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Intro

The problem

The Burgers equation
ue(x, t) = 2u(x, t) — u(x, t)ux(x, t). (1)
The generalized Burgers equation
ur(x, t) = 2 (x, t) — a - u"(x, t)ux(x, t).  (2)

Initial value (IV) u(x,0) =f(x), x € |[«,f]
Boundary problem (BP) u(a,t) = I(t), u(B,t)=r(t)
Below [(t) = A, r(t) = B are constants
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t-invariant solutions

Time-invariant (smooth) solutions

Forn=1
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ulx,t) = ¢,

— e2atanh(ax + ¢),
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Forn=1

u(x,t) = ¢, (3)
= —¢c2atanh(ax + ¢), (4)

— e2acoth(ax + ¢), (5)
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t-invariant solutions

Time-invariant (smooth) solutions

Forn=1

ulx,t) = ¢, (3)
= —¢c2atanh(ax + ¢), (4)

— e2acoth(ax + ¢), (5)

= 6atan(ax + C), (6)
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t-invariant solutions

Time-invariant (smooth) solutions

Forn=1

ulx,t) = ¢, (3)
= —¢c2atanh(ax + ¢), (4)
= —c2acoth(ax + ¢), (5)
ax+c
= ceatan( . )s (6)
2
- aji - (7)
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t-invariant solutions

For n > 1 stationary solutions are given by

T Y
x ! /Cz—l—ozy’”rl
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L?-estimate of decay rate

A solution of the (generalized) Burgers equation
Up = Uy — Uy (8)
with zero boundary conditions
u(t,a) = u(t,b) =0, u(0,x)|,p = f(x) 9)

monotonically tends to zero as t — 0o in £2 norm since
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The greater uy the faster the convergence.



Equation for the difference

Hypothesis:
When the boundary conditions are non-zero but constant

u(O,x)][a’b] =f(x) u(t,a)="f(a)=A, u(t,b)="r(b)=B,

(10)
one may expect the solution to converge to the respective
stationary invariant solution, ie, to u(x),

b —apuy =0, p(a)=A, p(b)=B (11)

Such a solution exists and is of one of the above listed forms
depending on the combination of A and B.

The answer to this hypothesis is complex.



Equation, continued

Put v(t,x) = u(t,x) — p(x), ie, u(t,x) = v(t,x) + p(x).
Substituting into the generalized Burgers we get

ur = (v(t,x) + pu(x)r = v(t,x)e = U — at"u, =(12)
(w(t, ) + 1(x))soc — v (t, x) + p(x))" (v, x) + p(x))x-

In the case n=1 and o« = 2,

Uxx — 2VUx + [Mxx - 2NHX] - 2{Vx,uf + VHX}-
Since pxx — 2upx = 0 by definition of 1,

Ut = Usx — 200 — 2(V 1) x- (13)

Boundary conditions for v are zero by definition of v.



L?-estimate for decay rate of difference

The rate of v by analogy with (10):

a b
(vl = 5 / V2 =

b b
/ 2uurdx = 2/ V(v — 2vvy — 2(vp)x)dx =
a a

b 4 b b
2/ vdv, — -3 — 4/ vd(vp) =
a 3 a a

b b
2VVX‘§_2/ I/)%dX— 4V(V,U,)|s+4/ prvydx =
a a
_2/ yfdx—|—2/ pdv? = —2/ Vfdx+2/ pxvdx — 2 uzu‘a =
a a a a

b
2/ (1/)2( + ,uxuz) dx.




L2-estimate for decay rate of difference, continued

The monotony of £2-convergence is not guaranteed; but it takes
place, in the case uy > 0 ( increasing initial profile). In the case
n > 1 the corresponding conditions are less transparent; for
instance when n =2

o [°, b 2
— [ vidx=-2 (v — v (px — vx)) dx.
ot J, 2

So px(px — vx) > 0 guarantees the deviation v decay. When
(ve)] g2 < 0 fails the difference v doesn’t necessarily tend to zero.
Usually such evolution ends in a

© catastrophe,
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L2-estimate for decay rate of difference, continued

The monotony of £2-convergence is not guaranteed; but it takes
place, in the case uy > 0 ( increasing initial profile). In the case
n > 1 the corresponding conditions are less transparent; for
instance when n =2

o [°, b 2
— [ vidx=-2 (v — v (px — vx)) dx.
ot J, 2

So px(px — vx) > 0 guarantees the deviation v decay. When
(ve)] g2 < 0 fails the difference v doesn’t necessarily tend to zero.
Usually such evolution ends in a

@ catastrophe, resulting in a Heaviside-type break at the
interval’s end;

© decay to a smooth invariant solution;

© a frozen multi-oscillation, a piecewise-smooth invariant
solution.



Time for tilting
For a general quasilinear transport equation (x € R)
we + F(w)wy, =0 (14)

the moment of gradient catastrophe t. can be defined as follows.
Let w = ¢(x) be an initial profile. The solution of this problem

may be given in a parametric form w = p(§), x = { + F(§)t
where F = f(¢(&)).



Time for tilting

For a general quasilinear transport equation (x € R)
we + f(w)wy, =0 (14)

the moment of gradient catastrophe t. can be defined as follows.
Let w = ¢(x) be an initial profile. The solution of this problem
may be given in a parametric form w = (), x = & + F(&)t
where F = f(p()).

The characteristics of the form x = £ + F(§)t intersect in the case
©'(€) < 0 thus resulting in many-valued w (the tilting of a wave or
a gradient catastrophe). If the inequality holds on a finite interval
there exist a minimal value of time, t., when this problem arises.
One may determine t. by the formula

tce = _1/‘F,(£c)

where |F(&c)| = maxq g1 [F(€)] while 7/(£) < 0.



Without dissipation
Catastrophe, n=1, example 1
Canastrophes, example 2

Catastrophes

Canastrophes, n=2, examples 3-4

Dispersive shock, example 1; n=1

time = 0.677966

Figure : Shock strucks at =~ t.: Burgers, n=1, I[VBP
u(x,0) = sech?(x — 1), u(0, t) = sech?(1), u(10, t) = sech?(9)
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Heaviside-type gap develops

time = 8.135593
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Figure : Multi-oscillations move to a Heaviside-type break
tanh?(1) — tanh?(9) at x = 10; t ~ 8.
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Catastrophe, n=1, example 1
Canastrophes, example 2
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Catastrophes

Dispersive shock, example 2; n=1

time = 0.203390

Figure : Shock strucks at t ~ 0.2 < t.: Burgers, n=1, IVBP
u(x,0) = sech?(x — 9), u(0, t) = sech?(9), u(10, t) = sech?(1)
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Catastrophe, n=1, example 1
Canastrophes, example 2
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Catastrophes

Dispersive shock, example 2; n=1

time = 0.203390

Figure : Shock strucks at t ~ 0.2 < t.: Burgers, n=1, IVBP
u(x,0) = sech?(x — 9), u(0, t) = sech?(9), u(10, t) = sech?(1)



Heaviside-type gap develops

time = 4.677966
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Figure : Multi-oscillations move to a Heaviside-type break
— tanh?(1) 4 tanh?(9) at x = 10; t ~ 4.
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Catastrophe, n=1, example 1
Canastrophes, n=1, example 2
Canastrophes, n=2, examples 3-4

Catastrophes

Dispersive shock, example 1; n=2

time = 0.457627

6 8 10

Figure : Start of gradient catastrophe at t. = 0.45. Dash line is the
initial profile sech2(x —1). n=2; Burgers, n=2, ¢ = 0.02
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Figure : Start of gradient catastrophe at t. = 0.45. Dash line is the
initial profile sech2(x —1). n=2; Burgers, n=2, ¢ = 0.02



Heaviside-type gap develops, example 3

time = 0.813559

Figure : Multi-oscillations move to a Heaviside-type break
— tanh?(1) 4 tanh?(9) at x = 10; t ~ 0.8.



Heaviside-type gap develops, example 4

time = 4.576271
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Figure : Multi-oscillations move to a Heaviside-type break at x = 10;
t ~ 4.6.Dash line is the initial profile —0.01x? 4 0.9. n=2



More: Two-humped catastrophe

ANIMATION, iclick here'
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Examples of decay

Here are two examples of a decay towards a decreasing invariant
solution. In both cases the initial profile is chosen in a vicinity of
this solution and the right-hand side of (9) is negative.

Consider the equation uy = £2uy — 2uuy.
t XX X



Examples of decay

Here are two examples of a decay towards a decreasing invariant
solution. In both cases the initial profile is chosen in a vicinity of
this solution and the right-hand side of (9) is negative.

Consider the equation u; = e2uy, — 2uuy.

Ex. 1. Choose IVBP:
u(x,0) = —2tanh(x) + 1.6esin(27x), u(0,t) = 0, u(1, t) =
—e2tanh(1); ¢ = 0.05.
Here ;1 = —e?tanh(x) is a decreasing invariant solution,
v = 1.6e sin(2mx) — the perturbation.
Asymptotics at t — oo coincides with p, see the following
graph. The dissipation reigns in and no catastrophe develops.
The explanation can be seen in next graph, where the typical
graph of integrand v2 + 2 in (9) is given at t = 2; clearly
(V)| 2 < 0.



Decay
Decay, example 1
Decay of decreasing profiles Decay, example 2

Decay, example 1; n=1

time = 0.000000

0.6
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-0.24

~0.44

-0.84

Figure : Initial profile —&2tanh(x) + 1.6¢ sin(27x). Asymptotic limit
(dash line) is the invariant solution —&? tanh(x)
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Figure : Initial profile —&2tanh(x) + 1.6¢ sin(27x). Asymptotic limit
(dash line) is the invariant solution —&? tanh(x)
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L2 estimate

for the decay rate

0.0004 4

0.0003 4

0.0002 4

0.0001 4

X

Figure : The graph of the integrand v2 + p, /% for previous evolution at
t=2.



Equation u; = 2uy — 2uuy.



Equation u; = 2uy — 2uuy.

Ex. 2. IVBP:
u(1,t) = —e?tanh(1) + ((sech?(1)),
u(0,t) = ¢, u(x,0) = —e2tanh(x) + £((sech?(x)).
The initial profile u(x,0) gives an impression of being in
vicinity of the invariant solution —&2tanh(x) as it is modestly
perturbed by ((sech?(x)). In fact it tends to another
(decreasing) invariant solution 2.06<? tanh(—2.06x + 2.1), see
next graph.



Decay, example 2

time = 120.000000

X

Figure : Initial profile —&?tanh(x) + £((sech?(x)) (dashed) and
asymptotic limit 2.06¢2 tanh(—2.06x + 2.1) (solid line).



More examples of decay: a frozen oscillation

In some cases the evolution of the initial profile results early and
clearly not in an invariant solution from the list above; see next
figure, obtained with IVBP {u(x,0) =

—aeg?tanh(a)(2x* — x2),u(0,t) = 0, u(1,t) = —as?tanh(a)},
e =0.05; o = 50.

Note that the invariant solution with the same boundary values is
p(x) = —ae? tanh(ax).



Non-smooth asymptotic limit
Asymptotic profile, general view
Convergence

P Hypothesis
Frozen oscillations yF

Compare initial, asymptotic and invariant profiles

Figure : Initial profile —&?tanh(x) + 1.6esin(27x), u(0,t) = 0,
u(1,t) = —e2tanh(1). Asymptotic limit (dash line) is the invariant
solution —&2 tanh(x); n=1
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Convergence

P Hypothesis
Frozen oscillations yF

Compare initial, asymptotic and invariant profiles

Figure : Initial profile —&?tanh(x) + 1.6esin(27x), u(0,t) = 0,
u(1,t) = —e2tanh(1). Asymptotic limit (dash line) is the invariant
solution —&2 tanh(x); n=1
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Non-smooth asymptotic limit
Asymptotic profile, general view
Convergence

P Hypothesis
Frozen oscillations yF

L?-convergence

The stabilization may be rather quick. The graph of £2-estimate
for the difference v, fol(u(s, t) — u(s))? ds is presented in

0014
00124
0.0104
0.0084
0.0064
0.004 4

0.0024

Figure : The graph of the (v)|2 , at 0 < t < 20.
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The effect is stable, as the asymptotic profile in this example do
not to depend on perturbations of the initial one, provided
boundary data is the same: identical asymptotics are obtained for

u(x,0) = —ae? tanh(a)x
or —ae?tanh(a)x?, etc,:
see



L2 extremals

A stationary point may be an extremal of the £?-estimate
functional,

0

b
Oe s—o/a ((V + 8h)>2< — px(v + 5h)2) dx = 0. (15)

It follows
VXX + :u‘Xl/ - 0 (16)



L2 extremals

A stationary point may be an extremal of the £?-estimate
functional,

0

Oe

/b (v +eh)z — ix(v +h)?) dx = 0. (15)
e=0-Ja

It follows
Usx + pixv = 0. (16)

Decreasing solutions of the Burgers (n = 1)-equation are of the
form p(x) = —atanh(ax + b) and the potential iy is " numerically
finite”. Some of solutions of (16) are discontinuous (eg, the real
part of its complex solution is both discontinuous and
multi-oscillating in some cases).

This discontinuity can generate a chaos on the numeric graph and
be a possible reason of a failed smoothness of v(x). Details will be
published elsewhere.



Piecewise-smoothness?

-0.15

-0.259

Figure : A part of the general view: piecewise-smooth difference; t = 20.
The graph is composed with parts of different invariant solutions.



Breaks of the derivative
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Figure : The graph of the derivative, t = 20.

The equation for the derivative v = /' is
vi = e2v" — 2v2 — 2v/D71(v). Breaks form in early stage of
evolution.
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