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The problem

The Burgers equation

ut(x , t) = ε2uxx(x , t)− u(x , t)ux(x , t). (1)
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The problem

The Burgers equation

ut(x , t) = ε2uxx(x , t)− u(x , t)ux(x , t). (1)

The generalized Burgers equation

ut(x , t) = ε2uxx(x , t)− α · un(x , t)ux(x , t). (2)
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ut(x , t) = ε2uxx(x , t)− u(x , t)ux(x , t). (1)

The generalized Burgers equation

ut(x , t) = ε2uxx(x , t)− α · un(x , t)ux(x , t). (2)

Initial value (IV)
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The problem

The Burgers equation

ut(x , t) = ε2uxx(x , t)− u(x , t)ux(x , t). (1)

The generalized Burgers equation

ut(x , t) = ε2uxx(x , t)− α · un(x , t)ux(x , t). (2)

Initial value (IV) u(x , 0) = f (x), x ∈ [α, β]
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The problem

The Burgers equation

ut(x , t) = ε2uxx(x , t)− u(x , t)ux(x , t). (1)

The generalized Burgers equation

ut(x , t) = ε2uxx(x , t)− α · un(x , t)ux(x , t). (2)

Initial value (IV) u(x , 0) = f (x), x ∈ [α, β]

Boundary problem (BP)
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The problem

The Burgers equation

ut(x , t) = ε2uxx(x , t)− u(x , t)ux(x , t). (1)

The generalized Burgers equation

ut(x , t) = ε2uxx(x , t)− α · un(x , t)ux(x , t). (2)

Initial value (IV) u(x , 0) = f (x), x ∈ [α, β]

Boundary problem (BP) u(α, t) = l(t), u(β, t) = r(t)
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The problem

The Burgers equation

ut(x , t) = ε2uxx(x , t)− u(x , t)ux(x , t). (1)

The generalized Burgers equation

ut(x , t) = ε2uxx(x , t)− α · un(x , t)ux(x , t). (2)

Initial value (IV) u(x , 0) = f (x), x ∈ [α, β]

Boundary problem (BP) u(α, t) = l(t), u(β, t) = r(t)

Below l(t) = A, r(t) = B are constants
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Time-invariant (smooth) solutions

For n = 1

u(x , t)

= c ,

(3)

= − ε2a tanh(ax + c),

(4)

= − ε2a coth(ax + c),

(5)

= εa tan(
ax + c

ε
),

(6)

=
aε2

ax + c
.

(7)
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For n > 1 stationary solutions are given by

x = C1 + ε2(n + 1)

∫
dy

C2 + αyn+1
,

y = C .
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L2-estimate of decay rate

A solution of the (generalized) Burgers equation

ut = uxx − αunux (8)

with zero boundary conditions

u(t, a) = u(t, b) = 0, u(0, x)|[a,b] = f (x) (9)

monotonically tends to zero as t →∞ in L2 norm since

∂

∂t

∫ b

a
u2dx =

∫ b

a
2uutdx = 2

∫ b

a
u(uxx − αunux)dx =

2

∫ b

a
udux +

−α
n + 1

un+1

∣∣∣∣b
a

= 2uux |ba − 2

∫ b

a
u2xdx = −2

∫ b

a
u2xdx 6 0

The greater ux the faster the convergence.
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Equation for the difference

Hypothesis:
When the boundary conditions are non-zero but constant

u(0, x)|[a,b] = f (x) u(t, a) = f (a) = A, u(t, b) = f (b) = B,
(10)

one may expect the solution to converge to the respective
stationary invariant solution, ie, to µ(x),

µxx − αµnµx = 0, µ(a) = A, µ(b) = B (11)

Such a solution exists and is of one of the above listed forms
depending on the combination of A and B.

The answer to this hypothesis is complex.



Equation, continued

Put ν(t, x) = u(t, x)− µ(x), ie, u(t, x) = ν(t, x) + µ(x).
Substituting into the generalized Burgers we get

ut = (ν(t, x) + µ(x))t = ν(t, x)t = uxx − αunux =(12)

(ν(t, x) + µ(x))xx − α(ν(t, x) + µ(x))n(ν(t, x) + µ(x))x .

In the case n = 1 and α = 2,
νxx − 2ννx + [µxx − 2µµx ]− 2{νxµ+ νµx}.
Since µxx − 2µµx = 0 by definition of µ,

νt = νxx − 2ννx − 2(νµ)x . (13)

Boundary conditions for ν are zero by definition of ν.



L2-estimate for decay rate of difference

The rate of ν by analogy with (10):

〈νt〉|L2 =
∂

∂t

∫ b

a
ν2dx =∫ b

a
2ννtdx = 2

∫ b

a
ν(νxx − 2ννx − 2(νµ)x)dx =

2

∫ b

a
νdνx −

4

3
ν3
∣∣∣∣b
a

− 4

∫ b

a
νd(νµ) =

2ννx |ba − 2

∫ b

a
ν2xdx − 4ν(νµ)|ba + 4

∫ b

a
µννxdx =

−2

∫ b

a
ν2xdx + 2

∫ b

a
µdν2 = −2

∫ b

a
ν2xdx + 2

∫ b

a
µxν

2dx − 2 ν2µ
∣∣b
a

=

−2

∫ b

a

(
ν2x + µxν

2
)
dx .



L2-estimate for decay rate of difference, continued

The monotony of L2-convergence is not guaranteed; but it takes
place, in the case µx > 0 ( increasing initial profile). In the case
n > 1 the corresponding conditions are less transparent; for
instance when n = 2

∂

∂t

∫ b

a
ν2dx = −2

∫ b

a

(
ν2x − µxν2(µx − νx)

)
dx .

So µx(µx − νx) > 0 guarantees the deviation ν decay. When
〈νt〉|L2 6 0 fails the difference ν doesn’t necessarily tend to zero.
Usually such evolution ends in a

1 catastrophe,

2 decay

3 a frozen multi-oscillation,
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L2-estimate for decay rate of difference, continued

The monotony of L2-convergence is not guaranteed; but it takes
place, in the case µx > 0 ( increasing initial profile). In the case
n > 1 the corresponding conditions are less transparent; for
instance when n = 2

∂
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∫ b

a

(
ν2x − µxν2(µx − νx)

)
dx .

So µx(µx − νx) > 0 guarantees the deviation ν decay. When
〈νt〉|L2 6 0 fails the difference ν doesn’t necessarily tend to zero.
Usually such evolution ends in a

1 catastrophe, resulting in a Heaviside-type break at the
interval’s end;

2 decay to a smooth invariant solution;

3 a frozen multi-oscillation, a piecewise-smooth invariant
solution.



Time for tilting

For a general quasilinear transport equation (x ∈ R)

wt + f (w)wx = 0 (14)

the moment of gradient catastrophe tc can be defined as follows.
Let w = ϕ(x) be an initial profile. The solution of this problem
may be given in a parametric form w = ϕ(ξ), x = ξ + F(ξ)t
where F = f (ϕ(ξ)).

The characteristics of the form x = ξ + F(ξ)t intersect in the case
ϕ′(ξ) < 0 thus resulting in many-valued w (the tilting of a wave or
a gradient catastrophe). If the inequality holds on a finite interval
there exist a minimal value of time, tc , when this problem arises.
One may determine tc by the formula

tc = −1/F ′(ξc)

where |F(ξc)| = max[α,β] |F ′(ξ)| while F ′(ξ) < 0.
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Without dissipation
Catastrophe, n=1, example 1
Canastrophes, n=1, example 2
Canastrophes, n=2, examples 3-4

Dispersive shock, example 1; n=1

Figure : Shock strucks at ≈ tc : Burgers, n=1, IVBP
u(x , 0) = sech2(x − 1), u(0, t) = sech2(1), u(10, t) = sech2(9)
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u(x , 0) = sech2(x − 1), u(0, t) = sech2(1), u(10, t) = sech2(9)
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Heaviside-type gap develops

Figure : Multi-oscillations move to a Heaviside-type break
tanh2(1)− tanh2(9) at x = 10; t ≈ 8.
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Without dissipation
Catastrophe, n=1, example 1
Canastrophes, n=1, example 2
Canastrophes, n=2, examples 3-4

Dispersive shock, example 2; n=1

Figure : Shock strucks at t ≈ 0.2� tc : Burgers, n=1, IVBP
u(x , 0) = sech2(x − 9), u(0, t) = sech2(9), u(10, t) = sech2(1)
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Without dissipation
Catastrophe, n=1, example 1
Canastrophes, n=1, example 2
Canastrophes, n=2, examples 3-4

Dispersive shock, example 2; n=1

Figure : Shock strucks at t ≈ 0.2� tc : Burgers, n=1, IVBP
u(x , 0) = sech2(x − 9), u(0, t) = sech2(9), u(10, t) = sech2(1)
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Heaviside-type gap develops

Figure : Multi-oscillations move to a Heaviside-type break
− tanh2(1) + tanh2(9) at x = 10; t ≈ 4.
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Without dissipation
Catastrophe, n=1, example 1
Canastrophes, n=1, example 2
Canastrophes, n=2, examples 3-4

Dispersive shock, example 1; n=2

Figure : Start of gradient catastrophe at tc ≈ 0.45. Dash line is the
initial profile sech2(x − 1). n=2; Burgers, n=2, ε = 0.02
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Canastrophes, n=2, examples 3-4

Dispersive shock, example 1; n=2

Figure : Start of gradient catastrophe at tc ≈ 0.45. Dash line is the
initial profile sech2(x − 1). n=2; Burgers, n=2, ε = 0.02
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Heaviside-type gap develops, example 3

Figure : Multi-oscillations move to a Heaviside-type break
− tanh2(1) + tanh2(9) at x = 10; t ≈ 0.8.



Heaviside-type gap develops, example 4

Figure : Multi-oscillations move to a Heaviside-type break at x = 10;
t ≈ 4.6.Dash line is the initial profile −0.01x2 + 0.9. n=2



More: Two-humped catastrophe

ANIMATION, click here



Examples of decay

Here are two examples of a decay towards a decreasing invariant
solution. In both cases the initial profile is chosen in a vicinity of
this solution and the right-hand side of (9) is negative.

Consider the equation ut = ε2uxx − 2uux .

Ex. 1. Choose IVBP:
u(x , 0) = −ε2 tanh(x) + 1.6ε sin(2πx), u(0, t) = 0, u(1, t) =
−ε2 tanh(1); ε = 0.05.
Here µ = −ε2 tanh(x) is a decreasing invariant solution,
ν = 1.6ε sin(2πx) — the perturbation.
Asymptotics at t →∞ coincides with µ, see the following
graph. The dissipation reigns in and no catastrophe develops.
The explanation can be seen in next graph, where the typical
graph of integrand ν2x + µxν

2 in (9) is given at t = 2; clearly
〈νt〉|L2 < 0.
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Decay
Decay, example 1
Decay, example 2

Decay, example 1; n=1

Figure : Initial profile −ε2 tanh(x) + 1.6ε sin(2πx). Asymptotic limit
(dash line) is the invariant solution −ε2 tanh(x)

Alexey Samokhin Gradient catastrophes for a generalized Burgers equation on a finite interval
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(dash line) is the invariant solution −ε2 tanh(x)
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L2 estimate
for the decay rate

Figure : The graph of the integrand ν2x + µxν
2 for previous evolution at

t = 2.



No shocks

Equation ut = ε2uxx − 2uux .

Ex. 2. IVBP:
u(1, t) = −ε2 tanh(1) + ε((sech2(1)),
u(0, t) = ε, u(x , 0) = −ε2 tanh(x) + ε((sech2(x)).
The initial profile u(x , 0) gives an impression of being in
vicinity of the invariant solution −ε2 tanh(x) as it is modestly
perturbed by ε((sech2(x)). In fact it tends to another
(decreasing) invariant solution 2.06ε2 tanh(−2.06x + 2.1), see
next graph.
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Decay, example 2

Figure : Initial profile −ε2 tanh(x) + ε((sech2(x)) (dashed) and
asymptotic limit 2.06ε2 tanh(−2.06x + 2.1) (solid line).



More examples of decay: a frozen oscillation

In some cases the evolution of the initial profile results early and
clearly not in an invariant solution from the list above; see next
figure, obtained with IVBP {u(x , 0) =
−αε2 tanh(α)(2x4 − x2), u(0, t) = 0, u(1, t) = −αε2 tanh(α)},
ε = 0.05; α = 50.

Note that the invariant solution with the same boundary values is
µ(x) = −αε2 tanh(αx).
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Compare initial, asymptotic and invariant profiles

Figure : Initial profile −ε2 tanh(x) + 1.6ε sin(2πx), u(0, t) = 0,
u(1, t) = −ε2 tanh(1). Asymptotic limit (dash line) is the invariant
solution −ε2 tanh(x); n=1
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L2-convergence

The stabilization may be rather quick. The graph of L2-estimate
for the difference ν,

∫ 1
0 (u(s, t)− µ(s))2 ds is presented in

Figure : The graph of the 〈ν〉|L2 , at 0 6 t 6 20.

Alexey Samokhin Gradient catastrophes for a generalized Burgers equation on a finite interval



Stability

The effect is stable, as the asymptotic profile in this example do
not to depend on perturbations of the initial one, provided
boundary data is the same: identical asymptotics are obtained for
u(x , 0) = −αε2 tanh(α)x
or −αε2 tanh(α)x2, etc,:
see

ANIMATION, Click here.



L2-extremals

A stationary point may be an extremal of the L2-estimate
functional,

∂

∂ε

∣∣∣∣
ε=0

∫ b

a

(
(ν + εh)2x − µx(ν + εh)2

)
dx = 0. (15)

It follows
νxx + µxν = 0. (16)

Decreasing solutions of the Burgers (n = 1)-equation are of the
form µ(x) = −a tanh(ax + b) and the potential µx is ”numerically
finite”. Some of solutions of (16) are discontinuous (eg, the real
part of its complex solution is both discontinuous and
multi-oscillating in some cases).
This discontinuity can generate a chaos on the numeric graph and
be a possible reason of a failed smoothness of ν(x). Details will be
published elsewhere.
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Piecewise-smoothness?

Figure : A part of the general view: piecewise-smooth difference; t = 20.
The graph is composed with parts of different invariant solutions.



Breaks of the derivative

Figure : The graph of the derivative, t = 20.

The equation for the derivative v = u′ is
vt = ε2v”− 2v2 − 2v ′D−1(v). Breaks form in early stage of
evolution.
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