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Introduction

Let A be a type of algebra. A homotopy A algebra structure on a cochain
complex is a set of operations that satisfy the axioms of / only up to homotopy.

Motivating Fact I

Let (A, d) be a differential algebra of type A and f : (A,d) = (V,8) : g a pair
of homotopy equivalences. The algebra structure in A can be transferred to
V along (f,g), but the transferred structure is of the type A only up to higher
homotopies. On the other hand homotopy algebras are homotopy invariant!

Motivating Fact II

Let (X, 0) be a differential algebra. (I, 0) is always homotopy equivalent to
its cohomology (H(X,0),0) = H(X,5) is a homotopy algebra. The latter
structure characterizes the homotopy type of (IC, ).

Example (Massey products)

Let (K, 8) = (C®(X),d) be singular cochains of a topological space X. The Massey
products in H® (X) are obtained transferring the cup product along a homotopy.
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Motivations from PDEs

The datum of a PDE is encoded by a diffiety, i.e., a countable dimensional man-
ifold with an involutive distribution €. Horizontal cohomologies of C with
suitable local coefficients contain important informations about the PDE (sym-
metries, conservation laws, etc.). Moreover, they can be interpreted, to some
extent, as geometric structures on the space of solutions (i.e., vector fields,
differential forms, etc.).

Often, horizontal cohomologies of a diffiety possess canonical algebraic struc-
tures. However, the latter does not generically come from algebraic structures
on cochains.

Remark

“Usually” algebraic structures on horizontal cohomologies come from homo-
topy algebraic structures on cochains. In particular, there is a homotopy Lie
algebroid accounting for the Lie algebra structure on Krasil’shchik cohomolo-
gies. The former comes with canonical left/right representations.
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Motivations from Differential Geometry

Lie algebroids encode salient features of foliations, complex structures, Pois-
son structures, Jacobi structures, etc. In some cases (singularieties, co dimen-
sions, etc.) what one really needs is the algebraic counterpart of a Lie alge-
broid: a Lie-Rinehart algebra.

Of a special interest are representations of Lie algebroids: group actions, D-
modules, deformations, etc. Even when higher homotopies are not manifestly
involved, they may be relevant: Courant algebroids are Lie algebroids up to
homotopy, the adjoint representation of a Lie algebroid is a representation up
to homotopy, etc.

Aim

The aim of this talk is to present the first steps of a systematic study of homotopy Lie
algebroids/homotopy Lie-Rinehart algebras and their representations, which encom-
pass various results already scattered in literature [ Abad & Crainic 09], [Mehta &
Zambon 12], etc. The material presented is preliminary with respect to applications
to PDEs.
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Outline

o Homotopy Lie-Rinehart Algebras

e Left Representations of LR, Algebras

© Right Representations of LR, Algebras
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Homotopy Lie-Rinehart Algebras Loo algebras
L

Homotopy Lie Algebras

Let V be a graded vector space.

Definition

An L, algebra structure in V is a family: A, : VEF — V, of degree 2 — k, skew-
symmetric maps such that

Z Z i)\Hl()\i[xG[l),...,xg(j)),x(,(i+1),...,xc(iﬂ')) :O,
i+j:k0‘65i,]‘
forallxq,...,x € V, ke N.

PutA; =%,and Ay = [—,—].
k=1 & (x)=0
k=2 8x,yl = [ox,yl £ [x, byl
k=3 Ixyz2l+lyzx]ltz Xyl =
—0A3(x,y,2) —A3(0x,y,2) F A3(x, 8y, z) F A3(x,y, 6z)
Lo, modules are defined in a similar way.

One can work with degree 1, symmetric maps instead (use décalage): Lo (1]
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Homotopy Lie-Rinehart Algebras

Homotopy Lie-Rinehart Algebras

A Lie-Rinehart algebra is a pair (A, L), where
o A is a commutative algebra over a field K, and L is an A-module,
o [ is a Lie algebra acting on A by derivations,
@ compatibility conditions hold: fora,b € Aand &, € L

(a&).b =a(&b) and [£,al] =alE, ]+ (Ea)C.

Definition [Kjeseth 01, up to décalage]

An LR [1] algebra is a pair (A, L) where
o A is a graded commutative K-algebra, and L is an A-module,
o Lisan Lo [1] algebra acting on A by derivations,
o compatibility conditions hold: fora,b € Aand &;,...,&; € L

{aéy, &, ..., & 1lb} = £al&y, ..., E_1Ib},
(&1, &—1,08) = Fal&y, ..., +{&1, - .-, 1A}
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Homotopy Lie-Rinehart Algebras

Homotopy Lie-Rinehart Algebras

Remark

Kjeseth’s definition is actually realized in “nature”: examples come from
BRST, Lie algebroids, complex geometry, Poisson geometry, PDEs, ...

A systematic investigation shows that many standard constructions with Lie
algebroids have an analogue in terms of LR, algebras:
o associated CE and Gerstenhaber algebras,
cohomologies of left/right modules,
transformation Lie algebroid,
Schouten-Nijenhuis calculus,
derivative representations of Lie algebroids,
right actions and BV algebras,

BV algebras from Poisson manifolds,

BV algebras from Jacobi manifold.
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Homotopy Lie-Rinehart Algebras

DG and P from LRoo

The CE and Schouten Algebras of an LR, Algebra

An LR algebra (A, L) determines:
@ a homological derivation of Alt, (L, A),
@ a Gerstenhaber algebra structure on A5 L.

Proposition

An LR [1] algebra (A, L) determines:
@ a homological derivation D = Dy + Dy + - - - in Sym (L, A) via:
(Drw) (&1, .., Erpp)
=Y HEo(1) 0 o |w(ag(m),...,ag(km)}
- Fw({Eg ok+1)} Eok2)r - -+ E (kr) s

w e Sym)(L,A), &,..., &k €L;
@ a homotopy Gerstenhaber algebra structure on S5 L.
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Homotopy Lie-Rinehart Algebras

More General L, Algebroids

Remark

When L is projective and finitely generated, an LR [1] algebra structure on
(A, L) is the same as a homological derivation of Sym (L, A) descending to a
derivation of A along the projection Sym , (L, A) — A.

Example (Lo, algebroids over graded manifolds)
o A = C*®(M), with M a graded manifold,
o L =T(&), with € — M a graded vector bundle.

An LR [1] algebra structure on (A, L) is the same as a homological vector field D on
& tangent to the 0 section.
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Higher left linear connections

Left Representations of LReo Algebras Hioher left Schouten-Nijenhuis

Higher Left Linear Connections

Let (A,L) be an LR algebra and P an A-module. A left (A, L)-connection in P
is a K-linear map V : L — EndgP such that: fora € A, { € L,p € P

Vaep=aVep and Ve(ap) =aVep+ (Ea)p.

Vis flat, and (P, V) is a left (A, L)-module if it is a left Lie module over L.

Definition

Let (A, L) be a LR (1] algebra and P an A-module. A left (A, L) connection in P is
a family of K-multilinear, graded symmetric, degree 1 maps V : L2*~1) — EndyP
such that: fora € A, &;,...,& 1 €L, peP

v(aall 52/- . /E;kfl‘p) - iav(£1/~ ey E,k71|p)/
V(&1 ..., &_1lap) = £aV (&, ..., E_1lp) +{&1, ..., E_1lalp.

V is flat, and (P, V) is a left (A, L)-module, if V is a left Lo [1] module structure.
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Higher left linear connections

Left Representations of LReo Algebras Higher left Schouten-Nijenhuis

Cohomologies of Left LR, Modules

A left connection V in P along an LR algebra determines an operator DV in
Alty (L, P),and (DV)? = 0if V is flat.

Proposition

A left connection V in P along an LR[1] algebra (A, L) determines an operator
DV =DY + DY + - in Sym (L, P) via higher CE formulas:

(DY Q) (&1, -, Epi)
=Y EV(Eg)--rEok—1) | Qo) - Ea(rrk—1)))
= Z SHOM{E 1) i) Iy Ewiitro o o0 Eaiciimity o

Q € Sym/y(L,P), &,...,& k1 €L, and (DV)? = 0if V is flat.
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Higher left linear connections
Higher left Schouten-Nijenhuis

Left Representations of LRoo Algebras

Connections Along L., Algebroids

A (flat) left connection in P along a LR [1] algebra (A,L) is the same as a
(homological) derivation DV of Sym 4 (L, P)

@ subordinate to D, and
@ descending to a derivation of P along Sym 4 (L, P) — P.

Example
@ (A L) =(C>®(M),T(E)), with € — M an Le, algebroid,
o P =T(V), withV — M a vector bundle.

A (flat) left (A, L)-connection in P is the same as a fiber-wise linear (homological)
vector field DV on & x5 V* (or, equivalently, on & x5 V) which is

Q compatible with D along € x5 V* — €, and
@ tangent to the 0 section of € x5 V* — V™.
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Higher left linear c
Higher left Schout

Left Representations of LRoo Algebras

Higher Left Schouten-Nijenhuis Calculus

Let (A, L) be an LR algebra. For u,v € AL, let i, be the insertion operator in
Alts(L,A), and L, = [iy, d] the Lie derivative. Then

[Ly,ip] = i[L,,y] and [Ly,, Lo] = L[”/U]

Proposition

Let (A, L) be an LR [1] algebra, and (P, V) a left (A, L)-module. For u,uy, ..., uy €
S5 L, let iy, be the insertion operator in Sym , (L, P), and

LY (uy, ..., upq) = [+ DY i) -], i)
a higher Lie derivative. Then
[LV (ull cee U )/ Z'Mk} - ii{ul,“.,uk}’

and LY is an Lo [1]-module structure on Sym, (L, P).
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Right Representations of LRoo Algebras

Higher Right Linear Connections

Let (A,L) be an LR algebra and Q an A-module. A right (A, L)-connection in
Qis a K-linear map A : L — EndgQ such that: fora € A, £ € L, € Q

Apeq=Ag(aq) and Ag(aq) =algq— (Ea)qg.

Ais flat, and (Q, A) is a right (A, L)-module if it is a right Lie module over L.

Definition
Let (A, L) bea LR [1] algebra and Q and A-module. A right (A, L) connection in Q

is a family of K-multilinear, graded symmetric, degree 1 maps A : L2~1) — EndxQ
such that: fora € A, &1,...,& 1 €L, g€ Q

A&y, ..., &2, a8k 1lq) = £A(&y, ..., E_1lag)
A(‘E]/ sy E.]<71|ﬂq) - :taA(E»]/ ey E-kl W) - {E,l, ey Ekfl‘ﬂ}q

A'is flat, and (O, A) is a left (A, L)-module, if A is a right L, [1] module structure.
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Higher t linear connections

Right Representations of LRoo Algebras

Cohomologies of Right LR, Modules

A right connection A in Q along an LR algebra determines an operator D in
ASL®4Q,and (D?)? = 0 if A is flat.

Proposition

A right connection A in Q along an LR (1] algebra (A, L) determines an operator
DA =Df + D5 + - in S L ®, Q via higher Rinehart formulas:

DkA(E bk 1®‘I)
7Ziao o ®A(E'0' r+1)7s r&(r (k+r—1) W)
+Zi{fia(l)/-~-zig(k)}ﬁc(k+1) &g (ktr) ®F,

&1, &kt €L, q € Q and (DA)? = 0if A is flat.
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Higher r
Right Representations of LRoo Algebras BV frc

Higher Right Schouten-Nijenhuis Calculus

Let (A, L) be an LR algebra. A right connection along (A, L) determines a right
version of the Schouten-Nijenhuis calculus.

Proposition

Let (A,L) be an LR[1] algebra, and (Q,A) a right (A,L)-module.  For
u,ug, ... U € S5 L, let 1, be the multiplication operator in S5 L © 4 Q, and

RA(”lI 00 .,le,l) = [[ o [DkAl ulll} t ']/ Hllkfl]
a higher right Lie derivative. Then
[RA (M], e U )r Huk] - H{u] ,,,,, Uy tr

and R isa right Loo[1]-module structure on SS L ®4 Q.
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Right Representations of LRoo Algebras

BV Algebras from Right Lie-Rinehart Modules

A BV algebra is a graded commutative, unital algebra B with a degree 1 ho-
mological differential operator [] of order 2.

(a,b) == [[0,4a],b)(1)
equips B with a Gerstenhaber algebra structure (up to décalage).

Remark

Let (A, L) be an LR algebra. There is 10 canonical right connection in A.

Proposition [Huebschmann 99], [Xu 99]

Let (A, L) be a Lie-Rinehart algebra, and A an (A, L)-module structure on A. The
homological operator D equips A% L with a BV algebra structure. The BV bracket
coincides with the canonical Gerstenhaber brackets in A5 L.
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Right Representations of LRoo Algebras

BV, Algebras from Right LR, Modules

Definition [Kravchenko 00]

A BV, algebra is a graded commutative, unital algebra B with a degree 1
homological operator [.

(ag,ap,...,a4¢) = [--[[0,a1],a5] - - -, a,](1)

equip B with a homotopy Gerstenhaber algebra structure.

Remark

Let (A, L) be an LR, algebra. There is no canonical right connection in A.

Proposition

Let (A,L) be an LR [1] algebra, and A an (A, L)-module structure on A. The ho-
mological operator D equips S5 L with a BV «, algebra structure. The higher Koszul
brackets coincide with the canonical homotopy Gerstenhaber brackets in S5 L.
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r connections
uten-Nijent
Right Representations of LRoo Algebras o er right connections

BV, Algebras in Higher Poisson Geometry

Let M be a Poisson manifold. Then T*M — M is a Lie algebroid, and there is
a canonical, flat, right connection A along the LR algebra (C*° (M), QYM)) in
C®(M): forf,g € C*®(M)

df,dgl = dif,g} and Ayg=—{f, g}

Example

Let M be a higher Poisson manifold, i.e., a graded manifold with a degree —2,
homological multivector field P. Then T*[—1]M — M is an Loo[1] algebroid, and
there is a canonical, flat, right connection A along the LR, algebra (C> (M), Q1 (M)
in C*®°(M): for f1,...,fr,g € C®°(M)

{fi,....df} = £difi, ... flp,
A(dfy, ..., dfk—11) = Fifi, - fie1,8)p-

Consequently, O (M) is a BV, algebra!
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houten-Nijenhuis
Right Representations of LRoo Algebras Fr her right connections

A Bibliographic Reference

o L.V, Representations of Homotopy Lie-Rinehart Algebras, e-print:
arXiv:1304.4353.
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Higher right linear connections
Schouten-Nijenhuis

Right Representations of LRoo Algebras BV from higher right connections

Thank you!
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