization \(\text{Symp}(J^1\mathbb{R}) \).
Symplectic coordinates

Put
\[\mathbf{q} := (x, y) \quad \text{and} \quad \mathbf{p} := (-\lambda y_1, \lambda). \]

Then
\[\omega := \lambda \cdot \pi^*(\varpi) = \mathbf{p} \, d\mathbf{q} \]
is canonic 1-form

and
\[\Omega := d\omega = d\mathbf{p} \wedge d\mathbf{q} \]
is symplectic structure on symplectization \(\text{Symp}(J^1\mathbb{R}) \).
Symplectization of point transformations and PDE’s

Point transformation $\varphi: J^1\mathbb{R} \to J^1\mathbb{R}$ acts on contact forms $\alpha_\theta \Rightarrow$$\varphi$ prolongs to symplectomorphism of cotangent bundle $\tau^*: T^*(J^0\mathbb{R}) \to J^0\mathbb{R}: q \mapsto Q(q), \quad p \mapsto Q_*^{-1}p$ (here Q_* is Jackobi matrix of diffeomorphism $Q: J^0\mathbb{R} \to J^0\mathbb{R}$).

Abel PDE $A_0(x, y) \cdot y_1^d + A_1(x, y) \cdot y_1^{d-1} + \ldots + A_d(x, y) = 0 \sim \quad A_0(q) \cdot p_1^d - A_1(q) \cdot p_1^{d-1}p_2 + \ldots + (-1)^d A_d(q) \cdot p_2^d = 0$

— smooth function on $T^*(J^0\mathbb{R})$, which is homogeneous in fiber coordinates $p = (p_1, p_2)$.

Problem

Classify smooth functions on $T^*(J^0\mathbb{R})$, which are homogeneous in fiber coordinates p, with respect to the action of symplectomorphisms $q \mapsto Q(q), \quad p \mapsto Q_*^{-1}p$.

Pavel Bibikov
Teplice nad Bečvou–2013
Symplectization of point transformations and PDE’s

Point transformation \(\varphi : J^1 \mathbb{R} \to J^1 \mathbb{R} \) acts on contact forms \(\alpha \theta \Rightarrow \varphi \) prolongs to symplectomorphism of cotangent bundle

\[\tau^* : T^*(J^0 \mathbb{R}) \to J^0 \mathbb{R} : \ q \mapsto Q(q), \quad p \mapsto Q_*^{-1}p \]
(here \(Q_* \) is Jackobi matrix of diffeomorphism \(Q : J^0 \mathbb{R} \to J^0 \mathbb{R} \)).

Abel PDE

\[A_0(x, y) \cdot y_1^d + A_1(x, y) \cdot y_1^{d-1} + \ldots + A_d(x, y) = 0 \Rightarrow \]

\[A_0(q) \cdot p_1^d - A_1(q) \cdot p_1^{d-1} p_2 + \ldots + (-1)^d A_d(q) \cdot p_2^d = 0 \]

— smooth function on \(T^*(J^0 \mathbb{R}) \), which is homogeneous in fiber coordinates \(p = (p_1, p_2) \).

Problem

Classify smooth functions on \(T^*(J^0 \mathbb{R}) \), which are homogeneous in fiber coordinates \(p \), with respect to the action of symplectomorphisms \(q \mapsto Q(q), \quad p \mapsto Q_*^{-1}p \).
Symplectization of point transformations and PDE’s

Point transformation $\varphi : J^1\mathbb{R} \to J^1\mathbb{R}$ acts on contact forms $\alpha_\theta \Rightarrow \varphi$ prolongs to symplectomorphism of cotangent bundle $\tau^* : T^*(J^0\mathbb{R}) \to J^0\mathbb{R}$: $q \mapsto Q(q), \ p \mapsto Q_*^{-1}p$ (here Q_* is Jackobi matrix of diffeomorphism $Q : J^0\mathbb{R} \to J^0\mathbb{R}$).

Abel PDE $A_0(x, y) \cdot y_1^d + A_1(x, y) \cdot y_1^{d-1} + \ldots + A_d(x, y) = 0 \Rightarrow$

$A_0(q) \cdot p_1^d - A_1(q) \cdot p_1^{d-1}p_2 + \ldots + (-1)^d A_d(q) \cdot p_2^d = 0$

— smooth function on $T^*(J^0\mathbb{R})$, which is homogeneous in fiber coordinates $p = (p_1, p_2)$.

Problem

Classify smooth functions on $T^*(J^0\mathbb{R})$, which are homogeneous in fiber coordinates p, with respect to the action of symplectomorphisms $q \mapsto Q(q), \ p \mapsto Q_*^{-1}p$.

Pavel Bibikov
Teplice nad Bečvou–2013
Symplectization of point transformations and PDE’s

Point transformation $\varphi : J^1\mathbb{R} \to J^1\mathbb{R}$ acts on contact forms $\alpha_\theta \Rightarrow \varphi$ prolongs to symplectomorphism of cotangent bundle $\tau^* : T^*(J^0\mathbb{R}) \to J^0\mathbb{R}$: $q \mapsto Q(q)$, $p \mapsto Q_*^{-1}p$ (here Q_* is Jackobi matrix of diffeomorphism $Q : J^0\mathbb{R} \to J^0\mathbb{R}$).

Abel PDE $A_0(x, y) \cdot y_1^d + A_1(x, y) \cdot y_1^{d-1} + \ldots + A_d(x, y) = 0 \Rightarrow A_0(q) \cdot p_1^d - A_1(q) \cdot p_1^{d-1}p_2 + \ldots + (-1)^d A_d(q) \cdot p_2^d = 0$

— smooth function on $T^*(J^0\mathbb{R})$, which is homogeneous in fiber coordinates $p = (p_1, p_2)$.

Problem

Classify smooth functions on $T^*(J^0\mathbb{R})$, which are homogeneous in fiber coordinates p, with respect to the action of symplectomorphisms $q \mapsto Q(q)$, $p \mapsto Q_*^{-1}p$.

Pavel Bibikov

Teplice nad Bečvou–2013
Point transformation $\varphi: J^1\mathbb{R} \rightarrow J^1\mathbb{R}$ acts on contact forms $\alpha_\theta \Rightarrow \varphi$ prolongs to symplectomorphism of cotangent bundle $\tau^*: T^*(J^0\mathbb{R}) \rightarrow J^0\mathbb{R}: q \mapsto Q(q), \quad p \mapsto Q_*^{-1}p$ (here Q_* is Jackobi matrix of diffeomorphism $Q: J^0\mathbb{R} \rightarrow J^0\mathbb{R}$).

Abel PDE

$$A_0(x, y) \cdot y_1^d + A_1(x, y) \cdot y_1^{d-1} + \ldots + A_d(x, y) = 0 \leadsto A_0(q) \cdot p_1^d - A_1(q) \cdot p_1^{d-1}p_2 + \ldots + (-1)^d A_d(q) \cdot p_2^d = 0$$

— smooth function on $T^*(J^0\mathbb{R})$, which is homogeneous in fiber coordinates $p = (p_1, p_2)$.

Problem

Classify smooth functions on $T^*(J^0\mathbb{R})$, which are homogeneous in fiber coordinates p, with respect to the action of symplectomorphisms $q \mapsto Q(q), \quad p \mapsto Q_*^{-1}p$.

Pavel Bibikov Teplice nad Bečvou–2013
Symplectization of point transformations and PDE’s

Point transformation \(\varphi : J^1\mathbb{R} \to J^1\mathbb{R} \) acts on contact forms \(\alpha_\theta \Rightarrow \varphi \) prolongs to symplectomorphism of cotangent bundle \(\tau^* : T^*(J^0\mathbb{R}) \to J^0\mathbb{R} : q \mapsto Q(q), \quad p \mapsto Q_*^{-1}p \) (here \(Q_* \) is Jackobi matrix of diffeomorphism \(Q : J^0\mathbb{R} \to J^0\mathbb{R} \)).

Abel PDE \(A_0(x, y) \cdot y^d_1 + A_1(x, y) \cdot y^{d-1}_1 + \ldots + A_d(x, y) = 0 \Rightarrow \)
\[
A_0(q) \cdot p^d_1 - A_1(q) \cdot p^{d-1}_1 p_2 + \ldots + (-1)^d A_d(q) \cdot p^d_2 = 0
\]
— smooth function on \(T^*(J^0\mathbb{R}) \), which is homogeneous in fiber coordinates \(p = (p_1, p_2) \).

Problem

Classify smooth functions on \(T^*(J^0\mathbb{R}) \), which are homogeneous in fiber coordinates \(p \), with respect to the action of symplectomorphisms \(q \mapsto Q(q), \quad p \mapsto Q_*^{-1}p \).
Symplectization of point transformations and PDE’s

Point transformation \(\varphi: J^1\mathbb{R} \to J^1\mathbb{R} \) acts on contact forms \(\alpha_\theta \Rightarrow \varphi \) prolongs to symplectomorphism of cotangent bundle
\(\tau^*: T^*(J^0\mathbb{R}) \to J^0\mathbb{R}: \mathbf{q} \mapsto \mathbf{Q}(\mathbf{q}), \quad \mathbf{p} \mapsto \mathbf{Q}_*^{-1}\mathbf{p} \) (here \(\mathbf{Q}_* \) is Jackobi matrix of diffeomorphism \(\mathbf{Q}: J^0\mathbb{R} \to J^0\mathbb{R} \)).

Abel PDE
\[
A_0(x, y) \cdot y_1^d + A_1(x, y) \cdot y_1^{d-1} + \ldots + A_d(x, y) = 0 \quad \sim \quad
A_0(\mathbf{q}) \cdot p_1^d - A_1(\mathbf{q}) \cdot p_1^{d-1}p_2 + \ldots + (-1)^d A_d(\mathbf{q}) \cdot p_2^d = 0
\]
— smooth function on \(T^*(J^0\mathbb{R}) \), which is homogeneous in fiber coordinates \(\mathbf{p} = (p_1, p_2) \).

Problem

Classify smooth functions on \(T^*(J^0\mathbb{R}) \), which are homogeneous in fiber coordinates \(\mathbf{p} \), with respect to the action of symplectomorphisms \(\mathbf{q} \mapsto \mathbf{Q}(\mathbf{q}), \quad \mathbf{p} \mapsto \mathbf{Q}_*^{-1}\mathbf{p} \).
Symplectization of point transformations and PDE’s

Point transformation $\varphi: J^1\mathbb{R} \rightarrow J^1\mathbb{R}$ acts on contact forms $\alpha_\theta \Rightarrow \varphi$ prolongs to symplectomorphism of cotangent bundle $\tau^* : T^*(J^0\mathbb{R}) \rightarrow J^0\mathbb{R}$: $q \mapsto Q(q)$, $p \mapsto Q^{-1}_* p$ (here Q_* is Jackobi matrix of diffeomorphism $Q : J^0\mathbb{R} \rightarrow J^0\mathbb{R}$).

Abel PDE $A_0(x, y) \cdot y_1^d + A_1(x, y) \cdot y_1^{d-1} + \ldots + A_d(x, y) = 0 \Rightarrow$

$$A_0(q) \cdot p_1^d - A_1(q) \cdot p_1^{d-1} p_2 + \ldots + (-1)^d A_d(q) \cdot p_2^d = 0$$

— smooth function on $T^*(J^0\mathbb{R})$, which is homogeneous in fiber coordinates $p = (p_1, p_2)$.

Problem

Classify smooth functions on $T^*(J^0\mathbb{R})$, which are homogeneous in fiber coordinates p, with respect to the action of symplectomorphisms $q \mapsto Q(q)$, $p \mapsto Q^{-1}_* p$.

Pavel Bibikov Teplice nad Bečvou–2013
Symplectization of point transformations and PDE’s

Point transformation $\varphi : J^1\mathbb{R} \to J^1\mathbb{R}$ acts on contact forms $\alpha_\theta \Rightarrow \varphi$ prolongs to symplectomorphism of cotangent bundle $\tau^* : T^*(J^0\mathbb{R}) \to J^0\mathbb{R}$: $q \mapsto Q(q)$, $p \mapsto Q_*^{-1}p$ (here Q_* is Jackobi matrix of diffeomorphism $Q : J^0\mathbb{R} \to J^0\mathbb{R}$).

Abel PDE $A_0(x, y) \cdot y_1^d + A_1(x, y) \cdot y_1^{d-1} + \ldots + A_d(x, y) = 0 \leadsto A_0(q) \cdot p_1^d - A_1(q) \cdot p_1^{d-1}p_2 + \ldots + (-1)^d A_d(q) \cdot p_2^d = 0$

— smooth function on $T^*(J^0\mathbb{R})$, which is homogeneous in fiber coordinates $p = (p_1, p_2)$.

Problem

Classify smooth functions on $T^*(J^0\mathbb{R})$, which are homogeneous in fiber coordinates p, with respect to the action of symplectomorphisms $q \mapsto Q(q)$, $p \mapsto Q_*^{-1}p$.

Pavel Bibikov
Teplice nad Bečvou–2013
Function $F = F(q, p)$ is homogeneous with respect to $p \iff p \cdot F_p = d \cdot F$,

i.e. F is solution of the Euler equation.

Let us consider function F as function only on $p = (p_1, p_2)$

\Rightarrow linear action of group $\text{GL}_2(\mathbb{R})$ on the solutions of the Euler equation

\Rightarrow the same problem as in case of binary forms!
Euler equation, algebra

Function $F = F(q, p)$ is homogeneous with respect to p \iff

$$p \cdot F_p = d \cdot F,$$

i.e. F is solution of the Euler equation.

Let us consider function F as function only on $p = (p_1, p_2)$

\Rightarrow linear action of group $GL_2(\mathbb{R})$ on the solutions of the Euler equation

\Rightarrow the same problem as in case of binary forms!
Function $F = F(q, p)$ is homogeneous with respect to $p \iff$

$$p \cdot F_p = d \cdot F,$$

i.e. F is solution of the Euler equation.

Let us consider function F as function only on $p = (p_1, p_2)$

\Rightarrow linear action of group $\text{GL}_2(\mathbb{R})$ on the solutions of the Euler equation

\Rightarrow the same problem as in case of binary forms!
Euler equation, algebra

Function $F = F(q, p)$ is homogeneous with respect to $p \iff$

$$p \cdot F_p = d \cdot F,$$

i.e. F is solution of the Euler equation.

Let us consider function F as function only on $p = (p_1, p_2)$

\Rightarrow linear action of group $GL_2(\mathbb{R})$ on the solutions of the Euler equation

\Rightarrow the same problem as in case of binary forms!
Function \(F = F(q, p) \) is homogeneous with respect to \(p \) \(\iff \)
\[
p \cdot F_p = d \cdot F,
\]
i.e. \(F \) is solution of the Euler equation.

Let us consider function \(F \) as function only on \(p = (p_1, p_2) \)
\(\Rightarrow \) linear action of group \(\text{GL}_2(\mathbb{R}) \) on the solutions of the Euler equation
\(\Rightarrow \) the same problem as in case of binary forms!
Function $F = F(q, p)$ is homogeneous with respect to $p \iff$

$$p \cdot F_p = d \cdot F,$$

i.e. F is solution of the Euler equation.

Let us consider function F as function only on $p = (p_1, p_2)$

\Rightarrow linear action of group $GL_2(\mathbb{R})$ on the solutions of the Euler equation

\Rightarrow the same problem as in case of binary forms!
Differential invariants

Let $F \in C^\infty(T^*(J^0\mathbb{R}))$.

Let J^k be k-jet space of such functions with canonic coordinates (q, p, u, u_σ).

Point pseudogroup G acts on J^k.

- **Differential invariant of group G** is rational function $J \in C^\infty(J^\infty)$ such that $g \circ J = J$ for all $g \in G$.

- **Invariant derivative** is derivative ∇ of algebra $C^\infty(J^\infty)$ such that $[\nabla, \xi] = 0$ for all $\xi \in g$.
Differential invariants

Let $F \in C^\infty(T^*(J^0\mathbb{R}))$.

Let J^k be k-jet space of such functions with canonic coordinates (q, p, u, u_σ).

Point pseudogroup G acts on J^k.

- **Differential invariant of group G** is rational function $J \in C^\infty(J^\infty)$ such that $g \circ J = J$ for all $g \in G$.

- **Invariant derivative** is derivative ∇ of algebra $C^\infty(J^\infty)$ such that $[\nabla, \xi] = 0$ for all $\xi \in g$.
Differential invariants

Let $F \in C^\infty(T^*(J^0\mathbb{R}))$.

Let J^k be k-jet space of such functions with canonic coordinates (q, p, u, u_σ).

Point pseudogroup G acts on J^k.

- **Differential invariant of group G** is rational function $J \in C^\infty(J^\infty)$ such that $g \circ J = J$ for all $g \in G$.

- **Invariant derivative** is derivative ∇ of algebra $C^\infty(J^\infty)$ such that $[\nabla, \xi] = 0$ for all $\xi \in g$.
Differential invariants

Let $F \in C^\infty(T^*(J^0\mathbb{R}))$.

Let J^k be k-jet space of such functions with canonic coordinates (q, p, u, u_σ).

Point pseudogroup G acts on J^k.

- Differential invariant of group G is rational function $J \in C^\infty(J^\infty)$ such that $g \circ J = J$ for all $g \in G$.

- Invariant derivative is derivative ∇ of algebra $C^\infty(J^\infty)$ such that $[\nabla, \xi] = 0$ for all $\xi \in g$.
Differential invariants

Let $F \in C^\infty(T^*(J^0\mathbb{R}))$.

Let J^k be k-jet space of such functions with canonic coordinates (q, p, u, u_σ).

Point pseudogroup G acts on J^k.

- **Differential invariant of group G** is rational function $J \in C^\infty(J^\infty)$ such that $g \circ J = J$ for all $g \in G$.

- **Invariant derivative** is derivative ∇ of algebra $C^\infty(J^\infty)$ such that $[\nabla, \xi] = 0$ for all $\xi \in g$.
Differential invariants

Let $F \in C^\infty(T^*(J^0\mathbb{R}))$.

Let J^k be k-jet space of such functions with canonic coordinates (q, p, u, u_σ).

Point pseudogroup G acts on J^k.

- **Differential invariant of group G** is rational function $J \in C^\infty(J^\infty)$ such that $g \circ J = J$ for all $g \in G$.

- **Invariant derivative** is derivative ∇ of algebra $C^\infty(J^\infty)$ such that $[\nabla, \xi] = 0$ for all $\xi \in \mathfrak{g}$.
Some differential invariants

Theorem

1. **Differential forms**

\[\omega := p dq = p_1 dq_1 + p_2 dq_2 \quad \text{and} \quad \psi := \frac{u p_1 dp_1 + u p_2 dp_2}{u} \]

are \(G \)-invariant.

2. **Put**

\[H := \frac{u p_1 p_1 u p_2 p_2 - u^2}{u^2} \quad \text{and} \quad \nabla := \frac{u p_2}{u} \cdot \frac{d}{dp_1} - \frac{u p_1}{u} \cdot \frac{d}{dp_2} \]

Then

\[J := \frac{(\nabla H)^2}{H^3}, \quad r := p_1 \cdot \frac{d}{dp_1} + p_2 \cdot \frac{d}{dp_2} \quad \text{and} \quad \delta := \frac{\nabla}{\nabla H} \]

are \(G \)-invariant.
Some differential invariants

Theorem

1. **Differential forms**

\[\omega := pdq = p_1 dq_1 + p_2 dq_2 \quad \text{and} \quad \psi := \frac{u p_1 dp_1 + u p_2 dp_2}{u} \]

are G-invariant.

2. Put

\[H := \frac{u p_1 p_1 u p_2 p_2 - u^2}{u^2} \quad \text{and} \quad \nabla := \frac{u p_2}{u} \cdot \frac{d}{dp_1} - \frac{u p_1}{u} \cdot \frac{d}{dp_2}. \]

Then

\[J := \frac{(\nabla H)^2}{H^3}, \quad r := p_1 \cdot \frac{d}{dp_1} + p_2 \cdot \frac{d}{dp_2} \quad \text{and} \quad \delta := \frac{\nabla}{\nabla H} \]

are G-invariant.
Some differential invariants

Theorem

1 Differential forms

\[\omega := p dq = p_1 dq_1 + p_2 dq_2 \quad \text{and} \quad \psi := \frac{u p_1 dp_1 + u p_2 dp_2}{u} \]

are \(G \)-invariant.

2 Put

\[H := \frac{u p_1 p_1 u p_2 p_2 - u^2}{u^2} \quad \text{and} \quad \nabla := \frac{u p_2}{u} \cdot \frac{d}{dp_1} - \frac{u p_1}{u} \cdot \frac{d}{dp_2} \]

Then

\[J := \left(\frac{\nabla H}{H^3} \right)^2, \quad r := p_1 \cdot \frac{d}{dp_1} + p_2 \cdot \frac{d}{dp_2} \quad \text{and} \quad \delta := \frac{\nabla}{\nabla H} \]

are \(G \)-invariant.
Some differential invariants

Theorem

1 Differential forms

\[\omega := p dq = p_1 dq_1 + p_2 dq_2 \quad \text{and} \quad \psi := \frac{u p_1 dp_1 + u p_2 dp_2}{u} \]

are \(G \)-invariant.

2 Put \(H := \frac{u p_1 p_1 u p_2 p_2 - u^2}{u^2} \) and \(\nabla := \frac{u p_2}{u} \cdot \frac{d}{dp_1} - \frac{u p_1}{u} \cdot \frac{d}{dp_2} \).

Then

\[J := \frac{(\nabla H)^2}{H^3}, \quad r := p_1 \cdot \frac{d}{dp_1} + p_2 \cdot \frac{d}{dp_2} \quad \text{and} \quad \delta := \frac{\nabla}{\nabla H} \]

are \(G \)-invariant.
Invariant coordinate system

Consider invariants $J_1 := J, J_2 := \delta J, J_3 := \delta^2 J, J_4 := \delta^3 J$. We assume, that they are independent \Rightarrow they define «coordinate system». Let us rewrite vector field δ, canonic 1-form ω and invariant 1-form ψ in this coordinate system:

$$
\delta = \sum_{i=1}^{4} \delta(J_i) \frac{D}{DJ_i},
$$

$$
\omega = \sum_{i=1}^{4} \omega \left(\frac{D}{DJ_i} \right) \hat{d}J_i,
$$

$$
\psi = \sum_{i=1}^{4} \psi \left(\frac{D}{DJ_i} \right) \hat{d}J_i.
$$
Invariant coordinate system

Consider invariants $J_1 := J$, $J_2 := \delta J$, $J_3 := \delta^2 J$, $J_4 := \delta^3 J$. We assume, that they are independent \Rightarrow they define «coordinate system». Let us rewrite vector field δ, canonic 1-form ω and invariant 1-form ψ in this coordinate system:

\[\delta = \sum_{i=1}^{4} \delta(J_i) \frac{D}{DJ_i}, \]
\[\omega = \sum_{i=1}^{4} \omega \left(\frac{D}{DJ_i} \right) \hat{d}J_i, \]
\[\psi = \sum_{i=1}^{4} \psi \left(\frac{D}{DJ_i} \right) \hat{d}J_i. \]
Invariant coordinate system

Consider invariants $J_1 := J$, $J_2 := \delta J$, $J_3 := \delta^2 J$, $J_4 := \delta^3 J$. We assume, that they are independent \Rightarrow they define «coordinate system». Let us rewrite vector field δ, canonic 1-form ω and invariant 1-form ψ in this coordinate system:

$$\delta = \sum_{i=1}^{4} \delta(J_i) \left(\frac{D}{DJ_i} \right),$$

$$\omega = \sum_{i=1}^{4} \omega \left(\frac{D}{DJ_i} \right) \hat{d}J_i,$$

$$\psi = \sum_{i=1}^{4} \psi \left(\frac{D}{DJ_i} \right) \hat{d}J_i.$$
Invariant coordinate system

Consider invariants $J_1 := J$, $J_2 := \delta J$, $J_3 := \delta^2 J$, $J_4 := \delta^3 J$. We assume, that they are independent \Rightarrow they define «coordinate system». Let us rewrite vector field δ, canonic 1-form ω and invariant 1-form ψ in this coordinate system:

$$\delta = \sum_{i=1}^{4} \delta(J_i) \frac{D}{DJ_i},$$
$$\omega = \sum_{i=1}^{4} \omega \left(\frac{D}{DJ_i} \right) \hat{d}J_i,$$
$$\psi = \sum_{i=1}^{4} \psi \left(\frac{D}{DJ_i} \right) \hat{d}J_i.$$
Classification theorem

Let us consider functions $\mathcal{P} : T^*(J^0 \mathbb{R}) \to \mathbb{R}$, \mathcal{Q}, $\mathcal{R} : T^*(J^0 \mathbb{R}) \to \mathbb{R}^4$, where $\mathcal{Q} := (Q_i)$, $\mathcal{R} := (R_i)$, $i = 1, \ldots, 4$, and

$$
\delta^4 J = \mathcal{P}(J_1, \ldots, J_4), \quad \omega\left(\frac{D}{D J_i}\right) = Q_i(J_1, \ldots, J_4),
$$

$$
\psi\left(\frac{D}{D J_i}\right) = R_i(J_1, \ldots, J_4).
$$

Theorem

Two Abel PDE’s, which correspond to the homogeneous functions F and \tilde{F} are point–equivalent, iff

$$(\mathcal{P}, \mathcal{Q}, \mathcal{R}) = (\tilde{\mathcal{P}}, \tilde{\mathcal{Q}}, \tilde{\mathcal{R}}).$$
Classification theorem

Let us consider functions $\mathcal{P} : T^*(J^0\mathbb{R}) \to \mathbb{R}$, \mathcal{Q}, $\mathcal{R} : T^*(J^0\mathbb{R}) \to \mathbb{R}^4$, where $\mathcal{Q} := (Q_i)$, $\mathcal{R} := (R_i)$, $i = 1, \ldots, 4$, and

\[
\delta^4 J = \mathcal{P}(J_1, \ldots, J_4), \quad \omega\left(\frac{D}{D J_i}\right) = Q_i(J_1, \ldots, J_4),
\]

\[
\psi\left(\frac{D}{D J_i}\right) = R_i(J_1, \ldots, J_4).
\]

Theorem

Two Abel PDE’s, which correspond to the homogeneous functions F and \tilde{F} are point–equivalent, iff

\[(\mathcal{P}, \mathcal{Q}, \mathcal{R}) = (\tilde{\mathcal{P}}, \tilde{\mathcal{Q}}, \tilde{\mathcal{R}}). \]
Classification theorem

Let us consider functions $\mathcal{P} : T^*(J^0\mathbb{R}) \to \mathbb{R}$, \mathcal{Q}, $\mathcal{R} : T^*(J^0\mathbb{R}) \to \mathbb{R}^4$, where $\mathcal{Q} := (Q_i)$, $\mathcal{R} := (R_i)$, $i = 1, \ldots, 4$, and

$$
\delta^4 J = \mathcal{P}(J_1, \ldots, J_4), \quad \omega \left(\frac{D}{DJ_i} \right) = Q_i(J_1, \ldots, J_4),
$$

$$
\psi \left(\frac{D}{DJ_i} \right) = R_i(J_1, \ldots, J_4).
$$

Theorem

Two Abel PDE’s, which correspond to the homogeneous functions F and \tilde{F} are point–equivalent, iff

$$(\mathcal{P}, \mathcal{Q}, \mathcal{R}) = (\tilde{\mathcal{P}}, \tilde{\mathcal{Q}}, \tilde{\mathcal{R}}).$$
Classification theorem

Let us consider functions $\mathcal{P} : T^*(J^0\mathbb{R}) \to \mathbb{R}$, \mathcal{Q}, $\mathcal{R} : T^*(J^0\mathbb{R}) \to \mathbb{R}^4$, where $\mathcal{Q} := (Q_i)$, $\mathcal{R} := (R_i)$, $i = 1, \ldots, 4$, and

$$\delta^4 J = \mathcal{P}(J_1, \ldots, J_4), \quad \omega\left(\frac{D}{D J_i}\right) = Q_i(J_1, \ldots, J_4),$$

$$\psi\left(\frac{D}{D J_i}\right) = R_i(J_1, \ldots, J_4).$$

Theorem

Two Abel PDE’s, which correspond to the homogeneous functions \mathcal{F} and $\tilde{\mathcal{F}}$ are point–equivalent, iff

$$(\mathcal{P}, \mathcal{Q}, \mathcal{R}) = (\tilde{\mathcal{P}}, \tilde{\mathcal{Q}}, \tilde{\mathcal{R}}).$$
Classification theorem

Let us consider functions $\mathcal{P} : T^*(J^0\mathbb{R}) \rightarrow \mathbb{R}$, \mathcal{Q}, $\mathcal{R} : T^*(J^0\mathbb{R}) \rightarrow \mathbb{R}^4$, where $\mathcal{Q} := (Q_i)$, $\mathcal{R} := (R_i)$, $i = 1, \ldots, 4$, and

\[
\delta^4 J = \mathcal{P}(J_1, \ldots, J_4), \quad \omega\left(\frac{D}{DJ_i}\right) = Q_i(J_1, \ldots, J_4),
\]

\[
\psi\left(\frac{D}{DJ_i}\right) = R_i(J_1, \ldots, J_4).
\]

Theorem

Two Abel PDE's, which correspond to the homogeneous functions F and \tilde{F} are point–equivalent, iff

\[(\mathcal{P}, \mathcal{Q}, \mathcal{R}) = (\tilde{\mathcal{P}}, \tilde{\mathcal{Q}}, \tilde{\mathcal{R}}).\]
Proof

“⇒” — obvious.

“⇐” Let

\[(\mathcal{P}, \mathcal{Q}, \mathcal{R}) = (\tilde{\mathcal{P}}, \tilde{\mathcal{Q}}, \tilde{\mathcal{R}})\]

for two homogeneous functions \(F\) and \(\tilde{F}\).

Consider “invariant coordinate systems”

\[S := (J_1(F), J_2(F), J_3(F), J_4(F)), \quad \tilde{S} := (J_1(\tilde{F}), J_2(\tilde{F}), J_3(\tilde{F}), J_4(\tilde{F})).\]

Let

\[
\Phi: T^*(J^0\mathbb{R}) \to T^*(J^0\mathbb{R}), \quad \Phi(S) = \tilde{S}.
\]

Then

- \(\Phi \in G\), because \(\Phi\) preserves \(J^0\mathbb{R}\) (\(\mathcal{P}\)) and \(\omega\) (\(\mathcal{Q}\));
- \(\Phi \circ F = \mu \cdot \tilde{F}\), because \(\Phi\) preserves \(\psi\) (\(\mathcal{R}\)).

Hence, \(F\) and \(\tilde{F}\) are point–equivalent.
Proof

“⇒” — obvious.

“⇐” Let

\[(\mathcal{P}, \mathcal{Q}, \mathcal{R}) = (\tilde{\mathcal{P}}, \tilde{\mathcal{Q}}, \tilde{\mathcal{R}})\]

for two homogeneous functions \(F\) and \(\tilde{F}\).

Consider "invariant coordinate systems"

\[S := (J_1(F), J_2(F), J_3(F), J_4(F)), \quad \tilde{S} := (J_1(\tilde{F}), J_2(\tilde{F}), J_3(\tilde{F}), J_4(\tilde{F})).\]

Let

\[\Phi : T^*(J^0\mathbb{R}) \rightarrow T^*(J^0\mathbb{R}), \quad \Phi(S) = \tilde{S}.\]

Then

- \(\Phi \in G\), because \(\Phi\) preserves \(J^0\mathbb{R}\) (\(\mathcal{P}\)) and \(\omega\) (\(\mathcal{Q}\));
- \(\Phi \circ F = \mu \cdot \tilde{F}\), because \(\Phi\) preserves \(\psi\) (\(\mathcal{R}\)).

Hence, \(F\) and \(\tilde{F}\) are point-equivalent.
Proof

“⇒” — obvious.

“⇐” Let

\[(P, Q, R) = (\tilde{P}, \tilde{Q}, \tilde{R})\]

for two homogeneous functions \(F\) and \(\tilde{F}\).

Consider “invariant coordinate systems”

\[S := (J_1(F), J_2(F), J_3(F), J_4(F)), \quad \tilde{S} := (J_1(\tilde{F}), J_2(\tilde{F}), J_3(\tilde{F}), J_4(\tilde{F})).\]

Let

\[\Phi: T^* (J^0 R) \to T^* (J^0 R), \quad \Phi(S) = \tilde{S}.\]

Then

- \(\Phi \in G\), because \(\Phi\) preserves \(J^0 R (P)\) and \(\omega (Q)\);
- \(\Phi \circ F = \mu \cdot \tilde{F}\), because \(\Phi\) preserves \(\psi (R)\).

Hence, \(F\) and \(\tilde{F}\) are point–equivalent.
Proof

“⇒” — obvious.

“⇐” Let

\[(\mathcal{P}, \mathcal{Q}, \mathcal{R}) = (\tilde{\mathcal{P}}, \tilde{\mathcal{Q}}, \tilde{\mathcal{R}})\]

for two homogeneous functions \(F\) and \(\tilde{F}\).

Consider “invariant coordinate systems”

\[S := (J_1(F), J_2(F), J_3(F), J_4(F)), \quad \tilde{S} := (J_1(\tilde{F}), J_2(\tilde{F}), J_3(\tilde{F}), J_4(\tilde{F})).\]

Let

\[\Phi: T^*(J^0\mathbb{R}) \to T^*(J^0\mathbb{R}), \quad \Phi(S) = \tilde{S}.\]

Then

- \(\Phi \in G\), because \(\Phi\) preserves \(J^0\mathbb{R} (\mathcal{P})\) and \(\omega (\mathcal{Q})\);
- \(\Phi \circ F = \mu \cdot \tilde{F}\), because \(\Phi\) preserves \(\psi (\mathcal{R})\).

Hence, \(F\) and \(\tilde{F}\) are point–equivalent.
Proof

“⇒” — obvious.

“⇐” Let

\[(\mathcal{P}, \mathcal{Q}, \mathcal{R}) = (\tilde{\mathcal{P}}, \tilde{\mathcal{Q}}, \tilde{\mathcal{R}})\]

for two homogeneous functions \(F\) and \(\tilde{F}\).

Consider “invariant coordinate systems”

\[S := (J_1(F), J_2(F), J_3(F), J_4(F)), \quad \tilde{S} := (J_1(\tilde{F}), J_2(\tilde{F}), J_3(\tilde{F}), J_4(\tilde{F})).\]

Let

\[\Phi: T^*(J^0\mathbb{R}) \to T^*(J^0\mathbb{R}), \quad \Phi(S) = \tilde{S}.\]

Then

- \(\Phi \in G\), because \(\Phi\) preserves \(J^0\mathbb{R} (\mathcal{P})\) and \(\omega (\mathcal{Q})\);
- \(\Phi \circ F = \mu \cdot \tilde{F}\), because \(\Phi\) preserves \(\psi (\mathcal{R})\).

Hence, \(F\) and \(\tilde{F}\) are point–equivalent.
Proof

“⇒” — obvious.

“⇐” Let

\[(\mathcal{P}, \mathcal{Q}, \mathcal{R}) = (\mathcal{\tilde{P}}, \mathcal{\tilde{Q}}, \mathcal{\tilde{R}})\]

for two homogeneous functions \(F\) and \(\tilde{F}\).

Consider “invariant coordinate systems”

\[S := (J_1(F), J_2(F), J_3(F), J_4(F)), \quad \tilde{S} := (J_1(\tilde{F}), J_2(\tilde{F}), J_3(\tilde{F}), J_4(\tilde{F})).\]

Let

\[\Phi : T^*(J^0\mathbb{R}) \rightarrow T^*(J^0\mathbb{R}), \quad \Phi(S) = \tilde{S}.\]

Then

- \(\Phi \in G\), because \(\Phi\) preserves \(J^0\mathbb{R} (\mathcal{P})\) and \(\omega (\mathcal{Q})\);
- \(\Phi \circ F = \mu \cdot \tilde{F}\), because \(\Phi\) preserves \(\psi (\mathcal{R})\).

Hence, \(F\) and \(\tilde{F}\) are point-equivalent.
Proof

“⇒” — obvious.

“⇐” Let

$$(P, Q, R) = (\tilde{P}, \tilde{Q}, \tilde{R})$$

for two homogeneous functions F and \tilde{F}.

Consider “invariant coordinate systems”

$$S := (J_1(F), J_2(F), J_3(F), J_4(F)), \quad \tilde{S} := (J_1(\tilde{F}), J_2(\tilde{F}), J_3(\tilde{F}), J_4(\tilde{F})).$$

Let

$$\Phi : T^*(J^0\mathbb{R}) \rightarrow T^*(J^0\mathbb{R}), \quad \Phi(S) = \tilde{S}.$$

Then

- $\Phi \in G$, because Φ preserves $J^0\mathbb{R} (P)$ and $\omega (Q)$;
- $\Phi \circ F = \mu \cdot \tilde{F}$, because Φ preserves $\psi (R)$.

Hence, F and \tilde{F} are point–equivalent.
Proof

“⇒” — obvious.

“⇐” Let

$$(\mathcal{P}, \mathcal{Q}, \mathcal{R}) = (\tilde{\mathcal{P}}, \tilde{\mathcal{Q}}, \tilde{\mathcal{R}})$$

for two homogeneous functions F and \tilde{F}.

Consider “invariant coordinate systems”

$S := (J_1(F), J_2(F), J_3(F), J_4(F)), \quad \tilde{S} := (J_1(\tilde{F}), J_2(\tilde{F}), J_3(\tilde{F}), J_4(\tilde{F})).$

Let

$$\Phi: T^* (J^0 \mathbb{R}) \rightarrow T^* (J^0 \mathbb{R}), \quad \Phi(S) = \tilde{S}.$$

Then

- $\Phi \in G$, because Φ preserves $J^0 \mathbb{R} (\mathcal{P})$ and $\omega (\mathcal{Q})$;
- $\Phi \circ F = \mu \cdot \tilde{F}$, because Φ preserves $\psi (\mathcal{R})$.

Hence, F and \tilde{F} are point–equivalent.
Proof

“⇒” — obvious.

“⇐” Let

\[(P, Q, R) = (\tilde{P}, \tilde{Q}, \tilde{R})\]

for two homogeneous functions \(F\) and \(\tilde{F}\).

Consider “invariant coordinate systems”

\[S := (J_1(F), J_2(F), J_3(F), J_4(F)), \quad \tilde{S} := (J_1(\tilde{F}), J_2(\tilde{F}), J_3(\tilde{F}), J_4(\tilde{F})).\]

Let

\[\Phi: T^*(J^0\mathbb{R}) \rightarrow T^*(J^0\mathbb{R}), \quad \Phi(S) = \tilde{S}.\]

Then

- \(\Phi \in G\), because \(\Phi\) preserves \(J^0\mathbb{R} (P)\) and \(\omega (Q)\);
- \(\Phi \circ F = \mu \cdot \tilde{F}\), because \(\Phi\) preserves \(\psi (R)\).

Hence, \(F\) and \(\tilde{F}\) are point–equivalent.