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The problem

The Burgers equation
ut = ε2uxx − 2uux . (1)
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The problem

The Burgers equation
ut = ε2uxx − 2uux . (1)

Initial value (IV)
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The problem

The Burgers equation
ut = ε2uxx − 2uux . (1)

Initial value (IV) u(x , 0) = u0
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The problem

The Burgers equation
ut = ε2uxx − 2uux . (1)

Initial value (IV) u(x , 0) = u0

Boundary problem (BP)
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The problem

The Burgers equation
ut = ε2uxx − 2uux . (1)

Initial value (IV) u(x , 0) = u0

Boundary problem (BP) u(0, t) = u0 + a sin(ωt), ux(L, t) = 0
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For a half-line interval x ∈ [0;∞) and a periodic perturbation at
x = 0 of the form u(0, t) = u0 + a sin(ωt) the asymptotic of the
corresponding solution is (Fay [1])

u =
a

R

∞∑
n=1

sin(nθ)

sinh(n(1 + X )/2 · R
;

here R is the Reynolds number, θ = ω(t − x/u0).
The graph of such a sawtooth-shaped wave typically has the form
presented on the next slide.
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Sawtooth-shaped Waves

There can be seen two effects of the viscosity. First, the amplitude
of fluctuations decreases exponentially and limx→∞ = u0. Second,
breaks of the ux -derivative (sharp teeth) are concentrated near the
source (at x = 0) and quickly disappear for greater x .

Figure:
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Development of sawtooth-shaped Waves

Consider a problem

ut = ε2uxx − 2uux

u(x , 0) = 1, u(0, t) = 1 + 2 sin(2πt), ux(L, t) = 0,

where ε = 0.5 and L = 75. Four next figures show the steps of the
passage from the constant initial condition to a sawtooth profile
The viscosity corresponding to ε = 0.5 is relatively strong and
sawteeth show only in vicinity of the perturbation source at the left
end; as a spatial decay proceeds a single shock wave moving to the
right develops. This shock profile is a well known Galilean-invariant
travelling wave solution

Alexey Samokhin Numerical Simulation of Sawtooth Solutions of Burgers Equation on a Finite Interval



Intro
Sawtooth-shaped Waves

Lesser viscousity
Estimates for asymptotic amplitudes and velocity

Interaction between periodic perturbations
Conclusion and numeric considerations

References

Figure: t = 0.5
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Figure: t = 5
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Figure: t = 15
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Figure: t = 25
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For a lesser viscosity, ε = 0.2, the sawtooth effect stays for longer
as it can be seen below. The IVBP are the same as in previous
examples. The figure illustrates visually the process of gradual
transformation of sharp teeth with almost vertical front edges into
smooth and sloping oscillations.

Figure: ε = 0.2, t = 25.



For still lesser ε = 0.15 teeth are sharp throughout the interval;
here

u(x , 0) = 2, u(0, t) = 2 + 3 sin(2πt), ux(75, t) = 0.

Figure: ε = 0.15, t = 25



Amplitudes

Since the Burgers equation may be written as a conservation law,
(u)t = (ε2ux − u2)x , we have∮

∂D

[u dx + (ε2ux − u2) dt] = 0,

where D is a rectangle

{0 ≤ x ≤ L, 0 ≤ t ≤ T}

Bearing in mind the initial value/boundary conditions the integral
reads

L∫
0

u(x , 0) dx +
T∫
0

[ε2ux(L, t)− u2(L, t)] dt+

0∫
L

u(x ,T ) dx +
0∫
T

(ε2ux(0, t)− u2(0, t)) dt = 0



Let A be a mean of the solution over [0, L]; because of dampening
effect of the viscosity for large enough L and T the solution
becomes constant u(L,T ) = A. Using ux(L, t) = 0 we deduce

u0L− A2T − AL−
T∫
0

(ε2ux(0, t)− u2(0, t)) dt = 0

Dividing by T we obtain the quadratic equation on A:

−A2 − A
L

T
− 1

T

T∫
0

(ε2ux(0, t)− u2(0, t)) dt + u0
L

T
= 0

Since integrals of sine and cosine over their period are zero, for

T � 0 we have 1
T

T∫
0

(ε2ux(0, t)−u2(0, t)) dt +u0
L
T ≈ −u

2
0 − a2

2 , so

− A2 − Ak + u20 +
a2

2
+ u0k = 0 (2)

where k = L
T . It follows A = (−k +

√
k2 + 4u20 + 2a2 + 4u0k)/2.



Compare to numeric results

Thus

lim
T→∞

A = lim
k→0

A =
√

u20 + a2/2

and
lim
L→∞

A = lim
k→∞

A = u0

— as it should for a half-line problem.
As it was illustrated by previous figures, in the region where the
initial harmonic oscillations decay, the perturbation transforms to a
travelling wave with constant speed and profile, that is like an
invariant solution of the form u = −b/2f − ε2f tanh(c + fx + bt).
The velocity of this travelling wave solution is V = −b/f . On the
other hand, as it can be seen on the graphs, the tanh function’s
shift upwards is (A + u0)/2. So V = A + u0 is an estimate for the
velocity of the signal propagation.
For figures 2–3 we have u0 = 1, a = 2, A ≈

√
3 and V ≈ 1 +

√
3

in good conformity with numerical results.



A packet

One more example deals with interaction between periodic
perturbations with different frequencies. Consider the following
problem (ε = 0, 2):

u(0, t) = 1 + 2 sin(t) sin(5πt), u(x , 0) = 1, ux(75, t) = 0 (3)

Note that u(0, t) is a superposition since
2 sin(t) sin(5πt) = cos(t − 5πt)− cos(t + 5πt), a wave packet; it
is presented on the graph below, followed by the resulting solution.

Figure: u(0, t) = 1 + 2 sin(t) sin(5πt).



Figure: ε = 0.2, t = 25

Note that the frequency of the resulting sawtooth solution
presented on this graph 9 is twice that of the envelope of the
packet. It can be readily seen since t = 25 roughly corresponds to
7 periods.



There is a probable explanation:
only greatest peaks survive in viscous medium as they move faster
and decay slower. They define the profile of the solution far from
origin of perturbation; yet such peaks occur in every single packet
of the length π, while the envelope 1 + 2 sin t period is 2π.

The estimate for the average at t →∞ in this case is

√√√√√−1

2π

2π∫
0

(ε2((1 + 2 sin(t) sin(5πt))− (1 + 2 sin(t) sin(5πt))2)) dt

=
√

2



It is not, however, that the solution on the last graph tends to the
solution with the twice-frequency envelope as a boundary
perturbation. Indeed, the solution of the problem

u(0, t) = 1 + 2 sin(2t), u(x , 0) = 1, ux(75, t) = 0 (4)

is presented on the following graph together with the solution for
the problem (3). The former solution has a higher initial peak and
therefore is faster: at t = 25 it runs up (approximately) to 73 while
the former only to 60. Also, an estimate for the average at t →∞
of the problem (4) is

√
3 which differs significantly from 1.41. More

detailed analysis of this type of interactions will appear elsewhere.

Figure: Two solutions



More interaction examples

Boundary - initial conditions

u(0, t) = 1 + 2 sin(t) + 3 cos(5πt), u(x , 0) = 1, ux(75, t) = 0

Figure: ε = 0.2, t = 25
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The resulting period here is 2π coinciding with that of the
envelope. Asymptotics for amplitude A is calculated using the full
quadratic equation since neither k → 0 nor k →∞ holds. Here
k = L

T = 75
25 = 3

−A2 − 3A− 1

25

25∫
0

(ε2ux(0, t)− u2(0, t)) dt + 3u0 = 0⇒ A ≈ 1.1

Figure: ε = 0.2, t = 25
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Conclusion and numeric considerations

The figures in this paper were generated numerically using Maple
PDETools package. The method used is Crank-Nicholson. The
centered time centered space method is an implicit single stage
method that can be used to find solutions to PDEs that are first
order in time, and arbitrary order in space, with mixed partial
derivatives. The method is O(h2, k2) accurate. This implicit
scheme is unconditionally stable for many problems (though this
may need to be checked).
It is worth to notice that the presence of points of derivative’s
discontinuity is intrinsic for the model considered. Yet the standard
procedures used with the default parameters may easily loose
stability at these points. This instability leads to multi-oscillations
and a general loss of precision. This problem was dealt with mainly
by adapting (that is, shortening) the spacestep and/or timestep
parameters. The spacing must be small enough that a sufficient
number of points are in the spatial domain for the given method,
boundary conditions, and spatial interpolation.
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