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The Camassa-Holm equation:

Vi — Vit = —3WWx + 2V Vix + Wik + CViox
has intriguing properties like:
(i) the existence of multi ‘peakon’ solutions,

(i) the non-existence of a T-function or functions,

(iii) that it can be found by exploiting the tri-Hamiltonian structure of the
KdV hierarchy:

4 ¢ d o1
dx’ dx3’ dx 27
which may be recombined to form the bi-Hamiltonian structure
d d? d 1
=t aar  TrTug T oue

Then, the Lenard-Magri recursion scheme results in the Camassa-Holm
equation, where u = v — vy .

Construct and classify multicomponent versions of Camassa-Holm equations.
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Novikov algebra

Homogeneous first order operator:
i g9 ik 1
Pzg(u)a—f—bkux, x €S,

where g¥(u) = ¢/ u* is symmetric and b}, ¢/ are constants.

General case by Dubrovin-Novikov (1984) — P is Hamiltonian iff (g,T) is flat.

Balinskii-Novikov (1985)

The operator is a Poisson operator if and only if
o ci = b + bl

° bf{ is the set of structure constants of an algebra A, that is e’ - ¢/ = bf{ ek
where el, ..., e" are basis vectors, such that

(a-b)-c=(a-c)-b,
(a-b)-c—a-(b-c)=(b-a)-c—b-(a-c).

This structure (A, -) is called a Novikov algebra.
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Rewrite in terms of left and right multiplications L,b = Rpa=a- b :
[Ra, Rb] = 07 [Lay Lb] = L[a,b] )
where [a,b]=a-b—b- a.
@ Novikov algebras are Lie admissible;

@ commutative = associative;

@ left unity = commutative (and hence associative).

Classification of Novikov algebras

o Classification: Bai & Meng (2001) — dim < 3, transitive case for dim = 4

@ Burde & de Graaf (2013) — dim = 4 with abelian and nilpotent Lie
algebras

Classification for dim > 4 is far from being complete.
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Lie-Poisson structure

Associated translationally invariant Lie algebra .2

The space %4 of A-valued functions of x € S', with a bracket of the form

da
b] :=ax-b—bx-a, x = —,
[a, b] := a a =
which defines a Lie bracket if and only if the algebra A with the multiplication

-2 A X A — Ais a Novikov algebra.

The Lie-Poisson bracket associated to the Lie algebra %, is

5‘7:73//67%

L7y l= | 557 50

dx = <u, |[5uf,5u7-l]]>, ue%y,

where H, F € Z (%) are functionals.
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Deformations and cocycles

Hamitonian condition [#,H]s = 0 (Schouten bracket). Deform
He—H+ A, A\ = const,
while preserving Hamiltonian property implies:

[K,K]s =0, [H,K]s =0.

We will restrict to constant deformations.
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First order deformation:

K= gij% g — symmetric

Extra condition: g(a- b,c) = g(a, c - b) (quasi-Frobenius condition).

Second order deformation:

o
K= f”% f — anti-symmetric
X

Extra conditions: f(a-b,c) = f(a,c-b), f(a-b,c)+f(b-c,a)+f(c-a,b)=0.

Third order deformation:

_d _ .
K=h 3 h — symmetric
X

Extra condition:  h(a- b, c) — totally symmetric (Frobenius condition).
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e Assemble Hamitonian bits to form bi-Hamiltonian operators and derive:
(/) KdV-type equations;
(if) Camassa-Holm type equations.

e Complete classification of cocycles (partially done by Bei and Meng).

e Classify systems in terms of algebraic structures on Novikov algebras.

Understand properties of integrable systems in terms of underlying Novikov
algebras and related cocycles.
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The characteristic matrix of a Novikov algebra A is B = (bj;) defined by
b,'j =66 = b,lj €.

Table : Classification of bilinear forms associated with one and two-dimensional
Novikov algebras.

type charact. matrix g I3 A P
€ & g1 0 i1

(r2) (eoz g) (g; g62> <8 8) (:E héz) transitive
(T3) (_0e1 8) (g?z §;§> <8 8) (8 h(;) transitive
w38 (@) 68 ()

wo  (3a) (o) (%0%) (B R) s
® (@ o%e) (o 2) 6o ()

(N6) <f€(<J91 2) (g?z 22) <8 8) (g ,22) kK #0,1
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Multicomponent bi-Hamiltonian Camassa-Holm hierarchies

Consider pair of compatible Poisson operators Py and P; on %4, associated
with Novikov algebra A :

Pl’Y = (R: U)x + Lj(qu + g1Yx + fl’}/xx + hl'Yxxx
and
Po’)/ = goYx + ﬂ)’)’xx + hO’Yxxm

where u € £y and v € Z).

Here go and g1 generate first order deformations, fy and fi deormations of order
two, while hg and h; third order deformations.

Bi-Hamiltonian chain:
Uy = PobuHo =0,

Uy = Pl(suHO = P05UH1
Uy, = Pl(squ = P06UH2
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An inertia operator A : £y — %5 defined by
Ny = goy + foyx + hoecs

such that Poy = Ayx. A is self-adjoint, i.e. AT = A, and it is assumed that it is
invertible. Thus we impose that go is nondegenerate in the generic case.

Convenient change of coordinates:

V.= /\71u7
which is of (linear) Miura-type.
Thus:

vey = Pod,Ho =0
Vy, = 7516\/7'[0 = 7505le
ve, = P16, H1 = Pob, Ho

where P; = A"'Pi(A) ! and 8, H; = NS H;.
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Theorem

The first two evolution equations from the hierarchy are

80(ve) + fo(vse,) + ho(Vaoz) = go(vs - (v - €)) + go(v - (vic - €)) + Ly.cgo(wx)
+ fo(vx - (vx - €)) + fo(vix - (v - ©))
+ 2ho((vx - €) - vix) + ho((V - €) * Viex)
+ g1(vx - €) + A(vix - €) + b1 (Vi - €)

where ¢ = const € %, and §,Ho = c.

The densities of the first three Hamiltonian functionals are

HO:gO(Cav)a

1 1 1
H1:Ego(v,v-c)—l—Efo(vmv-c)—i—zho(vxx,v-c),

1 1 1
H2:Ego(v,v-(v~c))—|—§fo(vx,v-(v-c))—kgho(wc,v-vxx)

+égo(v~c,v~v)+%ho(vx-c,vx~v)

1 1 1
+§g1(V,V-C)+Eﬂ(VX,V~C)+§h1(Vxx,V-C).
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The Hamiltonian flow on the dual space %} can be interpreted as the Euler
equation corresponding to the centrally extended Lie algebra %y with the
quadratic Hamiltonian

1 =il oy
Hl = §<U,A lRC U>.
This Euler equation transformed to .%, through v := A=!u is exactly the
second flow from the above theorem.

@ The only relevant Novikov algebras are in dimension one: the field of
complex numbers C; in dimension two: (N3)—(/N6); in dimension three:
(C6), (€8), (€9), (C16), (C19), (D2)—(D5); in dimension four (within
the considered sub-class of the Novikov algebras): Az, Asa, NYE, NJE,
NDE, NY2 and A,.

@ Most of the relevant Novikov algebras lead to the construction of
evolution equations in a triangular form.

@ The only non-triangular systems are associated to the algebras (N4), (C8)
and Ag.

@ Many Novikov algebras with nontrivial algebraic properties result in
systems of evolution equations which are degenerate, for example, not
fully nonlinear in all of the variables.
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Dimension one:

@ The only relevant one-dimensional Novikov algebra A is C.
o Letgo:g,glza, ho = h and hlzﬁ(and f1:f2:0)
For ¢ = 1 we have

8Vt + thxt = QVx + 3gVVx + 2thVxx + hVVxxx + /BVXXX 5

here v € Z.
@ It was obtained before by Khesin and Misiotek (2003).

@ Particular cases:

— Korteweg—de Vries equation: Ve = 3VWx + Vixx
— Camassa-Holm equation:  vi — Vi = v + 3w — 2Vi Ve — Wik + BVixx

— Hunter-Saxton equation: Vit = 2Vx Vix + Wi
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An n-dimensional example

Proposition

For any dimension n the algebra A, defined by
(a-b) :=a'b" <=  bj=05].
is an associative Novikov algebra. If n > 2 it is non-abelian. The associated Lie

algebra structure on A, is non-nilpotent. Moreover:

@ an arbitrary symmetric bilinear form g on A, satisfies the quasi-Frobenius
condition;

@ an anti-symmetric bilinear form f = (f;) on A, satisfies the second-order
conditions iff f; = 0 for i # n and j # n;

@ a symmetric bilinear form h = (h;;) on A, satisfies the Frobenius
conditions if and only if hj = 0 for i # n or j # n.

The translationally invariant Lie algebra %4, is isomorphic to
Vect(S') x ¢°°(SH)®"~1.
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The mulitcomponent system associated to A,

o Consequently the most general bilinear forms are given by
(0)i = gi»  (fo)y = 0jfi=6if;,  (ho)y = 676} h

and

(&) =aij,  (A)j =06y —0d"y,  (Mm)ij=20d0p.
o The element ¢ = (c’) € A, is the right unity iff ¢" = 0.
e For v =(v') € %, we find:
i#n: g,-,-v{—l—ﬁ-dt:(g,-jvjv"—&—f,-v"v)f—i—agvj—i—'y,-vf) ,
. j j n j n 1 j k j.n 1 ny2
i=ni gVl vl hvle = (ggV/V + SV — GV + Sh(W)

+ hv"vy + oz,,jvj - 7jvj +ﬁvX"X) .
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2-compopnent Camassa-Holm equations

@ Various examples of 2-component Camassa-Holm equations that have
appeared already in the literature fall into this scheme by identifying the
underlying Novikov algebras and bilinear forms.

@ Particularly for (N4) = A,:

(i) Ito equation and its Camassa-holm type extension by Guha & Olver
(ii) Dispersive water waves (DWW) by Kupershmidt and Kaup-Broer system

(iii) 2-component Camassa-Holm equation derived by Chen & Liu & Zhang
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Equations of Hydrodynamic type on Novikov algebras

o Taking the dispersionless limit we obtain in coordinates u the following
equations of hydrodynamic type:
uy, = Rfux,

ug, = (R;;C/\*luu)x + L;k\—lux R:U + gch/\71UX7

where A = g.
@ For all the explicit examples of considered Novikov algebras and bilinear
forms the associated Haantjes tensor vanishes.

@ But only those systems associated to (N4), (C8) and A, are hyperbolic
and thus are diagonalisable.
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Thank you!

More details at arXiv:1309.3188 [nlin.Sl] )
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