Dirac-Jacobi Bundles

Luca Vitagliano

University of Salerno, Italy

Workshop on Integrable Nonlinear Equations Mikulov, October 18–24, 2015

Symplectic geometry has two natural extensions:

- presymplectic geometry,
- Poisson geometry.

Dirac geometry is a common extension of both!

Remark

Mathematical Physics	Geometry
Hamiltonian mechanics (HM)	symplectic geometry
HM with constraints	presymplectic geometry
HM with symmetries	Poisson geometry
HM with both constr. and sym.	Dirac geometry

The arena for Dirac geometry is the *generalized tangent bundle*:

 $\mathbb{T}M:=TM\oplus T^*M.$

・ロト ・ 同ト ・ ヨト ・ ヨト

Symplectic geometry has two natural extensions:

- presymplectic geometry,
- Poisson geometry.

Dirac geometry is a common extension of both!

Mathematical Physics	Geometry
Hamiltonian mechanics (HM)	symplectic geometry
HM with constraints	presymplectic geometry
HM with symmetries	Poisson geometry
HM with both constr. and sym.	Dirac geometry

The arena for Dirac geometry is the generalized tangent bundle:

 $\mathbb{T}M:=TM\oplus T^*M.$

Symplectic geometry has two natural extensions:

- presymplectic geometry,
- Poisson geometry.

Dirac geometry is a common extension of both!

Remark					
	Mathematical Physics	Geometry			
	Hamiltonian mechanics (HM)	symplectic geometry			
HM with constraints		presymplectic geometry			
	HM with symmetries	Poisson geometry			
	HM with both constr. and sym.	Dirac geometry			

The arena for Dirac geometry is the *generalized tangent bundle*:

 $\mathbb{T}M:=TM\oplus T^*M.$

Symplectic geometry has two natural extensions:

- presymplectic geometry,
- Poisson geometry.

Dirac geometry is a common extension of both!

Remark					
	Mathematical Physics	Geometry			
	Hamiltonian mechanics (HM)	symplectic geometry			
HM with constraints		presymplectic geometry			
	HM with symmetries	Poisson geometry			
	HM with both constr. and sym.	Dirac geometry			

The arena for Dirac geometry is the generalized tangent bundle:

 $\mathbb{T}M:=TM\oplus T^*M.$

The main structures on $\mathbb{T}M = TM \oplus T^*M$ are:

- the projection $\operatorname{pr}_T : \mathbb{T}M \to TM$,
- the symmetric bilinear form $\langle \langle -, \rangle \rangle : \mathbb{T}M \otimes \mathbb{T}M \to \mathbb{R}_M$:

 $\langle\!\langle (X,\sigma), (Y,\tau) \rangle\!\rangle := \tau(X) + \sigma(Y),$

• the Dorfman bracket $[\![-,-]\!] : \Gamma(\mathbb{T}M) \times \Gamma(\mathbb{T}M) \to \Gamma(\mathbb{T}M)$: $[\![(X,\sigma),(Y,\tau)]\!] := ([X,Y], \mathcal{L}_X \tau - i_Y d\sigma).$

Definition

A *Dirac manifold* is a manifold M + a *Dirac structure*, i.e. a maximally isotropic subbundle $\mathfrak{L} \subset \mathbb{T}M$ such that $[\Gamma(\mathfrak{L}), \Gamma(\mathfrak{L})] \subset \Gamma(\mathfrak{L})$.

Examples

- graphs of presymplectic forms $\omega : TM \to T^*M$,
- graphs of Poisson tensors $\pi: T^*M \to TM$,
- $T\mathcal{F} \oplus T^0\mathcal{F} \subset \mathbb{T}M$ with \mathcal{F} a foliation of M.

Dirac structures are basically the same as presymplectic foliations!

The main structures on $\mathbb{T}M = TM \oplus T^*M$ are:

- the projection $\operatorname{pr}_T : \mathbb{T}M \to TM$,
- the symmetric bilinear form $\langle\!\langle -, \rangle\!\rangle : \mathbb{T}M \otimes \mathbb{T}M \to \mathbb{R}_M$:

 $\langle\!\langle (X,\sigma),(Y,\tau)\rangle\!\rangle := \tau(X) + \sigma(Y),$

• the Dorfman bracket $\llbracket -, - \rrbracket : \Gamma(\mathbb{T}M) \times \Gamma(\mathbb{T}M) \to \Gamma(\mathbb{T}M)$: $\llbracket (X, \sigma), (Y, \tau) \rrbracket := ([X, Y], \mathcal{L}_X \tau - i_Y d\sigma).$

Definition

A *Dirac manifold* is a manifold M + a *Dirac structure*, i.e. a maximally isotropic subbundle $\mathfrak{L} \subset \mathbb{T}M$ such that $[\Gamma(\mathfrak{L}), \Gamma(\mathfrak{L})] \subset \Gamma(\mathfrak{L})$.

Examples

- graphs of presymplectic forms $\omega : TM \to T^*M$,
- graphs of Poisson tensors $\pi: T^*M \to TM$,
- $T\mathcal{F} \oplus T^0\mathcal{F} \subset \mathbb{T}M$ with \mathcal{F} a foliation of M.

Dirac structures are basically the same as presymplectic foliations!

The main structures on $\mathbb{T}M = TM \oplus T^*M$ are:

- the projection $\operatorname{pr}_T : \mathbb{T}M \to TM$,
- the symmetric bilinear form $\langle\!\langle -, \rangle\!\rangle : \mathbb{T}M \otimes \mathbb{T}M \to \mathbb{R}_M$:

 $\langle\!\langle (X,\sigma),(Y,\tau)\rangle\!\rangle := \tau(X) + \sigma(Y),$

• the Dorfman bracket $\llbracket -, - \rrbracket : \Gamma(\mathbb{T}M) \times \Gamma(\mathbb{T}M) \to \Gamma(\mathbb{T}M)$:

 $\llbracket (X,\sigma), (Y,\tau) \rrbracket := ([X,Y], \mathcal{L}_X \tau - i_Y d\sigma).$

Definition

A *Dirac manifold* is a manifold M + a *Dirac structure*, i.e. a maximally isotropic subbundle $\mathfrak{L} \subset \mathbb{T}M$ such that $[\Gamma(\mathfrak{L}), \Gamma(\mathfrak{L})] \subset \Gamma(\mathfrak{L})$.

Examples

- graphs of presymplectic forms $\omega : TM \to T^*M$,
- graphs of Poisson tensors $\pi: T^*M \to TM$,
- $T\mathcal{F} \oplus T^0\mathcal{F} \subset \mathbb{T}M$ with \mathcal{F} a foliation of M.

Dirac structures are basically the same as presymplectic foliations!

イロト イポト イヨト

The main structures on $\mathbb{T}M = TM \oplus T^*M$ are:

- the projection $\operatorname{pr}_T : \mathbb{T}M \to TM$,
- the symmetric bilinear form $\langle\!\langle -, \rangle\!\rangle : \mathbb{T}M \otimes \mathbb{T}M \to \mathbb{R}_M$:

 $\langle\!\langle (X,\sigma),(Y,\tau)\rangle\!\rangle := \tau(X) + \sigma(Y),$

• the Dorfman bracket $\llbracket -, - \rrbracket : \Gamma(\mathbb{T}M) \times \Gamma(\mathbb{T}M) \to \Gamma(\mathbb{T}M)$:

 $\llbracket (X,\sigma), (Y,\tau) \rrbracket := ([X,Y], \mathcal{L}_X \tau - i_Y d\sigma).$

Definition

A *Dirac manifold* is a manifold M + a *Dirac structure*, i.e. a maximally isotropic subbundle $\mathfrak{L} \subset \mathbb{T}M$ such that $\llbracket \Gamma(\mathfrak{L}), \Gamma(\mathfrak{L}) \rrbracket \subset \Gamma(\mathfrak{L})$.

Examples

- graphs of presymplectic forms $\omega : TM \to T^*M$,
- graphs of Poisson tensors $\pi: T^*M \to TM$,
- $T\mathcal{F} \oplus T^0\mathcal{F} \subset \mathbb{T}M$ with \mathcal{F} a foliation of M.

Dirac structures are basically the same as presymplectic foliations!

The main structures on $\mathbb{T}M = TM \oplus T^*M$ are:

- the projection $\operatorname{pr}_T : \mathbb{T}M \to TM$,
- the symmetric bilinear form $\langle\!\langle -, \rangle\!\rangle : \mathbb{T}M \otimes \mathbb{T}M \to \mathbb{R}_M$:

 $\langle\!\langle (X,\sigma),(Y,\tau)\rangle\!\rangle := \tau(X) + \sigma(Y),$

• the Dorfman bracket $\llbracket -, - \rrbracket : \Gamma(\mathbb{T}M) \times \Gamma(\mathbb{T}M) \to \Gamma(\mathbb{T}M)$:

 $\llbracket (X,\sigma), (Y,\tau) \rrbracket := ([X,Y], \mathcal{L}_X \tau - i_Y d\sigma).$

Definition

A *Dirac manifold* is a manifold M + a *Dirac structure*, i.e. a maximally isotropic subbundle $\mathfrak{L} \subset \mathbb{T}M$ such that $\llbracket \Gamma(\mathfrak{L}), \Gamma(\mathfrak{L}) \rrbracket \subset \Gamma(\mathfrak{L})$.

Examples

- graphs of presymplectic forms $\omega : TM \rightarrow T^*M$,
- graphs of Poisson tensors $\pi : T^*M \to TM$,
- $T\mathcal{F} \oplus T^0\mathcal{F} \subset \mathbb{T}M$ with \mathcal{F} a foliation of M.

Dirac structures are basically the same as presymplectic foliations!

The main structures on $\mathbb{T}M = TM \oplus T^*M$ are:

- the projection $\operatorname{pr}_T : \mathbb{T}M \to TM$,
- the symmetric bilinear form $\langle\!\langle -, \rangle\!\rangle : \mathbb{T}M \otimes \mathbb{T}M \to \mathbb{R}_M$:

 $\langle\!\langle (X,\sigma),(Y,\tau)\rangle\!\rangle := \tau(X) + \sigma(Y),$

• the Dorfman bracket $\llbracket -, - \rrbracket : \Gamma(\mathbb{T}M) \times \Gamma(\mathbb{T}M) \to \Gamma(\mathbb{T}M)$:

 $\llbracket (X,\sigma), (Y,\tau) \rrbracket := ([X,Y], \mathcal{L}_X \tau - i_Y d\sigma).$

Definition

A *Dirac manifold* is a manifold M + a *Dirac structure*, i.e. a maximally isotropic subbundle $\mathfrak{L} \subset \mathbb{T}M$ such that $\llbracket \Gamma(\mathfrak{L}), \Gamma(\mathfrak{L}) \rrbracket \subset \Gamma(\mathfrak{L})$.

Examples

- graphs of presymplectic forms $\omega : TM \rightarrow T^*M$,
- graphs of Poisson tensors $\pi : T^*M \to TM$,
- $T\mathcal{F} \oplus T^0\mathcal{F} \subset \mathbb{T}M$ with \mathcal{F} a foliation of M.

Dirac structures are basically the same as presymplectic foliations!

白人名德人名英人名英人

Contact geometry has two natural extensions:

- precontact geometry,
- Jacobi geometry.

Definition

A precontact manifold is a manifold + an hyperplane distribution.

Definition

A *Jacobi manifold* is a manifold M + a *Jacobi bundle*, i.e. a line bundle $L \rightarrow M$ equipped with a Lie bracket on sections

$J:\Gamma(L)\times\Gamma(L)\to\Gamma(L)$

which is a 1st order DO in each entry.

Every contact manifold is both a precontact and a Jacobi manifold.

Remark

There is a common extension of both precontact and Jacobi geometry.

< ロ > < 団 > < 豆 > < 豆 > :

Contact geometry has two natural extensions:

- precontact geometry,
- Jacobi geometry.

Definition

A *precontact manifold* is a manifold + an hyperplane distribution.

Definition

A *Jacobi manifold* is a manifold M + a *Jacobi bundle*, i.e. a line bundle $L \rightarrow M$ equipped with a Lie bracket on sections

$J:\Gamma(L)\times\Gamma(L)\to\Gamma(L)$

which is a 1st order DO in each entry.

Every contact manifold is both a precontact and a Jacobi manifold.

Remark

There is a common extension of both precontact and Jacobi geometry.

<ロ> <同> <同> <同> <同> < 同> <

Contact geometry has two natural extensions:

- precontact geometry,
- Jacobi geometry.

Definition

A *precontact manifold* is a manifold + an hyperplane distribution.

Definition

A *Jacobi manifold* is a manifold M + a *Jacobi bundle*, i.e. a line bundle $L \rightarrow M$ equipped with a Lie bracket on sections

 $J: \Gamma(L) \times \Gamma(L) \to \Gamma(L)$

which is a 1st order DO in each entry.

Every contact manifold is both a precontact and a Jacobi manifold.

Remark

There is a common extension of both precontact and Jacobi geometry.

<ロ> <同> <同> <同> <同> < 同> <

Contact geometry has two natural extensions:

- precontact geometry,
- Jacobi geometry.

Definition

A *precontact manifold* is a manifold + an hyperplane distribution.

Definition

A *Jacobi manifold* is a manifold M + a *Jacobi bundle*, i.e. a line bundle $L \rightarrow M$ equipped with a Lie bracket on sections

 $J: \Gamma(L) \times \Gamma(L) \to \Gamma(L)$

which is a 1st order DO in each entry.

Every contact manifold is both a precontact and a Jacobi manifold.

Remark

There is a common extension of both precontact and Jacobi geometry.

ヘロア 人間 アメヨア・

Contact geometry has two natural extensions:

- precontact geometry,
- Jacobi geometry.

Definition

A *precontact manifold* is a manifold + an hyperplane distribution.

Definition

A Jacobi manifold is a manifold M + a Jacobi bundle, i.e. a line bundle $L \rightarrow M$ equipped with a Lie bracket on sections

```
I: \Gamma(L) \times \Gamma(L) \to \Gamma(L)
```

which is a 1st order DO in each entry.

Every contact manifold is both a precontact and a Jacobi manifold.

Remark

There is a common extension of both precontact and Jacobi geometry.

・ロ・・ (日・・ モ・

A contact manifold is a manifold M + a maximally non-integrable hyperplane distribution $H \subset TM$. Dually $H = \ker(\theta : TM \to L)$.

Atiyah forms are cochains in $(\Omega_{E}^{\bullet} := \Gamma(\wedge^{\bullet}(DE)^{*} \otimes E), d_{DE}).$

・ロン (雪) (目) (目)

A contact manifold is a manifold M + a maximally non-integrable hyperplane distribution $H \subset TM$. Dually $H = \ker(\theta : TM \to L)$.

Atiyah forms are cochains in $(\Omega_{E}^{\bullet} := \Gamma(\wedge^{\bullet}(DE)^{*} \otimes E), d_{DE}).$

・ロン (雪) (目) (目)

A *contact manifold* is a manifold M + a maximally non-integrable hyperplane distribution $H \subset TM$. Dually $H = \text{ker}(\theta : TM \rightarrow L)$.

Definition

Sections of the *Atiyah algebroid* $DE \to M$ of a vector bundle $E \to M$ are \mathbb{R} -linear operators $\Delta : \Gamma(E) \to \Gamma(E)$ such that

 $\Delta(fe) = (\sigma\Delta)(f)e + f\Delta(e)$ for some $\sigma\Delta \in \mathfrak{X}(M)$.

Atiyah forms are cochains in $(\Omega_E^{\bullet} := \Gamma(\wedge^{\bullet}(DE)^* \otimes E), d_{DE})$.

Proposition

Precontact structures H with TM/H = L are in 1-1 correspondence with (nowhere vanishing) d_{DL} -closed Atiyah 2-forms on L. H corresponds to $\omega := d_{DL}(\theta \circ \sigma)$. H is contact iff ω in non-degenerate.

Symplectic to Contact Dictionary Principle

A contact analogue of a construction in symplectic geometry can be defined replacing the tangent bundle with the Atiyah algebroid of $L \to M$.

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

3

A *contact manifold* is a manifold M + a maximally non-integrable hyperplane distribution $H \subset TM$. Dually $H = \text{ker}(\theta : TM \rightarrow L)$.

Definition

Sections of the *Atiyah algebroid* $DE \to M$ of a vector bundle $E \to M$ are \mathbb{R} -linear operators $\Delta : \Gamma(E) \to \Gamma(E)$ such that

 $\Delta(fe) = (\sigma\Delta)(f)e + f\Delta(e)$ for some $\sigma\Delta \in \mathfrak{X}(M)$.

Atiyah forms are cochains in $(\Omega_E^{\bullet} := \Gamma(\wedge^{\bullet}(DE)^* \otimes E), d_{DE})$.

Proposition

Precontact structures H with TM/H = L are in 1-1 correspondence with (nowhere vanishing) d_{DL} -closed Atiyah 2-forms on L. H corresponds to $\omega := d_{DL}(\theta \circ \sigma)$. H is contact iff ω in non-degenerate.

Symplectic to Contact Dictionary Principle

A contact analogue of a construction in symplectic geometry can be defined replacing the tangent bundle with the Atiyah algebroid of $L \to M$.

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

3

A *contact manifold* is a manifold M + a maximally non-integrable hyperplane distribution $H \subset TM$. Dually $H = \text{ker}(\theta : TM \rightarrow L)$.

Definition

Sections of the *Atiyah algebroid* $DE \to M$ of a vector bundle $E \to M$ are \mathbb{R} -linear operators $\Delta : \Gamma(E) \to \Gamma(E)$ such that

 $\Delta(fe) = (\sigma\Delta)(f)e + f\Delta(e)$ for some $\sigma\Delta \in \mathfrak{X}(M)$.

Atiyah forms are cochains in $(\Omega_E^{\bullet} := \Gamma(\wedge^{\bullet}(DE)^* \otimes E), d_{DE})$.

Proposition

Precontact structures H with TM/H = L are in 1-1 correspondence with (nowhere vanishing) d_{DL} -closed Atiyah 2-forms on L. H corresponds to $\omega := d_{DL}(\theta \circ \sigma)$. H is contact iff ω in non-degenerate.

Symplectic to Contact Dictionary Principle

A contact analogue of a construction in symplectic geometry can be defined replacing the tangent bundle with the Atiyah algebroid of $L \to M$.

3

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

A contact manifold is a manifold M + a maximally non-integrable hyperplane distribution $H \subset TM$. Dually $H = \ker(\theta : TM \to L)$.

Definition

Sections of the *Atiyah algebroid* $DE \rightarrow M$ of a vector bundle $E \rightarrow M$ are \mathbb{R} -linear operators $\Delta : \Gamma(E) \to \Gamma(E)$ such that

 $\Delta(fe) = (\sigma \Delta)(f)e + f \Delta(e)$ for some $\sigma \Delta \in \mathfrak{X}(M)$.

Atiyah forms are cochains in $(\Omega_{E}^{\bullet} := \Gamma(\wedge^{\bullet}(DE)^{*} \otimes E), d_{DE}).$

Proposition

Precontact structures H with TM/H = L are in 1-1 correspondence with (nowhere vanishing) d_{DL}-closed Atiyah 2-forms on L. H corresponds to $\omega := d_{DI}(\theta \circ \sigma)$. *H* is contact iff ω in non-degenerate.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

A *contact manifold* is a manifold M + a maximally non-integrable hyperplane distribution $H \subset TM$. Dually $H = \text{ker}(\theta : TM \rightarrow L)$.

Definition

Sections of the *Atiyah algebroid* $DE \to M$ of a vector bundle $E \to M$ are \mathbb{R} -linear operators $\Delta : \Gamma(E) \to \Gamma(E)$ such that

 $\Delta(fe) = (\sigma\Delta)(f)e + f\Delta(e)$ for some $\sigma\Delta \in \mathfrak{X}(M)$.

Atiyah forms are cochains in $(\Omega_E^{\bullet} := \Gamma(\wedge^{\bullet}(DE)^* \otimes E), d_{DE})$.

Proposition

Precontact structures H with TM/H = L are in 1-1 correspondence with (nowhere vanishing) d_{DL} -closed Atiyah 2-forms on L. H corresponds to $\omega := d_{DL}(\theta \circ \sigma)$. H is contact iff ω in non-degenerate.

Symplectic to Contact Dictionary Principle

A contact analogue of a construction in symplectic geometry can be defined replacing the tangent bundle with the Atiyah algebroid of $L \rightarrow M$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The arena for Dirac-Jacobi geometry is the omni-Lie algebroid:

 $\mathbb{D}L := DL \oplus J^1L$ (notice that $J^1L = (DL)^* \otimes L$).

The main structures on $\mathbb{D}L$ are:

- the projection $\operatorname{pr}_D : \mathbb{D}L \to DL$,
- the symmetric bilinear form $\langle\!\langle -, \rangle\!\rangle : \mathbb{D}L \otimes \mathbb{D}L \to L$:

 $\langle\!\langle (\Delta,\phi), (\nabla,\psi) \rangle\!\rangle := \psi(\Delta) + \phi(\nabla).$

• the Dorfman-Jacobi bracket [-, -]: $\Gamma(\mathbb{D}L) \times \Gamma(\mathbb{D}L) \to \Gamma(\mathbb{D}L)$:

 $\llbracket (\Delta, \phi), (\nabla, \psi) \rrbracket := ([\Delta, \nabla], \mathcal{L}_{\Delta} \psi - i_{\nabla} d_{DL} \phi).$

Definition

A Dirac-Jacobi bundle is a line bundle $L \to M + a$ Dirac-Jacobi structure, i.e. a maximally isotropic subbundle $\mathfrak{L} \subset \mathbb{D}L$ such that $\llbracket \Gamma(\mathfrak{L}), \Gamma(\mathfrak{L}) \rrbracket \subset \Gamma(\mathfrak{L})$.

The arena for Dirac-Jacobi geometry is the *omni-Lie algebroid*:

 $\mathbb{D}L := DL \oplus J^{1}L$ (notice that $J^{1}L = (DL)^{*} \otimes L$).

The main structures on $\mathbb{D}L$ are:

- the projection $\operatorname{pr}_D : \mathbb{D}L \to DL$,
- the symmetric bilinear form $\langle\!\langle -, \rangle\!\rangle : \mathbb{D}L \otimes \mathbb{D}L \to L$:

 $\langle\!\langle (\Delta,\phi), (\nabla,\psi) \rangle\!\rangle := \psi(\Delta) + \phi(\nabla).$

• the Dorfman-Jacobi bracket $[-, -]] : \Gamma(\mathbb{D}L) \times \Gamma(\mathbb{D}L) \to \Gamma(\mathbb{D}L)$:

 $\llbracket (\Delta, \phi), (\nabla, \psi) \rrbracket := ([\Delta, \nabla], \mathcal{L}_{\Delta} \psi - i_{\nabla} d_{DL} \phi).$

Definition

A Dirac-Jacobi bundle is a line bundle $L \to M + a$ Dirac-Jacobi structure, i.e. a maximally isotropic subbundle $\mathfrak{L} \subset \mathbb{D}L$ such that $\llbracket \Gamma(\mathfrak{L}), \Gamma(\mathfrak{L}) \rrbracket \subset \Gamma(\mathfrak{L})$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

The arena for Dirac-Jacobi geometry is the *omni-Lie algebroid*:

 $\mathbb{D}L := DL \oplus J^1L$ (notice that $J^1L = (DL)^* \otimes L$).

The main structures on $\mathbb{D}L$ are:

- the projection $\operatorname{pr}_D : \mathbb{D}L \to DL$,
- the symmetric bilinear form $\langle\!\langle -, \rangle\!\rangle : \mathbb{D}L \otimes \mathbb{D}L \to L$:

 $\langle\!\langle (\Delta,\phi), (\nabla,\psi) \rangle\!\rangle := \psi(\Delta) + \phi(\nabla).$

• the Dorfman-Jacobi bracket [-, -] : $\Gamma(\mathbb{D}L) \times \Gamma(\mathbb{D}L) \to \Gamma(\mathbb{D}L)$: $[(A, \phi) (\nabla, \psi)] := ([A, \nabla], C, \psi, i-d, \phi)$

Definition

A Dirac-Jacobi bundle is a line bundle $L \to M + a$ Dirac-Jacobi structure, i.e. a maximally isotropic subbundle $\mathfrak{L} \subset \mathbb{D}L$ such that $\llbracket \Gamma(\mathfrak{L}), \Gamma(\mathfrak{L}) \rrbracket \subset \Gamma(\mathfrak{L})$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

The arena for Dirac-Jacobi geometry is the *omni-Lie algebroid*:

 $\mathbb{D}L := DL \oplus J^{1}L$ (notice that $J^{1}L = (DL)^{*} \otimes L$).

The main structures on $\mathbb{D}L$ are:

- the projection $\operatorname{pr}_D : \mathbb{D}L \to DL$,
- the symmetric bilinear form $\langle\!\langle -, \rangle\!\rangle : \mathbb{D}L \otimes \mathbb{D}L \to L$:

 $\langle\!\langle (\Delta,\phi), (\nabla,\psi) \rangle\!\rangle := \psi(\Delta) + \phi(\nabla).$

• the Dorfman-Jacobi bracket $[\![-,-]\!]: \Gamma(\mathbb{D}L) \times \Gamma(\mathbb{D}L) \to \Gamma(\mathbb{D}L)$:

 $\llbracket (\Delta, \phi), (\nabla, \psi) \rrbracket := ([\Delta, \nabla], \mathcal{L}_{\Delta} \psi - i_{\nabla} d_{DL} \phi).$

Definition

A Dirac-Jacobi bundle is a line bundle $L \to M + a$ Dirac-Jacobi structure, i.e. a maximally isotropic subbundle $\mathfrak{L} \subset \mathbb{D}L$ such that $\llbracket \Gamma(\mathfrak{L}), \Gamma(\mathfrak{L}) \rrbracket \subset \Gamma(\mathfrak{L})$.

ヘロア 人間 アメヨア 人間アー

The arena for Dirac-Jacobi geometry is the omni-Lie algebroid:

 $\mathbb{D}L := DL \oplus J^1L$ (notice that $J^1L = (DL)^* \otimes L$).

The main structures on $\mathbb{D}L$ are:

- the projection $\operatorname{pr}_D : \mathbb{D}L \to DL$,
- the symmetric bilinear form $\langle\!\langle -, \rangle\!\rangle : \mathbb{D}L \otimes \mathbb{D}L \to L$:

 $\langle\!\langle (\Delta,\phi), (\nabla,\psi) \rangle\!\rangle := \psi(\Delta) + \phi(\nabla).$

• the Dorfman-Jacobi bracket $[\![-,-]\!]: \Gamma(\mathbb{D}L) \times \Gamma(\mathbb{D}L) \to \Gamma(\mathbb{D}L):$

 $\llbracket (\Delta, \phi), (\nabla, \psi) \rrbracket := ([\Delta, \nabla], \mathcal{L}_{\Delta} \psi - i_{\nabla} d_{DL} \phi).$

Definition

A *Dirac-Jacobi bundle* is a line bundle $L \to M + a$ *Dirac-Jacobi structure*, i.e. a maximally isotropic subbundle $\mathfrak{L} \subset \mathbb{D}L$ such that $\llbracket \Gamma(\mathfrak{L}), \Gamma(\mathfrak{L}) \rrbracket \subset \Gamma(\mathfrak{L})$.

ヘロア 人間 アメヨア 人間アー

Examples

- graphs of Atiyah forms $\omega : DL \rightarrow J^1L$ of precontact structures,
- graphs of Jacobi structures $J : J^1L \rightarrow DL$,
- $A \oplus A^0 \subset \mathbb{D}L$ with A a subalgebroid of DL.
- Jacobi structures are the same as lcs/contact foliations,
- Dirac-Jacobi structures are the same as lcps/precontact foliations.

Remark

Let $\mathfrak{L} \subset \mathbb{D}L$ be a Dirac-Jacobi structure

- $I_{\mathfrak{L}} := \operatorname{pr}_{D}(\mathfrak{L})$ is a (singular) subalgebroid of DL,
- $\sigma(I_{\mathfrak{L}}) = T\mathcal{F}_{\mathfrak{L}}$ for a (singular) characteristic foliation $\mathcal{F}_{\mathfrak{L}}$,
- there is a 2-form $ω_{\pounds} : ∧^2 I_{\pounds} → L$ given by

 $\omega_{\mathfrak{L}}(\Delta, \nabla) := \phi(\nabla), \quad \text{where } \Delta = \operatorname{pr}_D(\Delta, \phi),$

(1) $\omega_{\mathfrak{L}}$ defines either a lcps or a precontact structure on each leaf of $\mathcal{F}_{\mathfrak{L}}$,

 ${igsim} {\mathfrak L}$ is completely determined by its lcps/precontact foliation.

・ロン (雪) (目) (日)

Examples

- graphs of Atiyah forms $\omega : DL \rightarrow J^1L$ of precontact structures,
- graphs of Jacobi structures $J : J^1L \rightarrow DL$,
- $A \oplus A^0 \subset \mathbb{D}L$ with A a subalgebroid of DL.
- Jacobi structures are the same as lcs/contact foliations,
- Dirac-Jacobi structures are the same as lcps/precontact foliations.

Remark

Let $\mathfrak{L} \subset \mathbb{D}L$ be a Dirac-Jacobi structure

- $I_{\mathfrak{L}} := \operatorname{pr}_{D}(\mathfrak{L})$ is a (singular) subalgebroid of DL,
- $\sigma(I_{\mathfrak{L}}) = T\mathcal{F}_{\mathfrak{L}}$ for a (singular) characteristic foliation $\mathcal{F}_{\mathfrak{L}}$,
- there is a 2-form $ω_{\pounds} : ∧^2 I_{\pounds} → L$ given by

 $\omega_{\mathfrak{L}}(\Delta, \nabla) := \phi(\nabla), \quad \text{where } \Delta = \operatorname{pr}_D(\Delta, \phi),$

(1) $\omega_{\mathfrak{L}}$ defines either a lcps or a precontact structure on each leaf of $\mathcal{F}_{\mathfrak{L}}$,

 ${iglesigned}$ ${f \mathfrak L}$ is completely determined by its lcps/precontact foliation.

・ロン (雪) (目) (目)

Examples

- graphs of Atiyah forms $\omega: DL \rightarrow J^1L$ of precontact structures,
- graphs of Jacobi structures $J : J^1L \rightarrow DL$,
- $A \oplus A^0 \subset \mathbb{D}L$ with A a subalgebroid of DL.
- Jacobi structures are the same as lcs/contact foliations,
- Dirac-Jacobi structures are the same as lcps/precontact foliations.

Remark

Let $\mathfrak{L} \subset \mathbb{D}L$ be a Dirac-Jacobi structure

- $I_{\mathfrak{L}} := \operatorname{pr}_{D}(\mathfrak{L})$ is a (singular) subalgebroid of DL,
- $\sigma(I_{\mathfrak{L}}) = T\mathcal{F}_{\mathfrak{L}}$ for a (singular) characteristic foliation $\mathcal{F}_{\mathfrak{L}}$,
- there is a 2-form $\omega_{\mathfrak{L}} : \wedge^2 I_{\mathfrak{L}} \to L$ given by

 $\omega_{\mathfrak{L}}(\Delta, \nabla) := \phi(\nabla), \quad \text{where } \Delta = \operatorname{pr}_D(\Delta, \phi),$

(1) $\omega_{\mathfrak{L}}$ defines either a lcps or a precontact structure on each leaf of $\mathcal{F}_{\mathfrak{L}}$,

 ${ig>}~{\mathfrak L}$ is completely determined by its lcps/precontact foliation.

・ロン (雪) (目) (日)

Examples

- graphs of Atiyah forms $\omega : DL \rightarrow J^1L$ of precontact structures,
- graphs of Jacobi structures $J : J^1L \rightarrow DL$,
- $A \oplus A^0 \subset \mathbb{D}L$ with A a subalgebroid of DL.
- Jacobi structures are the same as lcs/contact foliations,
- Dirac-Jacobi structures are the same as lcps/precontact foliations.

Remark

Let $\mathfrak{L} \subset \mathbb{D}L$ be a Dirac-Jacobi structure

- $I_{\mathfrak{L}} := \operatorname{pr}_{D}(\mathfrak{L})$ is a (singular) subalgebroid of DL,
- $\sigma(I_{\mathfrak{L}}) = T\mathcal{F}_{\mathfrak{L}}$ for a (singular) characteristic foliation $\mathcal{F}_{\mathfrak{L}}$,
- there is a 2-form $ω_{\pounds} : ∧^2 I_{\pounds} → L$ given by

 $\omega_{\mathfrak{L}}(\Delta, \nabla) := \phi(\nabla), \quad \text{where } \Delta = \operatorname{pr}_D(\Delta, \phi),$

(1) $\omega_{\mathfrak{L}}$ defines either a lcps or a precontact structure on each leaf of $\mathcal{F}_{\mathfrak{L}}$,

 ${igsim} {\mathfrak L}$ is completely determined by its lcps/precontact foliation.

・ロン (雪) (目) (目)

Examples

- graphs of Atiyah forms $\omega : DL \rightarrow J^1L$ of precontact structures,
- graphs of Jacobi structures $J : J^1L \rightarrow DL$,
- $A \oplus A^0 \subset \mathbb{D}L$ with A a subalgebroid of DL.
- Jacobi structures are the same as lcs/contact foliations,
- Dirac-Jacobi structures are the same as lcps/precontact foliations.

Remark

Let $\mathfrak{L} \subset \mathbb{D}L$ be a Dirac-Jacobi structure

- $I_{\mathfrak{L}} := \operatorname{pr}_{D}(\mathfrak{L})$ is a (singular) subalgebroid of DL,
- **(a)** $\sigma(I_{\mathfrak{L}}) = T\mathcal{F}_{\mathfrak{L}}$ for a (singular) characteristic foliation $\mathcal{F}_{\mathfrak{L}}$,
- \bigcirc there is a 2-form $\omega_{\mathfrak{L}} : \wedge^2 I_{\mathfrak{L}} \to L$ given by

 $\omega_{\mathfrak{L}}(\Delta, \nabla) := \phi(\nabla), \quad \text{where } \Delta = \operatorname{pr}_D(\Delta, \phi),$

- ${}_{m O}\,\omega_{{}_{m D}}$ defines either a lcps or a precontact structure on each leaf of ${\cal F}_{{}_{m D}},$
- \bigcirc $\mathfrak L$ is completely determined by its lcps/precontact foliation.

Examples

- graphs of Ativah forms $\omega : DL \to J^1L$ of precontact structures,
- graphs of Jacobi structures $J : J^1L \to DL$,
- $A \oplus A^0 \subset \mathbb{D}L$ with A a subalgebroid of DL.
- Jacobi structures are the same as lcs/contact foliations,
- Dirac-Jacobi structures are the same as lcps/precontact foliations.

Remark

Let $\mathfrak{L} \subset \mathbb{D}L$ *be a Dirac-Jacobi structure*

- $I_{\mathfrak{L}} := \operatorname{pr}_{\mathcal{D}}(\mathfrak{L})$ is a (singular) subalgebroid of DL,
- **2** $\sigma(I_{\mathfrak{L}}) = T\mathcal{F}_{\mathfrak{L}}$ for a (singular) characteristic foliation $\mathcal{F}_{\mathfrak{L}}$,

・ロン ・四 ・ ・ 回 ・ ・ 日 ・

Examples

- graphs of Atiyah forms $\omega : DL \rightarrow J^1L$ of precontact structures,
- graphs of Jacobi structures $J : J^1L \rightarrow DL$,
- $A \oplus A^0 \subset \mathbb{D}L$ with A a subalgebroid of DL.
- Jacobi structures are the same as lcs/contact foliations,
- Dirac-Jacobi structures are the same as lcps/precontact foliations.

Remark

Let $\mathfrak{L} \subset \mathbb{D}L$ be a Dirac-Jacobi structure

- $I_{\mathfrak{L}} := \operatorname{pr}_{D}(\mathfrak{L})$ is a (singular) subalgebroid of DL,
- **2** $\sigma(I_{\mathfrak{L}}) = T\mathcal{F}_{\mathfrak{L}}$ *for a (singular)* characteristic foliation $\mathcal{F}_{\mathfrak{L}}$,
- there is a 2-form $\omega_{\mathfrak{L}} : \wedge^2 I_{\mathfrak{L}} \to L$ given by

 $\omega_{\mathfrak{L}}(\Delta, \nabla) := \phi(\nabla), \quad \text{where } \Delta = \operatorname{pr}_D(\Delta, \phi),$

 ${}_{m 0}\,\,\omega_{{}_{m L}}$ defines either a lcps or a precontact structure on each leaf of ${\cal F}_{{}_{m L}},$

 \bigcirc \pounds is completely determined by its lcps/precontact foliation.

< ロ > < 団 > < 豆 > < 豆 > :

Examples

- graphs of Atiyah forms $\omega : DL \rightarrow J^1L$ of precontact structures,
- graphs of Jacobi structures $J : J^1L \rightarrow DL$,
- $A \oplus A^0 \subset \mathbb{D}L$ with A a subalgebroid of DL.
- Jacobi structures are the same as lcs/contact foliations,
- Dirac-Jacobi structures are the same as lcps/precontact foliations.

Remark

Let $\mathfrak{L} \subset \mathbb{D}L$ be a Dirac-Jacobi structure

- $I_{\mathfrak{L}} := \operatorname{pr}_{D}(\mathfrak{L})$ is a (singular) subalgebroid of DL,
- **2** $\sigma(I_{\mathfrak{L}}) = T\mathcal{F}_{\mathfrak{L}}$ *for a (singular)* characteristic foliation $\mathcal{F}_{\mathfrak{L}}$,
- there is a 2-form $\omega_{\mathfrak{L}} : \wedge^2 I_{\mathfrak{L}} \to L$ given by

 $\omega_{\mathfrak{L}}(\Delta, \nabla) := \phi(\nabla), \quad \text{where } \Delta = \operatorname{pr}_D(\Delta, \phi),$

9 $\omega_{\mathfrak{L}}$ defines either a lcps or a precontact structure on each leaf of $\mathcal{F}_{\mathfrak{L}}$,

£ is completely determined by its lcps/precontact foliation.

・ロン ・四 ・ ・ 回 ・ ・ 日 ・

Examples

- graphs of Atiyah forms $\omega : DL \to J^1L$ of precontact structures,
- graphs of Jacobi structures $I : I^1L \to DL$,
- $A \oplus A^0 \subset \mathbb{D}L$ with A a subalgebroid of DL.
- Jacobi structures are the same as lcs/contact foliations,
- Dirac-Jacobi structures are the same as lcps/precontact foliations.

Remark

Let $\mathfrak{L} \subset \mathbb{D}L$ *be a Dirac-Jacobi structure*

- $I_{\mathfrak{L}} := \operatorname{pr}_{\mathcal{D}}(\mathfrak{L})$ is a (singular) subalgebroid of DL,
- **2** $\sigma(I_{\mathfrak{L}}) = T\mathcal{F}_{\mathfrak{L}}$ for a (singular) characteristic foliation $\mathcal{F}_{\mathfrak{L}}$,
- there is a 2-form $\omega_{\mathfrak{L}} : \wedge^2 I_{\mathfrak{L}} \to L$ given by

 $\omega_{\mathfrak{L}}(\Delta, \nabla) := \phi(\nabla), \quad \text{where } \Delta = \mathrm{pr}_{\mathcal{D}}(\Delta, \phi),$

- **O** $\omega_{\mathfrak{L}}$ defines either a lcps or a precontact structure on each leaf of $\mathcal{F}_{\mathfrak{L}}$,
- \bigcirc \pounds is completely determined by its lcps/precontact foliation.

- presymplectic manifolds "can" be reduced to symplectic manifolds,
- Dirac manifolds "can" be reduced to Poisson manifolds,
- precontact manifolds "can" be reduced to contact manifolds,
- Dirac-Jacobi manifolds "can" be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)

- \mathbf{O} ker $\omega_{\mathfrak{L}} = \mathfrak{L} \cap DL$ and it is a subalgebroid of DL,
- $\sigma(\ker \omega_{\mathfrak{L}}) = T\mathcal{K}_{\mathfrak{L}}$ for a null foliation $\mathcal{K}_{\mathfrak{L}}$.

Definition

A section λ of *L* is *admissible* if $(\Delta_{\lambda}, j^1 \lambda) \in \Gamma(\mathfrak{L})$ for some $\Delta_{\lambda} \in \Gamma(DL)$.

Proposition

igle admissible sections $\Gamma_{
m adm}$ form a Lie algebra under $\{\lambda,\mu\}:=\Delta_\lambda(\mu),$

-) a section is admissible iff it is "constant" along the leaves of $\mathcal{K}_{\mathfrak{L}},$
- Solution there is a Jacobi bundle (L_{red}, J_{red}) over $M/\mathcal{K}_{\mathfrak{L}}$ and $\Gamma(L_{red}) = \Gamma_{adm}$.

イロト イポト イヨト イヨト

- presymplectic manifolds "can" be reduced to symplectic manifolds,
- Dirac manifolds "can" be reduced to Poisson manifolds,
- precontact manifolds "can" be reduced to contact manifolds,
- Dirac-Jacobi manifolds "can" be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)

- **()** ker $\omega_{\mathfrak{L}} = \mathfrak{L} \cap DL$ and it is a subalgebroid of DL,
- $\sigma(\ker \omega_{\mathfrak{L}}) = T\mathcal{K}_{\mathfrak{L}}$ for a null foliation $\mathcal{K}_{\mathfrak{L}}$.

Definition

A section λ of *L* is *admissible* if $(\Delta_{\lambda_{\ell}} j^1 \lambda) \in \Gamma(\mathfrak{L})$ for some $\Delta_{\lambda} \in \Gamma(DL)$.

Proposition

• admissible sections $\Gamma_{
m adm}$ form a Lie algebra under $\{\lambda,\mu\} := \Delta_{\lambda}(\mu)$,

-) a section is admissible iff it is "constant" along the leaves of $\mathcal{K}_\mathfrak{L},$
- Solution there is a Jacobi bundle (L_{red}, J_{red}) over $M/\mathcal{K}_{\mathfrak{L}}$ and $\Gamma(L_{red}) = \Gamma_{adm}$.

イロト イポト イヨト イヨト

- presymplectic manifolds "can" be reduced to symplectic manifolds,
- Dirac manifolds "can" be reduced to Poisson manifolds,
- precontact manifolds "can" be reduced to contact manifolds,
- Dirac-Jacobi manifolds "can" be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)

- **()** ker $\omega_{\mathfrak{L}} = \mathfrak{L} \cap DL$ and it is a subalgebroid of DL,
- $\sigma(\ker \omega_{\mathfrak{L}}) = T\mathcal{K}_{\mathfrak{L}}$ for a null foliation $\mathcal{K}_{\mathfrak{L}}$.

Definition

A section λ of *L* is *admissible* if $(\Delta_{\lambda}, j^1 \lambda) \in \Gamma(\mathfrak{L})$ for some $\Delta_{\lambda} \in \Gamma(DL)$.

Proposition

• admissible sections $\Gamma_{
m adm}$ form a Lie algebra under $\{\lambda,\mu\} := \Delta_{\lambda}(\mu)$,

-) a section is admissible iff it is "constant" along the leaves of $\mathcal{K}_\mathfrak{L},$
- Solution there is a Jacobi bundle (L_{red}, J_{red}) over $M/\mathcal{K}_{\mathfrak{L}}$ and $\Gamma(L_{red}) = \Gamma_{adm}$.

- presymplectic manifolds "can" be reduced to symplectic manifolds,
- Dirac manifolds "can" be reduced to Poisson manifolds,
- precontact manifolds "can" be reduced to contact manifolds,
- Dirac-Jacobi manifolds "can" be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)

 \mathbb{O} ker $\omega_{\mathfrak{L}} = \mathfrak{L} \cap DL$ and it is a subalgebroid of DL,

• $\sigma(\ker \omega_{\mathfrak{L}}) = T\mathcal{K}_{\mathfrak{L}}$ for a null foliation $\mathcal{K}_{\mathfrak{L}}$.

Definition

A section λ of *L* is *admissible* if $(\Delta_{\lambda}, j^1 \lambda) \in \Gamma(\mathfrak{L})$ for some $\Delta_{\lambda} \in \Gamma(DL)$.

Proposition

• admissible sections $\Gamma_{
m adm}$ form a Lie algebra under $\{\lambda,\mu\} := \Delta_{\lambda}(\mu)$,

) a section is admissible iff it is "constant" along the leaves of $\mathcal{K}_\mathfrak{L},$

 ${igsident}$ there is a Jacobi bundle $(L_{
m red}, J_{
m red})$ over $M/\mathcal{K}_{\mathfrak{L}}$ and $\Gamma(L_{
m red}) = \Gamma_{
m adm}$.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- presymplectic manifolds "can" be reduced to symplectic manifolds,
- Dirac manifolds "can" be reduced to Poisson manifolds,
- precontact manifolds "can" be reduced to contact manifolds,
- Dirac-Jacobi manifolds "can" be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)

• ker $\omega_{\mathfrak{L}} = \mathfrak{L} \cap DL$ and it is a subalgebroid of DL,

Definition

A section λ of *L* is *admissible* if $(\Delta_{\lambda}, j^1 \lambda) \in \Gamma(\mathfrak{L})$ for some $\Delta_{\lambda} \in \Gamma(DL)$.

Proposition

• admissible sections $\Gamma_{
m adm}$ form a Lie algebra under $\{\lambda,\mu\}:=\Delta_\lambda(\mu)$,

) a section is admissible iff it is "constant" along the leaves of $\mathcal{K}_\mathfrak{L},$

 ${
m D}$ there is a Jacobi bundle $(L_{
m red}, J_{
m red})$ over $M/\mathcal{K}_{\mathfrak{L}}$ and $\Gamma(L_{
m red}) = \Gamma_{
m adm}$.

- presymplectic manifolds "can" be reduced to symplectic manifolds,
- Dirac manifolds "can" be reduced to Poisson manifolds,
- precontact manifolds "can" be reduced to contact manifolds,
- Dirac-Jacobi manifolds "can" be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)

• ker $\omega_{\mathfrak{L}} = \mathfrak{L} \cap DL$ and it is a subalgebroid of DL,

 $(\ker \omega_{\mathfrak{L}}) = T \mathcal{K}_{\mathfrak{L}} \text{ for a null foliation } \mathcal{K}_{\mathfrak{L}}.$

Definition

A section λ of *L* is *admissible* if $(\Delta_{\lambda}, j^1 \lambda) \in \Gamma(\mathfrak{L})$ for some $\Delta_{\lambda} \in \Gamma(DL)$.

Proposition

• admissible sections $\Gamma_{
m adm}$ form a Lie algebra under $\{\lambda,\mu\}:=\Delta_\lambda(\mu)$,

) a section is admissible iff it is "constant" along the leaves of $\mathcal{K}_{\mathfrak{L}},$

 ${
m D}$ there is a Jacobi bundle $(L_{
m red}, J_{
m red})$ over $M/\mathcal{K}_{\mathfrak{L}}$ and $\Gamma(L_{
m red}) = \Gamma_{
m adm}$.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- presymplectic manifolds "can" be reduced to symplectic manifolds,
- Dirac manifolds "can" be reduced to Poisson manifolds,
- precontact manifolds "can" be reduced to contact manifolds,
- Dirac-Jacobi manifolds "can" be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)

() ker $\omega_{\mathfrak{L}} = \mathfrak{L} \cap DL$ and it is a subalgebroid of DL,

 $(\ker \omega_{\mathfrak{L}}) = T \mathcal{K}_{\mathfrak{L}} \text{ for a null foliation } \mathcal{K}_{\mathfrak{L}}.$

Definition

A section λ of *L* is *admissible* if $(\Delta_{\lambda}, j^{1}\lambda) \in \Gamma(\mathfrak{L})$ for some $\Delta_{\lambda} \in \Gamma(DL)$.

Proposition

• admissible sections $\Gamma_{
m adm}$ form a Lie algebra under $\{\lambda,\mu\}:=\Delta_\lambda(\mu)$,

) a section is admissible iff it is "constant" along the leaves of $\mathcal{K}_\mathfrak{L},$

 ${
m D}$ there is a Jacobi bundle $(L_{
m red}, J_{
m red})$ over $M/\mathcal{K}_{\mathfrak{L}}$ and $\Gamma(L_{
m red}) = \Gamma_{
m adm}$.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- presymplectic manifolds "can" be reduced to symplectic manifolds,
- Dirac manifolds "can" be reduced to Poisson manifolds,
- precontact manifolds "can" be reduced to contact manifolds,
- Dirac-Jacobi manifolds "can" be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)

- **(**) ker $\omega_{\mathfrak{L}} = \mathfrak{L} \cap DL$ and it is a subalgebroid of DL,
- $(\ker \omega_{\mathfrak{L}}) = T \mathcal{K}_{\mathfrak{L}} \text{ for a null foliation } \mathcal{K}_{\mathfrak{L}}.$

Definition

A section λ of *L* is *admissible* if $(\Delta_{\lambda}, j^{1}\lambda) \in \Gamma(\mathfrak{L})$ for some $\Delta_{\lambda} \in \Gamma(DL)$.

Proposition

Q admissible sections Γ_{adm} form a Lie algebra under $\{\lambda, \mu\} := \Delta_{\lambda}(\mu)$,

② a section is admissible iff it is "constant" along the leaves of $\mathcal{K}_{\mathfrak{L}},$

 ${f O}$ there is a Jacobi bundle $(L_{
m red},J_{
m red})$ over $M/\mathcal{K}_{\mathfrak{L}}$ and $\Gamma(L_{
m red})=\Gamma_{
m adm}$.

イロト イヨト イヨト イヨト

- presymplectic manifolds "can" be reduced to symplectic manifolds,
- Dirac manifolds "can" be *reduced* to Poisson manifolds.
- precontact manifolds "can" be *reduced* to contact manifolds,
- Dirac-Jacobi manifolds "can" be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)

• ker $\omega_{\mathfrak{L}} = \mathfrak{L} \cap DL$ and it is a subalgebroid of DL,

2 $\sigma(\ker \omega_{\mathfrak{L}}) = T\mathcal{K}_{\mathfrak{L}}$ for a null foliation $\mathcal{K}_{\mathfrak{L}}$.

Definition

A section λ of *L* is *admissible* if $(\Delta_{\lambda}, j^{1}\lambda) \in \Gamma(\mathfrak{L})$ for some $\Delta_{\lambda} \in \Gamma(DL)$.

Proposition

0 admissible sections Γ_{adm} form a Lie algebra under $\{\lambda, \mu\} := \Delta_{\lambda}(\mu)$,

- 2 a section is admissible iff it is "constant" along the leaves of $\mathcal{K}_{\mathcal{L}}$

イロト イヨト イヨト イヨト

- presymplectic manifolds "can" be reduced to symplectic manifolds,
- Dirac manifolds "can" be reduced to Poisson manifolds,
- precontact manifolds "can" be reduced to contact manifolds,
- Dirac-Jacobi manifolds "can" be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)

- **(**) ker $\omega_{\mathfrak{L}} = \mathfrak{L} \cap DL$ and it is a subalgebroid of DL,
- $(\ker \omega_{\mathfrak{L}}) = T \mathcal{K}_{\mathfrak{L}} \text{ for a null foliation } \mathcal{K}_{\mathfrak{L}}.$

Definition

A section λ of *L* is *admissible* if $(\Delta_{\lambda}, j^{1}\lambda) \in \Gamma(\mathfrak{L})$ for some $\Delta_{\lambda} \in \Gamma(DL)$.

Proposition

- **Q** admissible sections Γ_{adm} form a Lie algebra under $\{\lambda, \mu\} := \Delta_{\lambda}(\mu)$,
- **2** a section is admissible iff it is "constant" along the leaves of $\mathcal{K}_{\mathfrak{L}}$,
- **3** there is a Jacobi bundle (L_{red}, J_{red}) over $M/\mathcal{K}_{\mathfrak{L}}$ and $\Gamma(L_{red}) = \Gamma_{adm}$.

- presymplectic manifolds "can" be reduced to symplectic manifolds,
- Dirac manifolds "can" be reduced to Poisson manifolds,
- precontact manifolds "can" be reduced to contact manifolds,
- Dirac-Jacobi manifolds "can" be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)

- **(**) ker $\omega_{\mathfrak{L}} = \mathfrak{L} \cap DL$ and it is a subalgebroid of DL,
- $(\ker \omega_{\mathfrak{L}}) = T \mathcal{K}_{\mathfrak{L}} \text{ for a null foliation } \mathcal{K}_{\mathfrak{L}}.$

Definition

A section λ of *L* is *admissible* if $(\Delta_{\lambda}, j^{1}\lambda) \in \Gamma(\mathfrak{L})$ for some $\Delta_{\lambda} \in \Gamma(DL)$.

Proposition

- **Q** admissible sections Γ_{adm} form a Lie algebra under $\{\lambda, \mu\} := \Delta_{\lambda}(\mu)$,
- **2** a section is admissible iff it is "constant" along the leaves of $\mathcal{K}_{\mathfrak{L}}$,
- **3** there is a Jacobi bundle (L_{red}, J_{red}) over $M/\mathcal{K}_{\mathfrak{L}}$ and $\Gamma(L_{red}) = \Gamma_{adm}$.

• presympl. manifolds "are" coisotropics in symplectic manifolds,

- Dirac manifolds "are" coisotropics in Poisson manifolds,
- precontact manifolds "are" coisotropics in contact manifolds,
- Dirac-Jacobi manifolds "are" coisotropics in Jacobi manifolds.

Definition

A submanifold *S* of a Jacobi manifold (M, L) is *coisotropic* if sections of *L* vanishing on *M* are closed under the Jacobi bracket.

Remark

Let $S \subset M$ be a coisotropic submanifold. (Under clean intersection) the restricted line bundle $L|_S \rightarrow S$ carries an induced Dirac-Jacobi structure. To see this, restrict to S the lcs/contact foliation of M.

Theorem

Let $(L \to S, \mathfrak{L})$ be a Dirac-Jacobi bundle. S can be coisotropically embedded in a manifold equipped with a Jacobi bundle iff rank ker $\omega_{\mathfrak{L}} = \text{const.}$

- presympl. manifolds "are" coisotropics in symplectic manifolds,
- Dirac manifolds "are" coisotropics in Poisson manifolds,
- precontact manifolds "are" coisotropics in contact manifolds,
- Dirac-Jacobi manifolds "are" coisotropics in Jacobi manifolds.

Definition

A submanifold *S* of a Jacobi manifold (M, L) is *coisotropic* if sections of *L* vanishing on *M* are closed under the Jacobi bracket.

Remark

Let $S \subset M$ be a coisotropic submanifold. (Under clean intersection) the restricted line bundle $L|_S \to S$ carries an induced Dirac-Jacobi structure. To see this, restrict to S the lcs/contact foliation of M.

Theorem

Let $(L \to S, \mathfrak{L})$ be a Dirac-Jacobi bundle. S can be coisotropically embedded in a manifold equipped with a Jacobi bundle iff rank ker $\omega_{\mathfrak{L}} = \text{const.}$

- presympl. manifolds "are" coisotropics in symplectic manifolds,
- Dirac manifolds "are" coisotropics in Poisson manifolds,
- precontact manifolds "are" coisotropics in contact manifolds,
- Dirac-Jacobi manifolds "are" coisotropics in Jacobi manifolds.

Definition

A submanifold *S* of a Jacobi manifold (M, L) is *coisotropic* if sections of *L* vanishing on *M* are closed under the Jacobi bracket.

Remark

Let $S \subset M$ be a coisotropic submanifold. (Under clean intersection) the restricted line bundle $L|_S \rightarrow S$ carries an induced Dirac-Jacobi structure. To see this, restrict to S the lcs/contact foliation of M.

Theorem

Let $(L \to S, \mathfrak{L})$ be a Dirac-Jacobi bundle. S can be coisotropically embedded in a manifold equipped with a Jacobi bundle iff rank ker $\omega_{\mathfrak{L}} = \text{const.}$

- presympl. manifolds "are" coisotropics in symplectic manifolds,
- Dirac manifolds "are" coisotropics in Poisson manifolds,
- precontact manifolds "are" coisotropics in contact manifolds,
- Dirac-Jacobi manifolds "are" coisotropics in Jacobi manifolds.

Definition

A submanifold *S* of a Jacobi manifold (M, L) is *coisotropic* if sections of *L* vanishing on *M* are closed under the Jacobi bracket.

Remark

Let $S \subset M$ be a coisotropic submanifold. (Under clean intersection) the restricted line bundle $L|_S \rightarrow S$ carries an induced Dirac-Jacobi structure. To see this, restrict to S the lcs/contact foliation of M.

Theorem

Let $(L \to S, \mathfrak{L})$ be a Dirac-Jacobi bundle. S can be coisotropically embedded in a manifold equipped with a Jacobi bundle iff rank ker $\omega_{\mathfrak{L}} = \text{const.}$

- presympl. manifolds "are" coisotropics in symplectic manifolds,
- Dirac manifolds "are" coisotropics in Poisson manifolds,
- precontact manifolds "are" coisotropics in contact manifolds,
- Dirac-Jacobi manifolds "are" coisotropics in Jacobi manifolds.

Definition

A submanifold *S* of a Jacobi manifold (M, L) is *coisotropic* if sections of *L* vanishing on *M* are closed under the Jacobi bracket.

Remark

Let $S \subset M$ be a coisotropic submanifold. (Under clean intersection) the restricted line bundle $L|_S \rightarrow S$ carries an induced Dirac-Jacobi structure. To see this, restrict to S the lcs/contact foliation of M.

Theorem

Let $(L \to S, \mathfrak{L})$ be a Dirac-Jacobi bundle. S can be coisotropically embedded in a manifold equipped with a Jacobi bundle iff rank ker $\omega_{\mathfrak{L}} = \text{const.}$

- presympl. manifolds "are" coisotropics in symplectic manifolds,
- Dirac manifolds "are" coisotropics in Poisson manifolds,
- precontact manifolds "are" coisotropics in contact manifolds,
- Dirac-Jacobi manifolds "are" coisotropics in Jacobi manifolds.

Definition

A submanifold *S* of a Jacobi manifold (M, L) is *coisotropic* if sections of *L* vanishing on *M* are closed under the Jacobi bracket.

Remark

Let $S \subset M$ be a coisotropic submanifold. (Under clean intersection) the restricted line bundle $L|_S \to S$ carries an induced Dirac-Jacobi structure. To see this, restrict to S the lcs/contact foliation of M.

Theorem

Let $(L \to S, \mathfrak{L})$ be a Dirac-Jacobi bundle. S can be coisotropically embedded in a manifold equipped with a Jacobi bundle iff rank ker $\omega_{\mathfrak{L}} = \text{const.}$

(日) (四) (日) (日)

- presympl. manifolds "are" coisotropics in symplectic manifolds,
- Dirac manifolds "are" coisotropics in Poisson manifolds,
- precontact manifolds "are" coisotropics in contact manifolds,
- Dirac-Jacobi manifolds "are" coisotropics in Jacobi manifolds.

Definition

A submanifold S of a Jacobi manifold (M, L) is *coisotropic* if sections of L vanishing on M are closed under the Jacobi bracket.

Remark

Let $S \subset M$ be a coisotropic submanifold. (Under clean intersection) the restricted line bundle $L|_S \rightarrow S$ carries an induced Dirac-Jacobi structure. To see this, restrict to S the lcs/contact foliation of M.

Theorem

Let $(L \to S, \mathfrak{L})$ be a Dirac-Jacobi bundle. S can be coisotropically embedded in a manifold equipped with a Jacobi bundle iff rank ker $\omega_{\mathfrak{L}} = \text{const.}$

・ロン ・四 ・ ・ 回 ・ ・ 日 ・

- presympl. manifolds "are" coisotropics in symplectic manifolds,
- Dirac manifolds "are" coisotropics in Poisson manifolds,
- precontact manifolds "are" coisotropics in contact manifolds,
- Dirac-Jacobi manifolds "are" coisotropics in Jacobi manifolds.

Definition

A submanifold S of a Jacobi manifold (M, L) is *coisotropic* if sections of L vanishing on M are closed under the Jacobi bracket.

Remark

Let $S \subset M$ be a coisotropic submanifold. (Under clean intersection) the restricted line bundle $L|_S \rightarrow S$ carries an induced Dirac-Jacobi structure. To see this, restrict to S the lcs/contact foliation of M.

Theorem

Let $(L \to S, \mathfrak{L})$ be a Dirac-Jacobi bundle. S can be coisotropically embedded in a manifold equipped with a Jacobi bundle iff rank ker $\omega_{\mathfrak{L}} = \text{const.}$

・ロン ・四 ・ ・ 回 ・ ・ 日 ・

Remark

- a Lie algebroid A may integrate to a Lie groupoid G,
- A + additional structures may integrate to G + additional structures.

A Lie algebroid admits at most one source-simply connected integration.

- Poisson manifolds "integrate" to symplectic groupoids,
- Dirac manifolds "integrate" to presymplectic goupoids,
- Jacobi manifolds "integrate" to contact groupoids,
- Dirac-Jacobi manifolds "integrate" to precontact groupoids.

Remark

- a Lie algebroid A may integrate to a Lie groupoid G,
- A + additional structures may integrate to G + additional structures.

A Lie algebroid admits at most one source-simply connected integration.

- Poisson manifolds "integrate" to symplectic groupoids,
- Dirac manifolds "integrate" to presymplectic goupoids,
- Jacobi manifolds "integrate" to contact groupoids,
- Dirac-Jacobi manifolds "integrate" to precontact groupoids.

Remark

- a Lie algebroid A may integrate to a Lie groupoid G,
- A + additional structures may integrate to G + additional structures.

A Lie algebroid admits at most one source-simply connected integration.

- Poisson manifolds "integrate" to symplectic groupoids,
- Dirac manifolds "integrate" to presymplectic goupoids,
- Jacobi manifolds "integrate" to contact groupoids,
- Dirac-Jacobi manifolds "integrate" to precontact groupoids.

Remark

- a Lie algebroid A may integrate to a Lie groupoid G,
- A + additional structures may integrate to G + additional structures.

A Lie algebroid admits at most one source-simply connected integration.

- Poisson manifolds "integrate" to symplectic groupoids,
- Dirac manifolds "integrate" to presymplectic goupoids,
- Jacobi manifolds "integrate" to contact groupoids,
- Dirac-Jacobi manifolds "integrate" to precontact groupoids.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Let $\mathfrak{L} \subset \mathbb{D}L$ be a Dirac-Jacobi structure.

Remark

 $(\mathfrak{L}, \llbracket -, - \rrbracket, \sigma \operatorname{pr}_D)$ is a Lie algebroid, and L carries a representation of \mathfrak{L} .

Definition

A *precontact groupoid* is a triple (\mathcal{G} , L, θ) where

- $\mathcal{G} \rightrightarrows M$ is a Lie groupoid with dim $\mathcal{G} = 2 \dim M + 1$,
- $L \to M$ is a line bundle carrying a representation of \mathcal{G} ,
- $\theta : \mathcal{G} \to t^*L$ is a multiplicative 1-form + a *clean intersection*.
 - $A \rightarrow M$ an integrable Lie algebroid,
 - $\mathcal{G} \rightrightarrows M$ its source-simply connected integration,
 - $L \to M$ a line bundle carrying a representation of \mathcal{G} (hence of A).

Theorem

{isomorphisms $A \simeq \mathfrak{L}$ } \equiv {precontact groupoid structures (L, θ) on \mathcal{G} }.

イロト イヨト イヨト イヨト

Let $\mathfrak{L} \subset \mathbb{D}L$ be a Dirac-Jacobi structure.

Remark

 $(\mathfrak{L},\llbracket-,-\rrbracket,\sigma\operatorname{pr}_D) \text{ is a Lie algebroid, and } L \text{ carries a representation of } \mathfrak{L}.$

Definition

A *precontact groupoid* is a triple (G, L, θ) where

- $\mathcal{G} \rightrightarrows M$ is a Lie groupoid with dim $\mathcal{G} = 2 \dim M + 1$,
- $L \to M$ is a line bundle carrying a representation of \mathcal{G} ,
- θ : $\mathcal{G} \to t^*L$ is a multiplicative 1-form + a *clean intersection*.
 - $A \rightarrow M$ an integrable Lie algebroid,
 - $\mathcal{G} \rightrightarrows M$ its source-simply connected integration,
 - $L \to M$ a line bundle carrying a representation of \mathcal{G} (hence of A).

Theorem

 $\{\text{isomorphisms } A \simeq \mathfrak{L}\} \equiv \{\text{precontact groupoid structures } (L, \theta) \text{ on } \mathcal{G}\}.$

Let $\mathfrak{L} \subset \mathbb{D}L$ be a Dirac-Jacobi structure.

Remark

 $(\mathfrak{L},\llbracket-,-\rrbracket,\sigma\operatorname{pr}_D) \text{ is a Lie algebroid, and } L \text{ carries a representation of } \mathfrak{L}.$

Definition

A *precontact groupoid* is a triple (\mathcal{G} , L, θ) where

- $\mathcal{G} \rightrightarrows M$ is a Lie groupoid with dim $\mathcal{G} = 2 \dim M + 1$,
- ② $L \to M$ is a line bundle carrying a representation of \mathcal{G} ,
- **●** θ : \mathcal{G} → t^*L is a multiplicative 1-form + a *clean intersection*.
- $A \rightarrow M$ an integrable Lie algebroid,
- $\mathcal{G} \rightrightarrows M$ its source-simply connected integration,
- $L \to M$ a line bundle carrying a representation of \mathcal{G} (hence of A).

Theorem

{isomorphisms $A \simeq \mathfrak{L}$ } \equiv {precontact groupoid structures (L, θ) on \mathcal{G} }.

< ロ > < 回 > < 回 > < 回 > : < 回 > : :

Let $\mathfrak{L} \subset \mathbb{D}L$ be a Dirac-Jacobi structure.

Remark

 $(\mathfrak{L},\llbracket-,-\rrbracket,\sigma\operatorname{pr}_D) \text{ is a Lie algebroid, and } L \text{ carries a representation of } \mathfrak{L}.$

Definition

A *precontact groupoid* is a triple (\mathcal{G}, L, θ) where

- $\mathcal{G} \rightrightarrows M$ is a Lie groupoid with dim $\mathcal{G} = 2 \dim M + 1$,
- **2** $L \rightarrow M$ is a line bundle carrying a representation of \mathcal{G} ,
 -) θ : $\mathcal{G} \to t^*L$ is a multiplicative 1-form + a *clean intersection*.
 - $A \rightarrow M$ an integrable Lie algebroid,
 - $\mathcal{G} \rightrightarrows M$ its source-simply connected integration,
 - $L \to M$ a line bundle carrying a representation of \mathcal{G} (hence of A).

Theorem

 $\{\text{isomorphisms } A \simeq \mathfrak{L}\} \equiv \{\text{precontact groupoid structures } (L, \theta) \text{ on } \mathcal{G}\}.$

ヘロト 人間 とくほ とくほ とう

Let $\mathfrak{L} \subset \mathbb{D}L$ be a Dirac-Jacobi structure.

Remark

 $(\mathfrak{L}, \llbracket -, - \rrbracket, \sigma \operatorname{pr}_D)$ is a Lie algebroid, and L carries a representation of \mathfrak{L} .

Definition

A *precontact groupoid* is a triple (\mathcal{G} , L, θ) where

- $\mathcal{G} \rightrightarrows M$ is a Lie groupoid with dim $\mathcal{G} = 2 \dim M + 1$,
- **2** $L \rightarrow M$ is a line bundle carrying a representation of \mathcal{G} ,
- $\theta : \mathcal{G} \to t^*L$ is a multiplicative 1-form + a *clean intersection*.
 - $A \rightarrow M$ an integrable Lie algebroid,
 - $\mathcal{G} \rightrightarrows M$ its source-simply connected integration,
 - $L \to M$ a line bundle carrying a representation of \mathcal{G} (hence of A).

Theorem

 $\{\text{isomorphisms } A \simeq \mathfrak{L}\} \equiv \{\text{precontact groupoid structures } (L, \theta) \text{ on } \mathcal{G}\}.$

< ロ > < 四 > < 回 > < 回 > < 回 > <

Let $\mathfrak{L} \subset \mathbb{D}L$ be a Dirac-Jacobi structure.

Remark

 $(\mathfrak{L},\llbracket -,-\rrbracket,\sigma\operatorname{pr}_D) \text{ is a Lie algebroid, and } L \text{ carries a representation of } \mathfrak{L}.$

Definition

A *precontact groupoid* is a triple (\mathcal{G} , L, θ) where

- $\mathcal{G} \rightrightarrows M$ is a Lie groupoid with dim $\mathcal{G} = 2 \dim M + 1$,
- **2** $L \to M$ is a line bundle carrying a representation of \mathcal{G} ,
- θ : $\mathcal{G} \to t^*L$ is a multiplicative 1-form + a *clean intersection*.
 - $A \rightarrow M$ an integrable Lie algebroid,
 - $\mathcal{G} \rightrightarrows M$ its source-simply connected integration,
 - $L \to M$ a line bundle carrying a representation of \mathcal{G} (hence of A).

Theorem

 $\{\text{isomorphisms } A \simeq \mathfrak{L}\} \equiv \{\text{precontact groupoid structures } (L, \theta) \text{ on } \mathcal{G}\}.$

ヘロア 人間 アメ ほア 人 ほ アー

Let $\mathfrak{L} \subset \mathbb{D}L$ be a Dirac-Jacobi structure.

Remark

 $(\mathfrak{L},\llbracket -,-\rrbracket,\sigma\operatorname{pr}_D) \text{ is a Lie algebroid, and } L \text{ carries a representation of } \mathfrak{L}.$

Definition

A *precontact groupoid* is a triple (\mathcal{G} , L, θ) where

- $\mathcal{G} \rightrightarrows M$ is a Lie groupoid with dim $\mathcal{G} = 2 \dim M + 1$,
- **2** $L \rightarrow M$ is a line bundle carrying a representation of \mathcal{G} ,
- $\theta : \mathcal{G} \to t^*L$ is a multiplicative 1-form + a *clean intersection*.
 - $A \rightarrow M$ an integrable Lie algebroid,
 - $\mathcal{G} \rightrightarrows M$ its source-simply connected integration,
 - $L \rightarrow M$ a line bundle carrying a representation of \mathcal{G} (hence of A).

Theorem

 $\{\text{isomorphisms } A \simeq \mathfrak{L}\} \equiv \{\text{precontact groupoid structures } (L, \theta) \text{ on } \mathcal{G}\}.$

ヘロア 人間 アメヨア 人間 アー

Let $\mathfrak{L} \subset \mathbb{D}L$ be a Dirac-Jacobi structure.

Remark

 $(\mathfrak{L},\llbracket -,-\rrbracket,\sigma\operatorname{pr}_D) \text{ is a Lie algebroid, and } L \text{ carries a representation of } \mathfrak{L}.$

Definition

A *precontact groupoid* is a triple (\mathcal{G} , L, θ) where

- $\mathcal{G} \rightrightarrows M$ is a Lie groupoid with dim $\mathcal{G} = 2 \dim M + 1$,
- **2** $L \to M$ is a line bundle carrying a representation of \mathcal{G} ,
- $\theta : \mathcal{G} \to t^*L$ is a multiplicative 1-form + a *clean intersection*.
 - $A \rightarrow M$ an integrable Lie algebroid,
- $\mathcal{G} \rightrightarrows M$ its source-simply connected integration,
- $L \rightarrow M$ a line bundle carrying a representation of \mathcal{G} (hence of A).

Theorem

{*isomorphisms* $A \simeq \mathfrak{L}$ } \equiv {*precontact groupoid structures* (L, θ) *on* \mathcal{G} }.

	$\mathcal{E}^1(M)$ -Dirac	Dirac-Jacobi in $\mathbb{D}L$
definition	[Wade 2000]	[V 2015]
characteristic foliation	[Iglesias & Marrero 2002]	[V 2015]
Jacobi reduction	—	[V 2015]
coisotropic embeddings	—	[V 2015]
groupoid counterpart	[Iglesias & Wade 2006]	[V 2015]
gauge transformations	—	[V 2015]
local structure	—	[V 2015]
backward-forward maps	—	[V 2015]
Dirac-ization	[Iglesias & Marrero 2002]	[V 2015]
generalized geometry	[Iglesias & Wade 2005]	[V & Wade 2015]

Э

イロト イポト イヨト イヨト

References

- D. IGLESIAS-PONTE, AND J.C. MARRERO, Lie algebroid foliations and E¹(M)-Dirac structures, J. Phys. A: Math. Gen. 35 (2002) 4085–4104.
- D. IGLESIAS-PONTE, AND A. WADE, Contact manifolds and generalized complex structures, J. Geom. Phys. 53 (2005) 249–258.
- D. IGLESIAS-PONTE, AND A. WADE, Integration of Dirac-Jacobi structures, J. Phys. A: Math. Gen. 39 (2006) 4181–4190.
- L. V., *Dirac-Jacobi bundles*, e-print: arXiv:1502.05420.
- A. WADE, Conformal Dirac structures, Lett. Math. Phys. **53** (2000) 331–348.

Thank you!

イロト イポト イヨト イヨト