Bi-Hamiltonian systems and
projective geometry

R. Vitolo

(joint work with P. Lorenzoni)
Dipartimento di Matematica e Fisica ‘E. De Giorgi’
Universita del Salento, and
Istituto Nazionale di Fisica Nucleare

Krasil’shchik’s Seminar
Independent University of Moscow
21 Februray 2024



Contents

Provide a correspondence (and then a classification) between

» bi-Hamiltonian systems whose bi-Hamiltonian pair has the
structure of a ‘trio” of compatible operators:

Ai=Pi+R;, 1=2,3; Ar =1

(: order of the operator) and

» triples of algebraic varieties in the space of (projective)
lines, i.e. the Pliicker embedding,

Gr(2,R"1) — P(A?R™ )

of the projective space with coordinates [u, ..., u"] where

(ul,...,u") are the field variables.



Hamiltonian PDEs

An evolutionary system of PDEs

F=ul— fit,z,w,ul,ul,,...) =0

) 'xy T

admits a Hamiltonian formulation if there exist A, H = [ hdz
such that oy
= AY
=2 ()

where A = (AY) is a Hamiltonian operator, i.e. a matrix of
differential operators AY = A%°9,, where 0, = 0y 0--- 00,
(total z-derivatives o times), such that

R0y = [ 2 a0, %

is a Poisson bracket (skew-symmetric and Jacobi).



Bi-Hamiltonian systems

Bi-Hamiltonian systems have two Hamiltonian formulations by
two compatible Hamiltonian operators A;, As, where:

» skew-symmetry of the Poisson bracket is the
skew-adjointness of Ay, As;

» the Jacobi property of the Poisson bracket is the vanishing
of the Schouten bracket, [A1, A;] = 0, [Aa, Ag] = 0;

» the operators are required to be compatible: [A;, As] = 0.

Bi-Hamiltonian systems are considered to be integrable (F.
Magri, 1978).



First-order homogeneous operators

First-order homogeneous operators were introduced in 1983 by
Dubrovin and Novikov:

AY = g ()0, + b (w)ul

They are form-invariant with respect to point transformations
of the type:
at =U"(uv).

where v = ui(t,z), i,5 = 1,...,n (n-components).
Homogeneity: degd, = 1.

Canonical form: A} = 7,



Higher-order homogeneous operators

Higher order homogeneous operators were introduced in 1984
by Dubrovin and Novikov. We consider here second-order and
third-order homogeneous operators:

AY =g¥ (0)92 + b, (Wb,

+ Clzjk(u)uwm + C;Jk;m (u)umu;n

Ay =g5 (w)a} + b, ()0}
+[c§fk( Ju m+cgkm(u)ug’2u ]8



Bi-Hamiltonian systems of KdV-type

Many bi-Hamiltonian systems are indeed compatible triples of
Hamiltonian operators P, @1, Ro introduced by Olver and
Rosenau (1996):

A =P, Ay=Q1+R; 1=2,3, where
[R;, ] =0, [R;,Q1]=0, [P1,Q1]=0.

Examples:
» with second-order operators Ro: AKNS, 2-component
Camassa-Holm, Kaup-Broer (Kuperschmidt 1984), etc..
» with third-order operators R3: KdV, Camassa—Holm,

dispersive water waves (Antonowicz—Fordy 1989), coupled
Harry-Dym, etc..



Examples and classification

A classification of bi-Hamiltonian hierarchies which are defined
by a triple of mutually compatible Hamiltonian operators was
provided by Lorenzoni, Savoldi, V. (JPA 2017).

Ezamples: scalar case. We have one third-order operator Rg,
two first order operators P;, Q1:

[R3, P1] = [R3,Q1] = [P1,Q1] =0
P, = 0y, Q1 = 2ud, +uy, R3=205.

KdV hierarchy (Magri (1978)):
) = Q1 + ¢R3 — APy = 2ud, + uy — N0y + €20
Camassa—Holm hierarchy:

Ty = Q1 — A(Py + €R3) = 2udy + uy — M9y + 202).



Example: 2-component case. We have one second-order
operator Ry and two first-order operators P, (01, all of them
mutually compatible:

P= (ax o)’ Ql_( D —za)’
0
(1)

> I\ = Q1 + 2Ry — AP, AKNS (or two-boson) hierarchy;

> I, =Q — APy + €2Ry) two-component Camassa-Holm
hierarchy.



Canonical forms of homogeneous Hamiltonian operators

In the non-degenerate case (det(g¥) # 0) the second and third
order operators admit canonical forms by means of a point
transformation (Potemin ’86, '97; Potemin—Balandin, '01; Doyle

'95)

R;j =00 g;j 0 Oy,

Rij =00 (géjax + Céjkugli) 0 Oy,



Projective invariance of compatible triples

Consider a reciprocal transformations of projective type:
di = Adz, @' =S'(v) = (Siu! + Sf)/A

where A = S?uj + Sg. Then,

» Ry and R3 transform into new second-order and third-order
homogenous Hamiltonian operators in canonical

RY = 0,950, RY =0, 0(g50, + cJuk)od,;

» P; (or Q1) transform into new non-local first order
homogeneous Hamiltonian operators (Ferapontov 1991):

P =4"0, + F?uﬁ + ué@;lwiuﬁ + w%uﬁ@;lué



The problem

Problem: projective classification and geometric significance of
triples! Initiated in Lorenzoni, Savoldi, V. JPA 2017, here we
discuss results from Lorenzoni, V. (2023)
https://arxiv.org/abs/2311.13932

Here we classify triples

Ay = P+ Ry, Az = Qq,

where

> Ry is a constant coefficient second-order operator:
Ry =102, where 7" = —pt,  det(n”) #0;
» P, Q1 are Ferapontov operators of localizable type:

P = g"0, + T} ul + wiug 0 "l + w0y "wjuy


https://arxiv.org/abs/2311.13932

Digression: Pliicker’s line geometry

Two points U,V € P(C"*1),

U=[u,... ,u"", V=[v,. . . "

inside the

ut u
v v

define a line with coordinates p™ = det

projective space: P(A2C"*1) (Pliicker’s embedding).

Any 3-form w € A3C™1" defines the following system of linear
equations in Pliicker’s space:

ir(w) =0, L e A2C™H,

in coordinates, L = p*dy A 0, and the system is: wy,,p"” = 0.



The algebraic variety of R

(Vergallo, V., 2022) The second-order operator Ry yields the
three-form

Wy = mjduo Adut A du Nij = (nij)fl.

Intersecting the corresponding linear system with the
Grassmannian

G(?, CTL+1> C P<A2cn+1)

we obtain, in the generic case, a linear line congruence, an
algebraic variety of dimension n — 1:

Xy = G(2,C") N {ifws = 0}.

It is remarkable that they are Fano varieties (of index 3).



Compatibility: [Py, Rs] = 0.

(Lorenzoni, V. 2023) The compatibility of the Hamiltonian
operators: [P;, Ra] = 0 is equivalent to the conditions:

w; are constant;

w%‘nlk + w;cnli — 0

Fl] Ik + Fk] li 0;

1“’“ 1j +F” lk -l—F{kn” —0:
LTy —T5Td =0;

aifj

— _S§iak sk
8u8 = (5swl ’LUS(SZ.



Consequences of compatiblity

» Condition (5) implies that Fg define a Frobenius algebra
structure on the tangent space of the field variables;

» Condition (4) implies that n;; and I‘Zj define a cyclic
Frobenius algebra (Buchstaber, Mikhailov 2023). Note that
(3) is invariance of the 2- form 7 with respect to the
Frobenius structure.

> Set Gap = NjpMiag”. Condition (4) is also equivalent to

gbc,a + gca,b + gab,c = 07

hence ggu is the Monge form of a quadratic line complex.



Example: Kaup—Broer system

Kupershmidt '85. The trio is defined by

0 O, 20, axul
b= <8x 0> , Q1= (ulﬁm u?0y + 89;u2> ’ (7)

0 —1
32:<1 0)8%.

The corresponding Monge metrics are

(G1.a0) = <_01 _01> . (Go,m) = <3151 _;1> .

(8)

9)



Monge metrics in detail

Lie’s form of Pliicker’s coordinates:
wrdu?® — udut, dul, du?

Monge metrics are quadratic forms in the above coordinates. In
particular,

0 0 -1 0
1], Q@)= (-1 0 0f.  (10)
0 0 2

Note that rk(Q(g1)) = 2 and rk(Q(g2)) = 3. We have, for

example,

Go.apdudu’ = —2(utdu? — v*du")du' + 2du?du?,



Classification: n = 2

The compatibility conditions [P}, Re] = 0 can be completely
solved. The Monge metric of P;:

_ 212 2
g11 = co(u”)” + c3u” + cy,

1 1
gi2 = —coutu® — §C3U1 - §C1u2 + c¢s,

g22 = Co(u1)2 + cul + e

The metric of P;:

g =co(u')? + cru! + e,

1 1
912 = cou1u2 + 503u1 + §clu2 + ¢5
9%% = co(u?)* + czu® + cy.

The above metric is linear for every value of the parameters:
every two metrics in that space yield compatible operators!



Classification n = 2, the form of P

It turns out that the leading coefficient matrix (¢¥/) of P; is
completely determined by a generic Monge metric. Note that,
in Pliicker’s space:

Co *%Cg %Cl
_ 1
Q(gij) = | —3563 ¢ ¢
1
51 ¢ C2

Py takes the form:
Plij = gijﬁm + F?uf; — cou;é?;lugj;

note that if ¢g = 0 then we recover results previously obtained
(Lorenzoni, Savoldi, V. JPA 2018).



Classification n = 2, fixing P,

> Fix P in the previous class. There are two natural choices,
a quadratic line complex of rank 2 and rank 3.

> Rs is stabilized up to a multiplicative constant;

» an arbitrary ()1 from the previous class can be added, no
extra compatibility conditions required.

Note: when n = 2 compatibility reduces to P; being determined
by an arbitrary Monge metric.



Projective correspondence theorem, n = 2

Theorem. If n = 2, then there is a bijective correspondence
between

» trios of mutually compatible localizable first-order
homogeneous Hamiltonian operators P;, ()1 and
R2 = (_1 0)82 and

P pairs of conics C1, Cy of rank at least 2.

A classification is then achieved by considering the action of
SL(3,C) on the projective space P(C3), and the canonical forms
of pairs of conics (Weierstrass 1858, 1868).



Classification: n =4

Fix a second-order operator, for example

00 0 -1
o0 -1 0|
R2_01008$'
10 0 0

» We have a complete list of solutions of [Py, Rs] = 0, with
288 cases (including the degenerate cases).

» There are local and localizable non-local first-order
operators P; of Ferapontov type.

» Compatibility conditions do not reduce to (¢g*/) being
determined by a Monge metric.



Classification, n = 4: examples

It is not so meaningful to write down the list of solutions of
[P1, Ra] = 0. Moreover, to construct a trio, we need to solve the
further equation [P, Q2] = 0. Let us give an example, where

P1: az

O O = O
OO O
= o o O
O = O O

and then find, in the set of solutions of [Ry, Q1] = 0, those that
are compatible with Py: [P, Q1] = 0. We found 64 cases of
both local and localizable non-local first-order operators P; of
Ferapontov type.



Classification, n = 4, a local example

Note that we use the formula Ffj = —wlkuj — wguséf + bf].
2b%1u2 + cs55 Cs4 b%lu4 + b}3u1 — C49 b%:‘u2 — C34
( 1]) _ Cs4 0 b%guz — C34 0
97) = bilut + b3 ut — ey BIPUZ — 34 263303 + ¢y 20330t + ¢y
b}3u2 — C34 0 2b%3u4 + c31 0

The free parameters are b%l, b}3, C31, C34, C46, C49, C54, C55-
Nonzero coefficients in the Christoffel symbols are determined
by the only nonzero constants b

11 11 13 13 14 13 23 13
FQ :b2a I‘1 :blv I‘2 :b17 Fz :b1>
31 _ 711 33 _ 113 34 _ 113 43 _ 113
F4 _b2v F3 _b17 1_‘4 _b17 1_‘4 _bl'

Local cases seem to have already been discovered by Strachan
and Szablikowski (SAM 2014).



Classification, n = 4, a nonlocal example — 1

1y2, 2
0122 220154—(u)w%22
(gij): csq — (ut) 2wy 2032 +C53T23u2uw1
0 —(c34 + utuiwy)
—(czq +utudw?)  bPPud — c33 — vlutw? — vPudw?
1,,3,.2
0 —(csa+u'u wl)
—(e3q + utudw?)  b22ud — 33 — ulutw? — wPudw?
32,2
0 c31 — (u?)*wy
cz1 — (u?)w? cag — 2ututw?

The nonlocal part is defined by the free parameter w? (with the
requirement w? # 0) and the equations
2

wi = w?, w;'- =0 otherwise. (11)



Classification, n = 4, a nonlocal example — 2

The free parameters are
b, w1, cos, €31, €33, C34, C53, Coa
The only nonzero constants sz are
b?,  b3® = b

The nonzero Christoffel symbols are

r? = —w'w?, T = —wdw?, T3 =—ulwi
Fg2 = —ulw%, F%g = —u3w% F%l = —u4w%,
ng = —ulw%, F§4 = —u3w%7 F§1 = —ulw%,
I‘iz = —ulw%, F§3 = —ugw%, F§4 = —u4wf,

22
Fl

24 _
5" =

42
F3

ri

22 _ 2 2
b1 — v wi,
3,2

—u wy,
22 2 2
e —u wy

= —udw?.



Projective correspondence theorem, any n

There is a bijective correspondence between:

» bi-Hamiltonian trios of Hamiltonian operators as discussed:
Ay = Py, A2 = Q1+ Ry

» trios of two quadratic line complexes Py, @1 and one linear
line congruence Ro induced by a constant 3-form;
compatibility constrains the varieties in a way that is yet to
be understood.



Compatibility [Py, R3] = 0.

Some results are available in the case [P}, R3] = 0 (Lorenzoni,
V. Cont. Math. AMS 2024).

» The Christoffel symbols define a commutative Frobenius
algebra (without unity) on the tangent space of the field
variables.

» The operator P; turn out to be a local one if n > 3.

> If n > 3, then any commutative Frobenius algebra
determines a solution P; of [Py, R3] = 0.

Note: in the local case item 1 was independently proved by
Bolsinov, Konyaev, Matveev.



Conclusions

Implications of the projective geometric interpretation of
bi-Hamiltonian systems of KdV-type are unknown (at the
moment), but the geometry is nice.

Thank youl

Contacts: raffaele.vitoloQunisalento.it



