Novikov algebras and a classification of multicomponent Camassa-Holm equations

Błażej M. Szablikowski joint work with Ian Strachan

A. Mickiewicz University, Poznań, Poland

arXiv:1309.3188

2013, Teplice nad Bečvou

Motivation

The Camassa-Holm equation:

$$v_t - v_{xxt} = -3vv_x + 2v_xv_{xx} + vv_{xxx} + cv_{xxx}$$

has intriguing properties like:

- (i) the existence of multi 'peakon' solutions,
- (ii) the non-existence of a τ -function or functions,
- (iii) that it can be found by exploiting the tri-Hamiltonian structure of the KdV hierarchy:

$$\frac{d}{dx}$$
, $\frac{d^3}{dx^3}$, $u\frac{d}{dx} + \frac{1}{2}u_x$,

which may be recombined to form the bi-Hamiltonian structure

$$\mathcal{P}_1 = \frac{d}{dx} + \frac{d^3}{dx^3}, \qquad \mathcal{P}_2 = u\frac{d}{dx} + \frac{1}{2}u_x.$$

Then, the Lenard-Magri recursion scheme results in the Camassa-Holm equation, where $u=v-v_{xx}$.

Goal

Construct and classify multicomponent versions of Camassa-Holm equations.

Novikov algebra

Homogeneous first order operator:

$$\mathcal{P}^{ij} = g^{ij}(u)\frac{d}{dx} + b_k^{ij}u_x^k, \qquad x \in \mathbb{S}^1,$$

where $g^{ij}(u) = c_k^{ij} u^k$ is symmetric and b_k^{ij} , c_k^{ij} are constants.

General case by Dubrovin-Novikov (1984) – \mathcal{P} is Hamiltonian iff (g,Γ) is flat.

Balinskii-Novikov (1985)

The operator is a Poisson operator if and only if

- $\bullet c_k^{ij} = b_k^{ij} + b_k^{ji};$
- b_k^{ij} is the set of structure constants of an algebra \mathbb{A} , that is $e^i \cdot e^j = b_k^{ij} e^k$ where e^1, \ldots, e^n are basis vectors, such that

$$(a \cdot b) \cdot c = (a \cdot c) \cdot b$$
,
 $(a \cdot b) \cdot c - a \cdot (b \cdot c) = (b \cdot a) \cdot c - b \cdot (a \cdot c)$.

This structure (\mathbb{A}, \cdot) is called a **Novikov algebra**.

Rewrite in terms of left and right multiplications $L_a b = R_b a = a \cdot b$:

$$[R_a, R_b] = 0, \qquad [L_a, L_b] = L_{[a,b]},$$

where $[a, b] = a \cdot b - b \cdot a$.

- Novikov algebras are Lie admissible;
- commutative ⇒ associative:
- left unity ⇒ commutative (and hence associative).

Classification of Novikov algebras

- Classification: Bai & Meng (2001) $dim \le 3$, transitive case for dim = 4
- Burde & de Graaf (2013) dim = 4 with abelian and nilpotent Lie algebras

Classification for $dim \ge 4$ is far from being complete.

Lie-Poisson structure

Associated translationally invariant Lie algebra $\mathscr{L}_{\mathbb{A}}$

The space $\mathscr{L}_{\mathbb{A}}$ of \mathbb{A} -valued functions of $x \in \mathbb{S}^1$, with a bracket of the form

$$\llbracket a,b \rrbracket := a_{\mathsf{x}} \cdot b - b_{\mathsf{x}} \cdot a \,, \qquad a_{\mathsf{x}} \equiv \frac{da}{d\mathsf{x}},$$

which defines a Lie bracket if and only if the algebra $\mathbb A$ with the multiplication $\cdot : \mathbb A \times \mathbb A \to \mathbb A$ is a Novikov algebra.

The Lie-Poisson bracket associated to the Lie algebra $\mathscr{L}_{\mathbb{A}}$ is

$$\{\mathcal{H},\mathcal{F}\}\left[u\right] := \int_{\mathbb{S}^1} \frac{\delta \mathcal{F}}{\delta u^i} \mathcal{P}^{ij} \frac{\delta \mathcal{H}}{\delta u^j} \, dx \equiv \left\langle u, \llbracket \delta_u \mathcal{F}, \delta_u \mathcal{H} \rrbracket \right\rangle, \qquad u \in \mathscr{L}_{\mathbb{A}}^*,$$

where $\mathcal{H}, \mathcal{F} \in \mathscr{F}(\mathscr{L}_{\mathbb{A}}^*)$ are functionals.

Deformations and cocycles

Hamitonian condition $[\mathcal{H},\mathcal{H}]_{\mathcal{S}}=0$ (Schouten bracket). Deform

$$\mathcal{H} \mapsto \mathcal{H} + \lambda \mathcal{K}, \qquad \lambda = const,$$

while preserving Hamiltonian property implies:

$$[\mathcal{K}, \mathcal{K}]_S = 0$$
, $[\mathcal{H}, \mathcal{K}]_S = 0$.

We will restrict to constant deformations.

First order deformation:

$$\mathcal{K} = g^{ij} \frac{d}{dx}$$
 g – symmetric

Extra condition: $g(a \cdot b, c) = g(a, c \cdot b)$ (quasi-Frobenius condition).

Second order deformation:

$$\mathcal{K} = f^{ij} \frac{d^2}{dx^2}$$
 f – anti-symmetric

Extra conditions: $f(a \cdot b, c) = f(a, c \cdot b)$, $f(a \cdot b, c) + f(b \cdot c, a) + f(c \cdot a, b) = 0$.

Third order deformation:

$$\mathcal{K} = h^{ij} \frac{d^3}{dx^3}$$
 h – symmetric

Extra condition: $h(a \cdot b, c)$ – totally symmetric (Frobenius condition).

Outline

- Assemble Hamitonian bits to form bi-Hamiltonian operators and derive:
 - (i) KdV-type equations;
 - (ii) Camassa-Holm type equations.
- Complete classification of cocycles (partially done by Bei and Meng).
- Classify systems in terms of algebraic structures on Novikov algebras.

Aim

Understand properties of integrable systems in terms of underlying Novikov algebras and related cocycles.

The characteristic matrix of a Novikov algebra \mathbb{A} is $\mathcal{B} = (b_{ij})$ defined by $b_{ij} := e_i \cdot e_j = b_{ij}^k e_k$.

Table : Classification of bilinear forms associated with one and two-dimensional Novikov algebras.

type	charact. matrix	g	f	h	comments
\mathbb{C}	e_1	g 11	0	h_{11}	
(<i>T</i> 2)	$\begin{pmatrix} e_2 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} g_{11} & g_{12} \\ g_{12} & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} h_{11} & h_{12} \\ h_{12} & 0 \end{pmatrix}$	transitive
(<i>T</i> 3)	$\begin{pmatrix} 0 & 0 \\ -e_1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & g_{12} \\ g_{12} & g_{22} \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & h_{22} \end{pmatrix}$	transitive
(N3)	$\begin{pmatrix} e_1 & e_2 \\ e_2 & 0 \end{pmatrix}$	$\begin{pmatrix} g_{11} & g_{12} \\ g_{12} & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} h_{11} & h_{12} \\ h_{12} & 0 \end{pmatrix}$	
(N4)	$\begin{pmatrix} 0 & e_1 \\ 0 & e_2 \end{pmatrix}$	$\begin{pmatrix} g_{11} & g_{12} \\ g_{12} & g_{22} \end{pmatrix}$	$\begin{pmatrix} 0 & f_{12} \\ -f_{12} & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & h_{22} \end{pmatrix}$	$\det f \neq 0$
(N5)	$\begin{pmatrix} 0 & e_1 \\ 0 & e_1 + e_2 \end{pmatrix}$	$\begin{pmatrix} 0 & g_{12} \\ g_{12} & g_{22} \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & h_{22} \end{pmatrix}$	
(N6)	$\begin{pmatrix} 0 & e_1 \\ \kappa e_1 & e_2 \end{pmatrix}$	$\begin{pmatrix} 0 & g_{12} \\ g_{12} & g_{22} \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & h_{22} \end{pmatrix}$	$\kappa \neq 0,1$

Multicomponent bi-Hamiltonian Camassa-Holm hierarchies

Consider pair of compatible Poisson operators \mathcal{P}_0 and \mathcal{P}_1 on $\mathscr{L}_{\mathbb{A}}$, associated with Novikov algebra \mathbb{A} :

$$\mathcal{P}_1 \gamma = (R_{\gamma}^* u)_{x} + L_{\gamma_x}^* u + g_1 \gamma_x + f_1 \gamma_{xx} + h_1 \gamma_{xxx}$$

and

$$\mathcal{P}_0 \gamma = g_0 \gamma_x + f_0 \gamma_{xx} + h_0 \gamma_{xxx},$$

where $u \in \mathscr{L}_{\mathbb{A}}^*$ and $\gamma \in \mathscr{L}_{\mathbb{A}}$.

Here g_0 and g_1 generate first order deformations, f_0 and f_1 deormations of order two, while h_0 and h_1 third order deformations.

Bi-Hamiltonian chain:

$$\begin{split} u_{t_0} &= \mathcal{P}_0 \delta_u \mathcal{H}_0 \equiv 0 \,, \\ u_{t_1} &= \mathcal{P}_1 \delta_u \mathcal{H}_0 = \mathcal{P}_0 \delta_u \mathcal{H}_1 \\ u_{t_2} &= \mathcal{P}_1 \delta_u \mathcal{H}_1 = \mathcal{P}_0 \delta_u \mathcal{H}_2 \\ &\vdots \end{split}$$

An inertia operator $\Lambda:\mathscr{L}_{\mathbb{A}}\to\mathscr{L}_{\mathbb{A}}^*$ defined by

$$\Lambda \gamma := g_0 \gamma + f_0 \gamma_x + h_0 \gamma_{xx},$$

such that $\mathcal{P}_0 \gamma \equiv \Lambda \gamma_x$. Λ is self-adjoint, i.e. $\Lambda^{\dagger} = \Lambda$, and it is assumed that it is invertible. Thus we impose that g_0 is nondegenerate in the generic case.

Convenient change of coordinates:

$$v := \Lambda^{-1}u$$
,

which is of (linear) Miura-type.

Thus:

$$\begin{split} v_{t_0} &= \tilde{\mathcal{P}}_0 \delta_{\nu} \mathcal{H}_0 \equiv 0 \\ v_{t_1} &= \tilde{\mathcal{P}}_1 \delta_{\nu} \mathcal{H}_0 = \tilde{\mathcal{P}}_0 \delta_{\nu} \mathcal{H}_1 \\ v_{t_2} &= \tilde{\mathcal{P}}_1 \delta_{\nu} \mathcal{H}_1 = \tilde{\mathcal{P}}_0 \delta_{\nu} \mathcal{H}_2 \\ &\vdots \end{split}$$

where $\tilde{\mathcal{P}}_i = \Lambda^{-1} \mathcal{P}_i(\Lambda)^{-1}$ and $\delta_v \mathcal{H}_i = \Lambda \delta_u \mathcal{H}_i$.

Theorem

The first two evolution equations from the hierarchy are

$$\begin{aligned} v_{t_1} &= v_x \cdot c \,, \\ g_0(v_{t_2}) + f_0(v_{xt_2}) + h_0(v_{xxt_2}) &= g_0(v_x \cdot (v \cdot c)) + g_0(v \cdot (v_x \cdot c)) + L_{v \cdot c}^* g_0(v_x) \\ &+ f_0(v_x \cdot (v_x \cdot c)) + f_0(v_{xx} \cdot (v \cdot c)) \\ &+ 2h_0((v_x \cdot c) \cdot v_{xx}) + h_0((v \cdot c) \cdot v_{xxx}) \\ &+ g_1(v_x \cdot c) + f_1(v_{xx} \cdot c) + h_1(v_{xxx} \cdot c) \,, \end{aligned}$$

where $c = \text{const} \in \mathcal{L}_{\mathbb{A}}$ and $\delta_u \mathcal{H}_0 = c$.

The densities of the first three Hamiltonian functionals are

$$\begin{split} H_0 &= g_0(c,v)\,, \\ H_1 &= \frac{1}{2}\,g_0(v,v\cdot c) + \frac{1}{2}\,f_0(v_x,v\cdot c) + \frac{1}{2}\,h_0(v_{xx},v\cdot c)\,, \\ H_2 &= \frac{1}{3}\,g_0(v,v\cdot (v\cdot c)) + \frac{1}{3}\,f_0(v_x,v\cdot (v\cdot c)) + \frac{1}{3}\,h_0(v\cdot c,v\cdot v_{xx}) \\ &\quad + \frac{1}{6}\,g_0(v\cdot c,v\cdot v) + \frac{1}{6}\,h_0(v_x\cdot c,v_x\cdot v) \\ &\quad + \frac{1}{2}\,g_1(v,v\cdot c) + \frac{1}{2}\,f_1(v_x,v\cdot c) + \frac{1}{2}\,h_1(v_{xx},v\cdot c)\,. \end{split}$$

Remark

The Hamiltonian flow on the dual space $\mathscr{L}_{\mathbb{A}}^*$ can be interpreted as the Euler equation corresponding to the centrally extended Lie algebra $\mathscr{L}_{\mathbb{A}}$ with the quadratic Hamiltonian

$$\mathcal{H}_1 = \frac{1}{2} \langle u, \Lambda^{-1} R_c^* u \rangle.$$

This Euler equation transformed to $\mathscr{L}_{\mathbb{A}}$ through $v := \Lambda^{-1}u$ is exactly the second flow from the above theorem.

- The only relevant Novikov algebras are in dimension one: the field of complex numbers C; in dimension two: (N3)–(N6); in dimension three: (C6), (C8), (C9), (C16), (C19), (D2)–(D5); in dimension four (within the considered sub-class of the Novikov algebras): \$\widetilde{A}_{3,3}\$, \$\widetilde{A}_{3,4}\$, \$N_{22}^{\hat{h}_1}\$, \$N_{23}^{\hat{h}_2}\$, \$N_{24}^{\hat{h}_1}\$, \$N_{27}^{\hat{h}_2}\$ and \$\mathbb{A}_4\$.
- Most of the relevant Novikov algebras lead to the construction of evolution equations in a triangular form.
- The only non-triangular systems are associated to the algebras (N4), (C8) and \mathbb{A}_4 .
- Many Novikov algebras with nontrivial algebraic properties result in systems of evolution equations which are degenerate, for example, not fully nonlinear in all of the variables.

Dimension one:

- ullet The only relevant one-dimensional Novikov algebra ${\mathbb A}$ is ${\mathbb C}$.
- Let $g_0=g$, $g_1=\alpha$, $h_0=h$ and $h_1=\beta$ (and $f_1=f_2=0$). For c=1 we have

$$gv_t + hv_{xxt} = \alpha v_x + 3gvv_x + 2hv_xv_{xx} + hvv_{xxx} + \beta v_{xxx}$$

here $v \in \mathscr{L}_{\mathbb{C}}$.

- It was obtained before by Khesin and Misiołek (2003).
- Particular cases:
 - Korteweg-de Vries equation: $v_t = 3vv_x + v_{xxx}$
 - Camassa-Holm equation: $v_t v_{xxt} = \alpha v_x + 3vv_x 2v_x v_{xx} vv_{xxx} + \beta v_{xxx}$
 - Hunter-Saxton equation: $v_{xxt} = 2v_x v_{xx} + v v_{xxx}$.

An *n*-dimensional example

Proposition

For any dimension n the algebra \mathbb{A}_n defined by

$$(a \cdot b)^i := a^i b^n \quad \iff \quad b^k_{ij} = \delta^k_i \delta^n_j.$$

is an associative Novikov algebra. If $n \ge 2$ it is non-abelian. The associated Lie algebra structure on \mathbb{A}_n is non-nilpotent. Moreover:

- an arbitrary symmetric bilinear form g on \mathbb{A}_n satisfies the quasi-Frobenius condition;
- an anti-symmetric bilinear form f = (f_{ij}) on A_n satisfies the second-order conditions iff f_{ij} = 0 for i ≠ n and j ≠ n;
- a symmetric bilinear form $h=(h_{ij})$ on \mathbb{A}_n satisfies the Frobenius conditions if and only if $h_{ij}=0$ for $i\neq n$ or $j\neq n$.

Remark

The translationally invariant Lie algebra $\mathscr{L}_{\mathbb{A}_n}$ is isomorphic to $\mathrm{Vect}(\mathbb{S}^1)\ltimes\mathcal{C}^\infty(\mathbb{S}^1)^{\oplus n-1}$.

The mulitcomponent system associated to \mathbb{A}_n

Consequently the most general bilinear forms are given by

$$(g_0)_{ij} = g_{ij}, \qquad (f_0)_{ij} = \delta_j^n f_i - \delta_i^n f_j, \qquad (h_0)_{ij} = \delta_i^n \delta_j^n h$$

and

$$(g_1)_{ij} = \alpha_{ij}, \qquad (f_1)_{ij} = \delta_j^n \gamma_i - \delta_i^n \gamma_j, \qquad (h_1)_{ij} = \delta_i^n \delta_j^n \beta.$$

- The element $c = (c^i) \in \mathbb{A}_n$ is the right unity iff $c^n = 0$.
- For $v = (v^i) \in \mathscr{L}_{\mathbb{A}_n}$ we find:

$$i \neq n: g_{ij}v_t^j + f_iv_{xt}^n = \left(g_{ij}v^jv^n + f_iv^nv_x^n + \alpha_{ij}v^j + \gamma_iv_x^n\right)_x,$$

$$i = n: g_{nj}v_t^j - f_jv_{xt}^j + hv_{xxt}^n = \left(g_{nj}v^jv^n + \frac{1}{2}g_{jk}v^jv^k - f_jv_x^jv^n + \frac{1}{2}h(v_x^n)^2 + hv^nv_{xx}^n + \alpha_{nj}v^j - \gamma_jv^j + \beta v_{xx}^n\right)_x.$$

2-compopnent Camassa-Holm equations

- Various examples of 2-component Camassa-Holm equations that have appeared already in the literature fall into this scheme by identifying the underlying Novikov algebras and bilinear forms.
- Particularly for $(N4) = \mathbb{A}_2$:
 - (i) Ito equation and its Camassa-holm type extension by Guha & Olver
 - (ii) Dispersive water waves (DWW) by Kupershmidt and Kaup-Broer system
 - (iii) 2-component Camassa-Holm equation derived by Chen & Liu & Zhang

Equations of Hydrodynamic type on Novikov algebras

 Taking the dispersionless limit we obtain in coordinates u the following equations of hydrodynamic type:

$$u_{t_1} = R_c^* u_X,$$

$$u_{t_2} = (R_{R_c \Lambda^{-1} u}^* u)_X + L_{\Lambda^{-1} u_X}^* R_c^* u + g_1 R_c \Lambda^{-1} u_X,$$
(1)

where $\Lambda \equiv g_0$.

- For all the explicit examples of considered Novikov algebras and bilinear forms the associated Haantjes tensor vanishes.
- But only those systems associated to (N4), (C8) and \mathbb{A}_n are hyperbolic and thus are diagonalisable.

Thank you!

More details at arXiv:1309.3188 [nlin.SI]