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What are third-order homogeneous

Hamiltonian operators?



First-order Dubrovin–Novikov (homogeneous) operators

Dubrovin–Novikov (homogeneous) operators were introduced in
1983 for the Hamiltonian formalism of hydrodynamic-type
equations

uit = vij(u)u
j
x = Aij

1

δH1

δuj
H1 =

∫

h(u)dx

u = (ui(t, x)), i, j = 1,. . . ,n (n-components). The operators are
of the form

Aij
1 = gij(u)∂x + bijk (u)u

k
x

Homogeneity: deg ∂x = 1.



Geometry of 1st-order Dubrovin–Novikov operators

Any change of coordinates of the type ūi = ūi(uj) will not
change the ‘nature’ of the above operator. gij transforms as a
contravariant 2-tensor; usually it is required that gij is
non-degenerate; Γj

ik = −gisb
sj
k transforms as a linear connection.

Conditions:

◮ A∗

1 = −A1 is equivalent to: symmetry of gij , ∇[Γ]g = 0;

◮ [A1, A1] = 0 is equivalent to: gij flat pseudo-Riemannian

metric and Γj
ik = Γj

ki, or Γ is the Levi-Civita connection of
g.



Third-order Dubrovin–Novikov operators

Dubrovin–Novikov operators were defined for higher orders too.
In particular

Aij
3 =gij(u)∂3x + bijk (u)u

k
x∂

2
x

+ [cijk (u)u
k
xx + cijkm(u)ukxu

m
x ]∂x

+ dijk (u)u
k
xxx + dijkm(u)ukxu

m
xx + dijkmn(u)u

k
xu

m
x u

n
x,

Examples of Hamiltonian equations of the form

uit = Aij
3

(

δH2

δuj

)

are in the 2-component case the Chaplygin gas equation
(Mokhov DrSc thesis, ’96) and the 3-component case WDVV
equation (Ferapontov, Galvao, Mokhov, Nutku CMP ’95).



Example: 2-component Chaplygin gas equation

(O. Mokhov, ’96) The Monge–Ampère equation
uttuxx − u2xt = −1 can be reduced to hydrodynamic form

at = bx, bt =

(

b2 − 1

a

)

x

,

via the change of variables a = uxx, b = uxt. It possesses the
Hamiltonian formulation

(

a
b

)

t

= ∂x







0 ∂x
1

a
1

a
∂x

b

a2
∂x + ∂x

b

a2






∂x

(

δH/δa
δH/δb

)

,

and the nonlocal Hamiltonian,

H = −

∫ (

1

2
a(∂−1

x b)2 + ∂−2
x a

)

dx.



Example: 3-component WDVV equation

The simplest associativity (WDVV) equation:

fttt = f2xxt − fxxxfxtt

can be presented by a = fxxx, b = fxxt, c = fxtt as

at = bx, bt = cx, ct = (b2 − ac)x.

From Ferapontov, Galvao, Mokhov, Nutku, CMP (1997),
there are two local Dubrovin-Novikov Hamiltonian operators,
first-order A1 and third-order A3,

A3 =





0 0 ∂3x
0 ∂3x −∂2xa∂x
∂3x −∂xa∂

2
x (∂2xb∂x + ∂xb∂

2
x + ∂xa∂xa∂x)







Some known results

Non-degenerate (det(gij) 6= 0) third-order homogeneous
Hamiltonian operators have the canonical form (Potemin ’86,
’97; Potemin–Balandin, ’01; Doyle ’95):

A3 = ∂x ◦ (g
ij∂x + cijk u

k
x) ◦ ∂x,

where (Ferapontov, Pavlov, V., JGP 2014)

cnkm =
1

3
(gnm,k − gnk,m),

gmk,n + gkn,m + gmn,k = 0,

cmnk,l = −gpqcpmlcqnk.

gij is the Monge form of a quadratic line complex.



Monge metrics

Example: n = 3

g11 = −[R12(u
2
)
2
+ R13(u

3
)
2
+ 2B12u

2
u
3
+ 2H12u

2
+ 2H13u

3
+ D1],

g22 = −[R12(u
1
)
2
+ R23(u

3
)
2
+ 2B22u

1
u
3
+ 2H21u

1
+ 2H23u

3
+ D2],

g33 = −[R23(u
2
)
2
+ R13(u

1
)
2
+ 2B32u

1
u
2
+ 2H31u

1
+ 2H32u

2
+ D3],

g12 = R12u
1
u
2
+ B12u

1
u
3
+ B22u

2
u
3
− B32(u

3
)
2
+ H12u

1
+ H21u

2
+ (E2 − E1)u

3
+ F12,

g13 = R13u
1
u
3
+ B12u

1
u
2
− B22(u

2
)
2
+ B32u

2
u
3
+ H13u

1
+ H31u

3
+ (E1 − E3)u

2
+ F13,

g23 = R23u
2
u
3
− B12(u

1
)
2
+ B22u

1
u
2
+ B32u

1
u
3
+ H23u

2
+ H32u

3
+ (E3 − E2)u

1
+ F23,



Monge–Ampère example revisited

The operator:

A3 = ∂x







0 ∂x
1

a
1

a
∂x

b

a2
∂x + ∂x

b

a2






∂x

is completely determined by its Monge metric:

gij =

(

−2b a
a 0

)

In this case, the singular surface is det(g) = −a2, and is a line
counted two times. Moreover, g is a flat pseudo-Riemannian
metric. This is the simplest nontrivial homogeneous third-order
operator.



WDVV example revisited

The operator:

A3 =





0 0 ∂3x
0 ∂3x −∂2xa∂x
∂3x −∂xa∂

2
x (∂2xb∂x + ∂xb∂

2
x + ∂xa∂xa∂x)





The operator is completely determined by its metric:

gij =





−2b a 1
a 1 0
1 0 0





In this case, the singular surface is det(g) = −1, and is a
quadruple plane at infinity. Moreover, g is a flat
pseudo-Riemannian metric.



Affine classification for n = 2

(The 1-component case was described by Gel’fand-Dorfman –
point-equivalent to ∂3x).

Theorem (Ferapontov, Pavlov, V. JGP 2014): only two
non-trivial metrics in 2-component case:

g
(1)
ik =

(

1− (b2)2 1 + b1b2

1 + b1b2 1− (b1)2

)

, g
(2)
ik =

(

−2b2 b1

b1 0

)

g(1) is non-flat, g(2) is flat and appears in the Chaplygin gas
equation (O. Mokhov’s Doctoral Thesis).
Theorem. In the 2-component cases the operators may be
reduced to ∂3x by a reciprocal transformation.



Projective classification for n = 3

Ferapontov, Pavlov, V., JGP 2014

g(1) =

(

(u2)2 + c −u
1
u
2
− u

3 2u2

−u
1
u
2
− u

3 (u1)2 + c(u3)2 −cu
2
u
3
− u

1

2u2
−cu

2
u
3
− u

1
c(u2)2 + 1

)

,

g(2) =

(

(u2)2 + 1 −u
1
u
2
− u

3 2u2

−u
1
u
2
− u

3 (u1)2 −u
1

2u2
−u

1 1

)

,

g(3) =

(

(u2)2 + 1 −u
1
u
2 0

−u
1
u
2 (u1)2 0

0 0 1

)

,

g(4) =

(

−2u2
u
1 0

u
1 0 0
0 0 1

)

, g(5) =

(

−2u2
u
1 1

u
1 1 0
1 0 0

)

, g(6) =

(

1 0 0
0 1 0
0 0 1

)

.



Projective classification for n = 4

Ferapontov, Pavlov, V., arXiv 2015
Any Monge metric of a third-order homogeneous Hamiltonian
operator admits the following decomposition:

gij = ϕαβψ
α
i ψ

β
j

where ψα
i du

i are linear line complexes, ϕαβ is a non-degenerate
bilinear form and

ϕαβψ
α
[iψ

β

j,k] = 0.

The above condition can always be fulfilled for any Monge
metric as above (generalized Clebsch normal form). From the
projective classification of metabelian Lie algebrae
(Galitski-Timashev 1999) we have a classification of 4-frames of
linear line complexes ψα

i du
i and ϕαβ with 38 classes. n > 5 wild!



How to find them? Application to:

◮ hydrodynamic-type systems in

conservative form;

◮ WDVV equations.



Suitable coordinate systems

It is clear that canonical coordinates of A3 are good:

A3 = ∂x ◦ (g
ij∂x + cijk u

k
x) ◦ ∂x,

Casimirs are conservation law densities, so it is natural to look
for operators A3 for hydrodynamic-type systems in conservative
form:

ait = (V i(a))x



A necessary condition

For a system of PDEs F = uit − f i(t, x, uj , ujx, u
j
xx, . . .) = 0 we

have that

uit = Aij
3

(

δH

δuj

)

with A∗

3 = −A3 and [A3, A3] = 0

⇒ ℓF ◦A3 = A∗

3 ◦ ℓ
∗

F

The right-hand side as a necessary condition to
Hamiltonianity (Kersten, Krasil’shchik, Verbovetsky, JGP ’04).



Necessary condition in suitable coordinates

Theorem. The Hamiltonianity of a hydrodynamic-type system
in conservative form with respect to A3:

uit = Aij
3

(

δH

δuj

)

with A∗

3 = −A3 and [A3, A3] = 0

is equivalent to the following conditions on the Monge metric g:

gim
∂V m

∂aj
= gjm

∂V m

∂ai
, cmkj

∂V m

∂ai
+ cmik

∂V m

∂aj
+ cmji

∂V m

∂ak
= 0,

∂2V k

∂ui∂uj
= gkscsmj

∂V m

∂ui
+ gkscsmi

∂V m

∂uj



The generic case: systems compatible with g(1)

u1
t = (αu2 + βu3)x,

u2
t =

(

((u2)2 − c)(αu2 + βu3) + γ(1− c(u2)2) + δ(u1
− cu2u3)

u1u2
− u3

)

x

,

u3
t =

(

αu3((u2)2 − c) + βu3(u2u3
− cu1) + γ(u1

− cu2u3) + δ((u1)2 − c(u3)2)

u1u2
− u3

)

x

,

where the system is completely exceptional and
non-diagonalizable if and only if αδ − βγ = 0. The nonlocal
Hamiltonian

H =

∫

(1

2
α(2cxu1∂x

−1u2+u3(∂x
−1u2)2+ cx2u3)+βu3(1− c2)∂x

−1u2∂x
−1u3

+ δ(xu1∂x
−1u1 + cu3∂x

−1u1∂x
−1u2 + cu1∂x

−1u2∂x
−1u3 + cxu3∂x

−1u3)

+
1

2
γ(cu1(∂x

−1u2)2 + x2u1 + 2cxu3∂x
−1u2

)

dx.

Integrability is not known.



First singular case: systems compatible with g(2)

u1
t = (αu2 + βu3)x,

u2
t =

(

((u2)2 − 1)(αu2 + βu3)− (γ + δu1)

u1u2
− u3

)

x

,

u3
t =

(

(u2u3
− u1)(αu2 + βu3)− u1(γ + δu1)

u1u2
− u3

)

x

,

where the system is completely exceptional and
non-diagonalizable if and only if αδ − βγ = 0. The nonlocal
Hamiltonian:

H =
∫ (

1

2
αu3(∂x

−1u2)2 + βu3∂x
−1u2∂x

−1u3
−

1

2
γx2u1

− δxu1∂x
−1u1

)

dx.

Integrability is not known.



Second singular case: systems compatible with g(3)

u1t = (u2 + u3)x,

u2t =

(

u2(u2 + u3)− 1

u1

)

x

,

u3t = u1x,

which is completely exceptional and non-diagonalizable

with the he nonlocal Hamiltonian,

H =

∫

(

−∂x
−1u1∂x

−1u3 + xu1∂x
−1u2

)

dx.

Setting u1 = fxxt, u
2 = fxtt − fxxx, u

3 = fxxx we obtain the
WDVV-type equation f2xxt − fxxxfxtt + f2xtt − fxxtfttt − 1 = 0
(Dubrovin 1994; Agafonov 1998). Admits a Lax pair.



Further singular cases

◮ g(4): WDVV-type equation fxxx = ftttfxxt − f2xtt (Kalayci
and Nutku, JPA 1998). It is bi-Hamiltonian.

◮ g(5): WDVV-type equation fttt = f2xxt − fxxxfxtt
(Ferapontov, Galvao, Mokhov, Nutku, CMP 1995). It is
bi-Hamiltonian and up to a reciprocal transformation is
the 3-wave equation (Zakharov, Manakov, ∼1970).



A general example

In N component case we have

gij =













2a2 −a1 0 1
−a1 0 1
0 1

1 0
1 0 0













and the Hamiltonian is

H = −
1

2
a1(D−1a2)2 +

1

2

N
∑

m=2

(D−1am)(D−1aN+2−m).

implies the hydrodynamic type systems

a1t = a2x, a2t = a3x, ..., aN−1
t = aNx , aNt = [a1a3 − (a2)2]x.



WDVV in N = 3

The associativity equation (ηij an N ×N constant
nondegenerate matrix):

ηµλ
∂3F

∂tλ∂tα∂tβ
∂3F

∂tν∂tµ∂tγ
= ηµλ

∂3F

∂tν∂tα∂tµ
∂3F

∂tλ∂tβ∂tγ

If N = 3 we have a single equation. Let us introduce
coordinates

a = fxxx, b = fxxt, c = fxtt.

Then the compatibility conditions for the WDVV equation
become

at = bx, bt = cx, ct = (ϕ(a, b, c; η))x



The WDVV Monge metric

By using the compatibility conditions we have:

Theorem. The previous hydrodynamic-type system for generic
values of η has a third-order Hamiltonian operator for which
Casimirs are the letters a, b, c. The Monge metric of the third
order operator is, up to a reciprocal transformation of
projective type, the metric

g(3) =





b2 + 1 −ab 0
−ab a2 0
0 0 1







Perspectives on IIIrd order HO

1. The nonlocal version of this talk! Analogue of Ferapontov’s
curvature condition for first-order operators.

2. Conjecture: pairs of a first-order and a third-order
homogeneous HO define a Frobenius manifold.

3. Compatibility conditions for nonlocal operators.

4. Classification of higher-order systems of conservation laws
admitting third-order operators.



Perspectives on WDVV

1. Conjecture: WDVV in all dimensions have a
bi-Hamiltonian formulation by a pair of a (nonlocal?)
first-order and a local third-order homogeneous
Hamiltonian operator. See MV Pavlov, RV, Lett. Math.
Phys2̇015 arxiv::1409.7647 for the 6-component case.

2. Conjecture: all WDVV are the same bi-Hamiltonian
system up to a coordinate change.

3. Conjecture: correspondence between Frobenius manifolds
and pairs of first-order, third order homogeneous HO;
another relation between Frobenius manifolds and WDVV?

4. Why a quadratic line complex is attached to each WDVV
system? I can’t believe that it is there by chance. Relation
with Gromov–Witten invariants?



Symbolic computations

Within the REDUCE CAS (now free software) we use the
packages CDIFF and CDE, freely available at
http://gdeq.org.

CDIFF was developed by the Twente group (Gragert, Kersten,
Post, Roelofs); it generates total derivatives on a supermanifold.

CDE (by R. Vitolo) can compute in the new version 2.0:
Fréchet derivatives, formal adjoints, symmetries and
conservation laws, Hamiltonian operators, their brackets, their
Lie derivatives.

Cooperation with AC Norman (Trinity College, Cambridge) to
improvements and documentation of REDUCE’s kernel.



The end!

THANK YOU!


