"Quantisation of Poisson structures on Painleve monodromy varieties."

Vladimir Rubtsov, ITEP, Moscow and LAREMA, Université d'Angers, (joint work in progress with
L. Chekhov and M. Mazzocco)

Talk at tcmWINE2015 "Workshop on Integrable Nonlinear Equations".

Mikulov, Czech Republic, October, 18-23, 2015

Plan:

- Painlevé equations;
- Isomonodromy and Riemann-Hilbert;
- Affine cubics;
- Singularities and cluster transformations;
- Quantisation an relations to Sklyanin algebras
- Perspectives and output;

Painlevé equations

The Painlevé equations are non linear second order ODE of the form

$$
\frac{\mathrm{d}^{2} w}{\mathrm{~d} z^{2}}=F\left(z, w, \frac{\mathrm{~d} w}{\mathrm{~d} z}\right), \quad z \in \mathbb{C}
$$

where $F(z, w, y)$ is a rational function of z, w, y and the solutions $w\left(z ; c_{1}, c_{2}\right)$ satisfy

1. Painlevé-Kowalevski property: $w\left(z ; c_{1}, c_{2}\right)$ have no critical points that depend on c_{1}, c_{2}.
2. Otherwise, they are the only second order ODE without movable singularities (branching points).
3. For generic $c_{1}, c_{2}, w\left(z ; c_{1}, c_{2}\right)$ are new functions, Painlevé Transcendents.

Painlevé property:

- Example for 1-st ordre ODE:

$$
\begin{array}{lll}
w^{\prime}=w & \Longrightarrow & w=e^{z-z_{0}}, \\
w^{\prime}=w^{2} & \Longrightarrow & w=\frac{1}{z_{0}-z}, \\
w^{\prime}=w^{3} & \Longrightarrow & w \sim \frac{1}{\sqrt{z-z_{0}}}
\end{array}
$$

Painlevé I,II,II,IV

$$
\begin{array}{cr}
\frac{\mathrm{d}^{2} w}{\mathrm{~d} z^{2}}=6 w^{2}+z & \frac{\mathrm{~d}^{2} w}{\mathrm{~d} z^{2}}=2 w^{3}+z w+\alpha \\
\frac{\mathrm{d}^{2} w}{\mathrm{~d} z^{2}}=\frac{1}{w}\left(\frac{\mathrm{~d} w}{\mathrm{~d} z}\right)^{2}-\frac{1}{z} \frac{\mathrm{~d} w}{\mathrm{~d} z}+\frac{\alpha w^{2}+\beta}{z}+\gamma w^{3}+\frac{\delta}{w} \\
\frac{\mathrm{~d}^{2} w}{\mathrm{~d} z^{2}}=\frac{1}{2 w}\left(\frac{\mathrm{~d} w}{\mathrm{~d} z}\right)^{2}+\frac{3}{2} w^{3}+4 z w^{2}+2\left(z^{2}-\alpha\right) w+\frac{\beta}{w}
\end{array}
$$

Painlevé V and VI

$$
\begin{gathered}
\frac{\mathrm{d}^{2} w}{\mathrm{~d} z^{2}}=\left(\frac{1}{2 w}+\frac{1}{w-1}\right)\left(\frac{\mathrm{d} w}{\mathrm{~d} z}\right)^{2}- \\
-\frac{1}{z} \frac{\mathrm{~d} w}{\mathrm{~d} z}+\frac{\gamma w}{z}+\frac{(w-1)^{2}}{z^{2}}\left(\alpha w+\frac{\beta}{w}\right) \frac{\delta w(w+1)}{w-1}, \\
\frac{\mathrm{~d}^{2} w}{\mathrm{~d} z^{2}}=\frac{1}{2}\left(\frac{1}{w}+\frac{1}{w-1}+\frac{1}{w-z}\right) w_{z}^{2}-\left(\frac{1}{z}+\frac{1}{z-1}\right) w_{z}+ \\
+\frac{w(w-1)(w-z)}{z^{2}(z-1)^{2}}\left[\alpha+\beta \frac{z}{w^{2}}+\gamma \frac{z-1}{(w-1)^{2}}+\delta \frac{z(z-1)}{(w-z)^{2}}\right]
\end{gathered}
$$

Painlevé parameters

Denote $z=t$ and

$$
\begin{gathered}
\alpha:=\left(\theta_{\infty}-1 / 2\right)^{2} ; \quad \beta:=-\theta_{0}^{2} \\
\gamma:=\theta_{1}^{2} ; \quad \delta:=\left(1 / 4-\theta_{t}\right)^{2} .
\end{gathered}
$$

Painlevé transcendents - paradigmatic integrable systems

- Reductions of soliton equations (KdV, KP, NLS);

Painlevé transcendents - paradigmatic integrable systems

- Reductions of soliton equations (KdV, KP, NLS);
- They admit a Hamiltonian formulation;

Painlevé transcendents - paradigmatic integrable systems

- Reductions of soliton equations (KdV, KP, NLS);
- They admit a Hamiltonian formulation;
- They can be expressed as the isomonodromic deformation of some linear differential equation with rational coefficients;

Painlevé transcendents - paradigmatic integrable systems

- Reductions of soliton equations (KdV, KP, NLS);
- They admit a Hamiltonian formulation;
- They can be expressed as the isomonodromic deformation of some linear differential equation with rational coefficients;
- All Painlevés (except for P_{l}) admit one-parameter family of solutions (in terms of special functions) and for some special values of parameteres they have particular rational solutions;

Painlevé transcendents - paradigmatic integrable systems

- Reductions of soliton equations (KdV, KP, NLS);
- They admit a Hamiltonian formulation;
- They can be expressed as the isomonodromic deformation of some linear differential equation with rational coefficients;
- All Painlevés (except for P_{l}) admit one-parameter family of solutions (in terms of special functions) and for some special values of parameteres they have particular rational solutions;
- Recently: $P_{I I}$ - has a genuine fully NC analogue (V. Retakh-V.R.)
- All Painlevé equations are isomonodromic deformation equations (Miwa-Jimbo 1980)

$$
\begin{equation*}
\frac{\mathrm{d} B}{\mathrm{~d} \lambda}-\frac{\mathrm{d} A}{\mathrm{~d} z}=[A, B] \tag{1}
\end{equation*}
$$

where $A=A\left(\lambda, z, w, w^{\prime}\right), B=B\left(\lambda, z, w, w^{\prime}\right) \in \mathfrak{s l}_{2}(\mathbb{C})$

- All Painlevé equations are isomonodromic deformation equations (Miwa-Jimbo 1980)

$$
\begin{equation*}
\frac{\mathrm{d} B}{\mathrm{~d} \lambda}-\frac{\mathrm{d} A}{\mathrm{~d} z}=[A, B] \tag{1}
\end{equation*}
$$

where $A=A\left(\lambda, z, w, w^{\prime}\right), B=B\left(\lambda, z, w, w^{\prime}\right) \in \mathfrak{s l}_{2}(\mathbb{C})$

- This means that the monodromy data of the linear system

$$
\begin{equation*}
\frac{\mathrm{d} Y}{\mathrm{~d} \lambda}=A\left(\lambda, z, w, w^{\prime}\right) Y \tag{2}
\end{equation*}
$$

are locally constant along solutions of the Painlevé equation.

- All Painlevé equations are isomonodromic deformation equations (Miwa-Jimbo 1980)

$$
\begin{equation*}
\frac{\mathrm{d} B}{\mathrm{~d} \lambda}-\frac{\mathrm{d} A}{\mathrm{~d} z}=[A, B] \tag{1}
\end{equation*}
$$

where $A=A\left(\lambda, z, w, w^{\prime}\right), B=B\left(\lambda, z, w, w^{\prime}\right) \in \mathfrak{s l}_{2}(\mathbb{C})$

- This means that the monodromy data of the linear system

$$
\begin{equation*}
\frac{\mathrm{d} Y}{\mathrm{~d} \lambda}=A\left(\lambda, z, w, w^{\prime}\right) Y \tag{2}
\end{equation*}
$$

are locally constant along solutions of the Painlevé equation.

- The monodromy data play the role of initial conditions.

PVI as isomonodromic deformation

Painlevé sixth equation

- The Painlevé VI equation describes the isomonodromic deformations of the rank 2 meromorphic connections on \mathbb{P}^{1} with simple poles.

$$
\begin{equation*}
\frac{\mathrm{d} Y}{\mathrm{~d} \lambda}=\left(\frac{A_{1}(z)}{\lambda}+\frac{A_{2}(z)}{\lambda-t}+\frac{A_{3}(z)}{\lambda-1},\right) Y, \lambda \in \mathbb{C} \backslash\{0, t, 1\} \tag{3}
\end{equation*}
$$

where $A_{1}, A_{2}, A_{3} \in \mathfrak{s l}_{2}(\mathbb{C}), A_{1}+A_{2}+A_{3}=-A_{\infty}$, diagonal.

PVI as isomonodromic deformation

Painlevé sixth equation

- The Painlevé VI equation describes the isomonodromic deformations of the rank 2 meromorphic connections on \mathbb{P}^{1} with simple poles.

$$
\begin{equation*}
\frac{\mathrm{d} Y}{\mathrm{~d} \lambda}=\left(\frac{A_{1}(z)}{\lambda}+\frac{A_{2}(z)}{\lambda-t}+\frac{A_{3}(z)}{\lambda-1},\right) Y, \lambda \in \mathbb{C} \backslash\{0, t, 1\} \tag{3}
\end{equation*}
$$

where $A_{1}, A_{2}, A_{3} \in \mathfrak{s l}_{2}(\mathbb{C}), A_{1}+A_{2}+A_{3}=-A_{\infty}$, diagonal.

- Fundamental matrix: $Y_{\infty}(\lambda)=\left(1+O\left(\frac{1}{\lambda}\right)\right) \lambda^{A_{\infty}}$.

PVI as isomonodromic deformation

Painlevé sixth equation

- The Painlevé VI equation describes the isomonodromic deformations of the rank 2 meromorphic connections on \mathbb{P}^{1} with simple poles.

$$
\begin{equation*}
\frac{\mathrm{d} Y}{\mathrm{~d} \lambda}=\left(\frac{A_{1}(z)}{\lambda}+\frac{A_{2}(z)}{\lambda-t}+\frac{A_{3}(z)}{\lambda-1},\right) Y, \lambda \in \mathbb{C} \backslash\{0, t, 1\} \tag{3}
\end{equation*}
$$

where $A_{1}, A_{2}, A_{3} \in \mathfrak{s l}_{2}(\mathbb{C}), A_{1}+A_{2}+A_{3}=-A_{\infty}$, diagonal.

- Fundamental matrix: $Y_{\infty}(\lambda)=\left(1+O\left(\frac{1}{\lambda}\right)\right) \lambda^{A_{\infty}}$.
- Monodromy matrices $\gamma_{j}\left(Y_{\infty}\right)=Y_{\infty} M_{j}$

PVI as isomonodromic deformation

Painlevé sixth equation

- The Painlevé VI equation describes the isomonodromic deformations of the rank 2 meromorphic connections on \mathbb{P}^{1} with simple poles.

$$
\begin{equation*}
\frac{\mathrm{d} Y}{\mathrm{~d} \lambda}=\left(\frac{A_{1}(z)}{\lambda}+\frac{A_{2}(z)}{\lambda-t}+\frac{A_{3}(z)}{\lambda-1},\right) Y, \lambda \in \mathbb{C} \backslash\{0, t, 1\} \tag{3}
\end{equation*}
$$

where $A_{1}, A_{2}, A_{3} \in \mathfrak{s l}_{2}(\mathbb{C}), A_{1}+A_{2}+A_{3}=-A_{\infty}$, diagonal.

- Fundamental matrix: $Y_{\infty}(\lambda)=\left(1+O\left(\frac{1}{\lambda}\right)\right) \lambda^{A_{\infty}}$.
- Monodromy matrices $\gamma_{j}\left(Y_{\infty}\right)=Y_{\infty} M_{j}$
- Describes by generators of the fundamental group under the anti-isomorphism

$$
\rho: \pi_{1}\left(\mathbb{P}^{1} \backslash\{0, t, 1, \infty\}, \lambda_{1}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})
$$

- $\operatorname{eigen}\left(M_{j}\right)=\operatorname{eigen}\left(\exp \left(2 \pi i A_{j}\right)\right.$
- We fix the base point λ_{1} at infinity and the generators of the fundamental group to be $\gamma_{1}, \gamma_{2}, \gamma_{3}$ such that γ_{j} encircles only the pole i once and are oriented in such a way that

$$
\begin{equation*}
M_{1} M_{2} M_{3} M_{\infty}=\mathbb{I}, \quad M_{\infty}=\exp \left(2 \pi i A_{\infty}\right) \tag{4}
\end{equation*}
$$

- Eigenvalues of A_{j} are $\left(\theta_{j},-\theta_{j}\right), j=0, t, 1, \infty$.

Let:

$$
G_{j}:=\operatorname{Tr}\left(M_{j}\right)=2 \cos \left(\pi \theta_{j}\right), \quad j=0, t, 1, \infty,
$$

The Riemann-Hilbert correspondence

$$
\mathcal{F}\left(\theta_{0}, \theta_{t}, \theta_{1}, \theta_{\infty}\right) / \mathcal{G} \rightarrow \mathcal{M}\left(G_{1}, G_{2}, G_{3}, G_{\infty}\right) / \mathrm{SL}_{2}(\mathbb{C})
$$

where \mathcal{G} is the gauge group, is defined by associating to each Fuchsian system its monodromy representation class. The representation space $\mathcal{M}\left(G_{1}, G_{2}, G_{3}, G_{\infty}\right)$ is realised as an affine cubic surface (Jimbo)

$$
\begin{equation*}
x_{1} x_{2} x_{3}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\omega_{1} x_{1}+\omega_{2} x_{2}+\omega_{3} x_{3}+\omega_{4}=0 \tag{5}
\end{equation*}
$$

where:

$$
x_{1}=\operatorname{Tr}\left(M_{2} M_{3}\right), \quad x_{2}=\operatorname{Tr}\left(M_{1} M_{3}\right), \quad x_{3}=\operatorname{Tr}\left(M_{1} M_{2}\right) .
$$

and

$$
\begin{gathered}
-\omega_{i}:=G_{k} G_{j}+G_{i} G_{\infty}, i \neq k, j, \\
\omega_{\infty}=G_{1}^{2}+G_{2}^{2}+G_{3}^{2}+G_{\infty}^{2}+G_{1} G_{2} G_{3} G_{\infty}-4
\end{gathered}
$$

Iwasaki proved that the triple (x_{1}, x_{2}, x_{3}) satisfying the cubic relation (5) provides a set of coordinates on a large open subset

$$
S \subset \mathcal{M}\left(G_{1}, G_{2}, G_{3}, G_{\infty}\right)
$$

In what follows, we restrict to such open set.

Following Sakai, there are eight Painlevé equations corresponding to the eight extended Dynkin diagrams:

$$
\widetilde{D}_{4}, \widetilde{D}_{5}, \widetilde{D}_{6}, \widetilde{D}_{7}, \widetilde{D}_{8}, \widetilde{E}_{6}, \widetilde{E}_{7}, \widetilde{E}_{8}
$$

corresponding respectively to PVI, PV, three different cases of PIII, PIV, PII and PI.
Their monodromy manifolds were studied by several authors, but were recently presented in a unified way:

$$
\widetilde{D}_{4} \quad x_{1} x_{2} x_{3}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\omega_{1} x_{1}+\omega_{2} x_{2}+\omega_{3} x_{3}+\omega_{4}=0
$$

$\widetilde{D}_{5} \quad x_{1} x_{2} x_{3}+x_{1}^{2}+x_{2}^{2}+\omega_{1} x_{1}+\omega_{2} x_{2}+\omega_{3} x_{3}+\omega_{4}=0$,
$\widetilde{D}_{6} \quad x_{1} x_{2} x_{3}+x_{1}^{2}+x_{2}^{2}+\omega_{1} x_{1}+\omega_{2} x_{2}+\omega_{1}-1=0$,
\widetilde{D}_{7}

$$
x_{1} x_{2} x_{3}+x_{1}^{2}+x_{2}^{2}+\omega_{1} x_{1}=0
$$

\widetilde{D}_{8}

$$
x_{1} x_{2} x_{3}+x_{1}^{2}+x_{2}^{2}+1=0
$$

$\widetilde{E}_{6} \quad x_{1} x_{2} x_{3}+x_{1}^{2}+\omega_{1} x_{1}+\omega_{2}\left(x_{2}+x_{3}\right)+1+\omega_{4}=0$,
\widetilde{E}_{7}^{*}

$$
x_{1} x_{2} x_{3}+x_{1}+x_{2}+x_{3}+\omega_{4}=0
$$

$\widetilde{E}_{7}^{* *}$

$$
x_{1} x_{2} x_{3}+x_{1}+\omega_{2} x_{2}+x_{3}-\omega_{2}+1=0
$$

\widetilde{E}_{8}

$$
x_{1} x_{2} x_{3}+x_{1}+x_{2}+1=0,
$$

Confluence of Painlevé equations (Sakai)

General Affine Cubic

The main object studied in this talk is the affine irreducible cubic surface $M_{\phi}:=\operatorname{Spec}\left(\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\langle\phi=0\rangle\right)$ where
$\phi=x_{1} x_{2} x_{3}+\epsilon_{1}^{(d)} x_{1}^{2}+\epsilon_{2}^{(d)} x_{2}^{2}+\epsilon_{3}^{(d)} x_{3}^{2}+\omega_{1}^{(d)} x_{1}+\omega_{2}^{(d)} x_{2}+\omega_{3}^{(d)} x_{3}+\omega_{4}^{(d)}=0$,
(7)

According to Saito and Van der Put, the monodromy manifolds $\mathcal{M}^{(d)}$ have all the form of M_{ϕ}

Here d is an index running on the list of the extended Dynkin diagrams $\widetilde{D}_{4}, \widetilde{D}_{5}, \widetilde{D}_{6}, \widetilde{D}_{7}, \widetilde{D}_{8}, \widetilde{E}_{6}, \widetilde{E}_{7}^{*}, \widetilde{E}_{7}^{* *}, \widetilde{E}_{8}$ and the parameters $\epsilon_{i}^{(d)}, \omega_{i}^{(d)}, i=1,2,3$ are given by:

$$
\begin{align*}
& \epsilon_{1}^{(d)}= \begin{cases}1 & \text { for } d=\widetilde{D}_{4}, \widetilde{D}_{5}, \widetilde{D}_{6}, \widetilde{D}_{7}, \widetilde{D}_{8}, \widetilde{E}_{6} \\
0 & \text { for } d=\widetilde{E}_{7}^{*}, \widetilde{E}_{7}^{* *}, \widetilde{E}_{8},\end{cases} \\
& \epsilon_{2}^{(d)}= \begin{cases}1 & \text { for } d=\widetilde{D}_{4}, \widetilde{D}_{5}, \widetilde{D}_{6}, \widetilde{D}_{7}, \widetilde{D}_{8} \\
0 & \text { for } d=\widetilde{E}_{6}, \widetilde{E}_{7}^{*}, \widetilde{E}_{7}^{* *}, \widetilde{E}_{8}\end{cases} \tag{8}\\
& \epsilon_{3}^{(d)}= \begin{cases}1 & \text { for } d=\widetilde{D}_{4}, \\
0 & \text { for } d=\widetilde{D}_{5}, \widetilde{D}_{6}, \widetilde{D}_{7}, \widetilde{D}_{8}, \widetilde{E}_{6}, \widetilde{E}_{7}^{*}, \widetilde{E}_{7}^{* *}, \widetilde{E}_{8} .\end{cases}
\end{align*}
$$

The coefficients $\omega^{(d)}$ are defined by:

$$
\begin{align*}
& \omega_{1}^{(d)}=-G_{1}^{(d)} G_{\infty}^{(d)}-\epsilon_{1}^{(d)} G_{2}^{(d)} G_{3}^{(d)} \\
& \omega_{2}^{(d)}=-G_{2}^{(d)} G_{\infty}^{(d)}-\epsilon_{2}^{(d)} G_{1}^{(d)} G_{3}^{(d)} \\
& \omega_{3}^{(d)}=-G_{3}^{(d)} G_{\infty}^{(d)}-\epsilon_{3}^{(d)} G_{1}^{(d)} G_{2}^{(d)}, \tag{9}\\
& \omega_{4}^{(d)}=\epsilon_{2}^{(d)} \epsilon_{3}^{(d)}\left(G_{1}^{(d)}\right)^{2}+\epsilon_{1}^{(d)} \epsilon_{3}^{(d)}\left(G_{2}^{(d)}\right)^{2}+\epsilon_{1}^{(d)} \epsilon_{2}^{(d)}\left(G_{3}^{(d)}\right)^{2}+ \\
& \left(G_{\infty}^{(d)}\right)^{2}+G_{1}^{(d)} G_{2}^{(d)} G_{3}^{(d)} G_{\infty}^{(d)}-4 \epsilon_{1}^{(d)} \epsilon_{2}^{(d)} \epsilon_{3}^{(d)},
\end{align*}
$$

Here $G_{1}^{(d)}, G_{2}^{(d)}, G_{3}^{(d)}, G_{\infty}^{(d)}$ are some constants related to the parameters appearing in the Painlevé equations as follows:

$$
\begin{aligned}
& G_{1}^{(d)}=\left\{\begin{array}{lc}
2 \cos \pi \theta_{0} & d=\widetilde{D}_{4}, \widetilde{D}_{5}, \widetilde{E}_{6} \\
e^{-\frac{i \pi\left(\theta_{0}+1\right)}{}} & d=\widetilde{E}_{*}^{*} \\
e^{-i \pi \theta_{0}} & d=\widetilde{E}_{7}^{* *} \\
1 & d=\widetilde{D}_{7}, \widetilde{D}_{8}, \widetilde{E}_{8} \\
e^{\frac{i \pi\left(\theta_{0}+\theta_{\infty}\right)}{2}}+e^{\frac{-i \pi\left(\theta_{0}+\theta_{\infty}\right)}{2}} & d=\widetilde{D}_{6},
\end{array}\right. \\
& G_{2}^{(d)}=\left\{\begin{array}{lr}
2 \cos \pi \theta_{1} & d=\widetilde{D}_{4}, \widetilde{D}_{5}, \\
2 \cos \pi \theta_{\infty} & d=\widetilde{E}_{6} \\
e^{-\frac{i \pi\left(\theta_{0}+1\right)}{2}} & d=\widetilde{E}_{7}^{*} \\
e^{i \pi \theta_{0}} & d=\widetilde{E}_{* *}^{* *} \\
1 & d=\widetilde{D}_{8}, \widetilde{E}_{8} \\
e^{\frac{i \pi\left(\theta_{0}-\theta_{\infty}\right)}{2}}+e^{\frac{i \pi\left(-\theta_{0}+\theta_{\infty}\right)}{2}} & d=\widetilde{D}_{6}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& G_{3}^{(d)}=\left\{\begin{array}{lc}
2 \cos \pi \theta_{t} & d=\widetilde{D}_{4}, \\
1 & d=\widetilde{D}_{5}, \widetilde{D}_{7} \\
2 \cos \pi \theta_{\infty} & d=\widetilde{E}_{6} \\
e^{-\frac{i \pi\left(\theta_{0}+1\right)}{2}} & d=\widetilde{E}_{7}^{*} \\
e^{-i \pi \theta_{0}} & d=\widetilde{E}_{\widetilde{7}}^{* *} \\
0 & d=\widetilde{D}_{6}, \widetilde{D}_{8}, \widetilde{E}_{8}
\end{array}\right. \\
& G_{\infty}^{(d)}=\left\{\begin{array}{lr}
2 \cos \pi \theta_{\infty} & d=\widetilde{D}_{4}, \widetilde{D}_{5}, \widetilde{E}_{6} \\
e^{i \pi\left(\theta_{0}+1\right)} 2 & d=\widetilde{E}_{7}^{*} \\
e^{i \pi \theta_{0}} & d=\widetilde{E}_{7}^{* *} \\
1 & d=\widetilde{D}_{8}, \widetilde{E}_{8} \\
e^{\frac{i \pi\left(\theta_{0}+\theta_{\infty}\right)}{2}} & d=\widetilde{D}_{6} \\
0 & d=\widetilde{D}_{7}
\end{array}\right.
\end{aligned}
$$

This family of cubics is a variety
$\left.M_{\phi}=\left\{(\bar{x}, \bar{\omega}) \in \mathbb{C}^{3} \times \Omega\right): \phi(\bar{x}, \bar{\omega})=0\right\}$ where
$\bar{x}=\left(x_{1}, x_{2}, x_{3}\right), \quad \bar{\omega}=\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right)$ and the
" \bar{x}-forgetful"projection $\pi: M_{\phi} \rightarrow \Omega: \pi(\bar{x}, \bar{\omega})=\bar{\omega}$. This projection defines a family of affine cubics with generically non-singular fibres $\pi^{-1}(\bar{\omega})$
The cubic surface $M_{\phi_{\bar{\omega}}}$ has a volume form $\vartheta_{\bar{\omega}}$ given by the Poincaré residue formulae:

$$
\begin{equation*}
\vartheta_{\bar{\omega}}=\frac{d x_{1} \wedge d x_{2}}{\left(\partial \phi_{\bar{\omega}}\right) /\left(\partial x_{3}\right)}=\frac{d x_{2} \wedge d x_{3}}{\left(\partial \phi_{\bar{\omega}}\right) /\left(\partial x_{1}\right)}=\frac{d x_{3} \wedge d x_{1}}{\left(\partial \phi_{\bar{\omega}}\right) /\left(\partial x_{2}\right)} \tag{10}
\end{equation*}
$$

The volume form is a holomorphic 2-form on the non-singular part of $M_{\phi_{\bar{\omega}}}$ and it has singularities along the singular locus. This form defines the Poisson brackets on the surface in the usual way as

$$
\begin{equation*}
\left\{x_{1}, x_{2}\right\}_{\bar{\omega}}=\frac{\partial \phi_{\bar{\omega}}}{\partial x_{3}} \tag{11}
\end{equation*}
$$

The other brackets are defined by circular transposition of x_{1}, x_{2}, x_{3}. For $(i, j, k)=(1,2,3)$:

$$
\begin{equation*}
\left\{x_{i}, x_{j}\right\}_{\bar{\omega}}=\frac{\partial \phi_{\bar{\omega}}}{\partial x_{k}}=x_{i} x_{j}+2 \epsilon_{i}^{(d)} x_{k}+\omega_{i}^{(d)} \tag{12}
\end{equation*}
$$

and the volume form (10) reads as

$$
\begin{equation*}
\vartheta_{\bar{\omega}}=\frac{d x_{i} \wedge d x_{j}}{\left(\partial \phi_{\bar{\omega}} / \partial x_{k}\right)}=\frac{d x_{i} \wedge d x_{j}}{\left(x_{i} x_{j}+2 \epsilon_{i}^{(d)} x_{k}+\omega_{i}^{(d)}\right)} \tag{13}
\end{equation*}
$$

Observe that for any $\phi \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$ the following formulae define a Poisson bracket on $\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$:

$$
\begin{equation*}
\left\{x_{i}, x_{i+1}\right\}=\frac{\partial \phi}{\partial x_{i+2}}, \quad x_{i+3}=x_{i} \tag{14}
\end{equation*}
$$

and ϕ itself is a central element for this bracket, so that the variety

$$
M_{\phi}:=\operatorname{Spec}\left(\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\langle\phi=0\rangle\right)
$$

inherits the Poisson variety structure [Nambu ~ 70].
Today I am going to quantize it.

Affine Cubic as it is -1 :

- In singularity theory - the universal unfolding of the D_{4} singularity.

Affine Cubic as it is -1 :

- In singularity theory - the universal unfolding of the D_{4} singularity.
- Oblomkov: the quantisation of the D_{4} affine cubic surface M_{ϕ} coincides with spherical subalgebra of the generalised rank 1 double affine Hecke algebra H (or Cherednick algebra of type $C_{1} C_{1}^{\nu}$)

Affine Cubic as it is -1 :

- In singularity theory - the universal unfolding of the D_{4} singularity.
- Oblomkov: the quantisation of the D_{4} affine cubic surface M_{ϕ} coincides with spherical subalgebra of the generalised rank 1 double affine Hecke algebra H (or Cherednick algebra of type $C_{1} C_{1}^{\nu}$)
- In algebraic geometry - projective completion:

$$
\begin{aligned}
\bar{M}_{\tilde{\phi}}:= & \left\{(u, v, w, t) \in \mathbb{P}^{3} \mid x_{1}^{2} t+x_{2}^{2} t+x_{3}^{2} t-x_{1} x_{2} x_{3}+\right. \\
& \left.+\omega_{3} x_{1} t^{2}+\omega_{2} x_{2} t^{2}+\omega_{3} x_{3} t^{2}+\omega_{4} t^{3}=0\right\}
\end{aligned}
$$

is a del Pezzo surface of degree three and differs from it by three smooth lines at infinity forming a triangle [Oblomkov] $t=0, \quad x_{1} x_{2} x_{3}=0$.

Affine Cubic as it is -2 :

- In the Painlevé context the family of surfaces were considered by S. Cantat et F. Loray and by M. Inaba, K. Iwasaki and M.Saito.

Affine Cubic as it is -2 :

- In the Painlevé context the family of surfaces were considered by S. Cantat et F. Loray and by M. Inaba, K. Iwasaki and M.Saito.
- PVI (\tilde{D}_{4}) cubic with only $\omega_{4} \neq 0$ admits the log-canonical symplectic structure $\bar{\vartheta}=\frac{d u \wedge d v}{u v}$ under isomorphism $\mathbb{C}^{*} \times \mathbb{C}^{*} / \imath \rightarrow M_{\phi}$ by

$$
(u, v) \rightarrow\left(x_{1}=-\left(u+\frac{1}{u}\right), x_{2}=-\left(v+\frac{1}{v}\right), x_{3}=-\left(u v+\frac{1}{u v}\right)\right.
$$

and $\imath: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ is the involution $\imath(u)=\frac{1}{u}, \imath(v)=\frac{1}{v}$.

Affine Cubic as it is -2 :

- In the Painlevé context the family of surfaces were considered by S. Cantat et F. Loray and by M. Inaba, K. Iwasaki and M.Saito.
- PVI (\tilde{D}_{4}) cubic with only $\omega_{4} \neq 0$ admits the log-canonical symplectic structure $\bar{\vartheta}=\frac{d u \wedge d v}{u v}$ under isomorphism $\mathbb{C}^{*} \times \mathbb{C}^{*} / \imath \rightarrow M_{\phi}$ by

$$
(u, v) \rightarrow\left(x_{1}=-\left(u+\frac{1}{u}\right), x_{2}=-\left(v+\frac{1}{v}\right), x_{3}=-\left(u v+\frac{1}{u v}\right)\right.
$$

and $\imath: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ is the involution $\imath(u)=\frac{1}{u}, \imath(v)=\frac{1}{v}$.

- The family (7) can be "uniformize"by some analogues of theta-functions related to toric mirror data on log-Calabi-Yau surfaces (M. Gross, P. Hacking and S.Keel (see Example 5.12 of "Mirror symmetry for log-Calabi-Yau varieties I, arXiv:1106.4977).

Basic ideas

- The character variety of a Riemann sphere with 4 holes $\operatorname{Hom}\left(\pi_{1}\left(\mathbb{P}^{1} \backslash\{0, \mathrm{t}, 1, \infty\}\right) ; \mathrm{SL}_{2}(\mathbb{C})\right) / \mathrm{SL}_{2}(\mathbb{C})$ is the monodromy cubic of the Painlevé VI (Goldman-Toledo).

Basic ideas

- The character variety of a Riemann sphere with 4 holes $\operatorname{Hom}\left(\pi_{1}\left(\mathbb{P}^{1} \backslash\{0, \mathrm{t}, 1, \infty\}\right) ; \mathrm{SL}_{2}(\mathbb{C})\right) / \mathrm{SL}_{2}(\mathbb{C})$ is the monodromy cubic of the Painlevé VI (Goldman-Toledo).
- The confluent Painlevé monodromy manifolds are "decorated character varieties (Chekhov-Mazzocco -R.2015).

Basic ideas

- The character variety of a Riemann sphere with 4 holes $\operatorname{Hom}\left(\pi_{1}\left(\mathbb{P}^{1} \backslash\{0, \mathrm{t}, 1, \infty\}\right) ; \mathrm{SL}_{2}(\mathbb{C})\right) / \mathrm{SL}_{2}(\mathbb{C})$ is the monodromy cubic of the Painlevé VI (Goldman-Toledo).
- The confluent Painlevé monodromy manifolds are "decorated character varieties (Chekhov-Mazzocco -R.2015).
- The real slice of the $\mathrm{SL}_{2}(\mathbb{C})$ character variety is the Teichmüller space.

Basic ideas

- The character variety of a Riemann sphere with 4 holes $\operatorname{Hom}\left(\pi_{1}\left(\mathbb{P}^{1} \backslash\{0, \mathrm{t}, 1, \infty\}\right) ; \mathrm{SL}_{2}(\mathbb{C})\right) / \mathrm{SL}_{2}(\mathbb{C})$ is the monodromy cubic of the Painlevé VI (Goldman-Toledo).
- The confluent Painlevé monodromy manifolds are "decorated character varieties (Chekhov-Mazzocco -R.2015).
- The real slice of the $\mathrm{SL}_{2}(\mathbb{C})$ character variety is the Teichmüller space.
- The shear coordinates on the Teichmüller space can be complexified) \Rightarrow coordinate description for the character variety.

Basic ideas

- The character variety of a Riemann sphere with 4 holes $\operatorname{Hom}\left(\pi_{1}\left(\mathbb{P}^{1} \backslash\{0, \mathrm{t}, 1, \infty\}\right) ; \mathrm{SL}_{2}(\mathbb{C})\right) / \mathrm{SL}_{2}(\mathbb{C})$ is the monodromy cubic of the Painlevé VI (Goldman-Toledo).
- The confluent Painlevé monodromy manifolds are "decorated character varieties (Chekhov-Mazzocco -R.2015).
- The real slice of the $\mathrm{SL}_{2}(\mathbb{C})$ character variety is the Teichmüller space.
- The shear coordinates on the Teichmüller space can be complexified) \Rightarrow coordinate description for the character variety.
- To visualize the confluence and the "decoration"we shall introduce two moves correspond to certain asymptotics in the (complexified) shear coordinates.

Basic ideas

- The character variety of a Riemann sphere with 4 holes $\operatorname{Hom}\left(\pi_{1}\left(\mathbb{P}^{1} \backslash\{0, \mathrm{t}, 1, \infty\}\right) ; \mathrm{SL}_{2}(\mathbb{C})\right) / \mathrm{SL}_{2}(\mathbb{C})$ is the monodromy cubic of the Painlevé VI (Goldman-Toledo).
- The confluent Painlevé monodromy manifolds are "decorated character varieties (Chekhov-Mazzocco -R.2015).
- The real slice of the $\mathrm{SL}_{2}(\mathbb{C})$ character variety is the Teichmüller space.
- The shear coordinates on the Teichmüller space can be complexified) \Rightarrow coordinate description for the character variety.
- To visualize the confluence and the "decoration"we shall introduce two moves correspond to certain asymptotics in the (complexified) shear coordinates.
- Start from a sphere with 4 holes.

Poincaré uniformization

- Poincaré uniformization: $\Sigma_{0,4} \sim \mathbb{H} / \Delta_{0,4}$

Poincaré uniformization

- Poincaré uniformization: $\Sigma_{0,4} \sim \mathbb{H} / \Delta_{0,4}$
- The Fuchsian group $\Delta_{0,4}=<\gamma_{1}, \gamma_{2}, \gamma_{3},>, \gamma_{j} \in \mathrm{PSL}_{2}(\mathbb{R})$.

Poincaré uniformization

- Poincaré uniformization: $\Sigma_{0,4} \sim \mathbb{H} / \Delta_{0,4}$
- The Fuchsian group $\Delta_{0,4}=<\gamma_{1}, \gamma_{2}, \gamma_{3},>, \gamma_{j} \in \operatorname{PSL}_{2}(\mathbb{R})$.
- The Teichmüller space

$$
\mathcal{T}_{0,4}=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{0,4}, \operatorname{PSL}_{2}(\mathbb{R})\right) / \mathrm{PSL}_{2}(\mathbb{R})\right.
$$

Poincaré uniformization

- Poincaré uniformization: $\Sigma_{0,4} \sim \mathbb{H} / \Delta_{0,4}$
- The Fuchsian group $\Delta_{0,4}=<\gamma_{1}, \gamma_{2}, \gamma_{3},>, \gamma_{j} \in \operatorname{PSL}_{2}(\mathbb{R})$.
- The Teichmüller space $\mathcal{T}_{0,4}=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{0,4}, \operatorname{PSL}_{2}(\mathbb{R})\right) / \operatorname{PSL}_{2}(\mathbb{R})\right.$
- Closed geodesics on $\Sigma_{0,4} \Longleftrightarrow$ conjug. classes in $\pi_{1}\left(\Sigma_{0,4}\right)$

Poincaré uniformization

- Poincaré uniformization: $\Sigma_{0,4} \sim \mathbb{H} / \Delta_{0,4}$
- The Fuchsian group $\Delta_{0,4}=<\gamma_{1}, \gamma_{2}, \gamma_{3},>, \gamma_{j} \in \operatorname{PSL}_{2}(\mathbb{R})$.
- The Teichmüller space $\mathcal{T}_{0,4}=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{0,4}, \operatorname{PSL}_{2}(\mathbb{R})\right) / \operatorname{PSL}_{2}(\mathbb{R})\right.$
- Closed geodesics on $\Sigma_{0,4} \Longleftrightarrow$ conjug. classes in $\pi_{1}\left(\Sigma_{0,4}\right)$
- Closed paths in the fat graph $\Gamma_{0,4} \Longleftrightarrow$ conjug. classes in $\Delta_{0,4}$

Shear coordinates on 4-holed sphere

In the D_{4} case the parameterisation of the cubic in Thurston shear coordinates on the fat-graph of a 4-holed sphere was found by Chekhov-Mazzocco:

$$
\begin{aligned}
& x_{1}=-e^{\tilde{s}_{2}+\tilde{s}_{3}}-e^{-\tilde{s}_{2}-\tilde{s}_{3}}-e^{-\tilde{s}_{2}+\tilde{s}_{3}}-G_{2} e^{\tilde{s}_{3}}-G_{3} e^{-\tilde{s}_{2}} \\
& x_{2}=-e^{\tilde{s}_{3}+\tilde{s}_{1}}-e^{-\tilde{s}_{3}-\tilde{s}_{1}}-e^{-\tilde{s}_{3}+\tilde{s}_{1}}-G_{3} e^{\tilde{s}_{1}}-G_{1} e^{-\tilde{s}_{3}} \\
& x_{3}=-e^{\tilde{s}_{1}+\tilde{s}_{2}}-e^{-\tilde{s}_{1}-\tilde{s}_{2}}-e^{-\tilde{s}_{1}+\tilde{s}_{2}}- \\
& -G_{1} e^{\tilde{s}_{2}}-G_{2} e^{-\tilde{s}_{1}}
\end{aligned}
$$

where

$$
G_{i}=e^{\frac{p_{i}}{2}}+e^{-\frac{p_{i}}{2}}, \quad i=1,2,3, G_{\infty}=e^{\tilde{s}_{1}+\tilde{s}_{2}+\tilde{s}_{3}}+e^{-\tilde{s}_{1}-\tilde{s}_{2}-\tilde{s}_{3}}
$$

and \tilde{s}_{i} are actually the shifted shear coordinates $\tilde{s}_{i}=s_{i}+\frac{p_{i}}{2}$, $i=1,2,3$.

The geodesic length functions, which are traces of hyperbolic elements in the Fuchsian group $\Delta_{0,4}$ are obtained by decomposing each hyperbolic matrix $\gamma \in \Delta_{0,4}$ into a product of the so-called right, left and edge matrices:
$R:=\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right), L:=\left(\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right), X_{s_{i}}:=\left(\begin{array}{cc}0 & -\exp \left(\frac{s_{i}}{2}\right) \\ \exp \left(-\frac{s_{i}}{2}\right) & 0\end{array}\right)$
(15)

In this setting our x_{1}, x_{2}, x_{3} are the geodesic lengths of three geodesics which go around two holes without self-intersections, for example x_{3} corresponds to the dashed geodesic in Fig.1.

Figure: The fat graph of the 4 holed Riemann sphere. The dashed geodesic corresponds to x_{3}. The corresponding hyperbolic element $\gamma_{1 ; 2}=\operatorname{Tr}\left(\mathrm{X}_{\mathrm{s}_{1}} \mathrm{LX}_{\mathrm{p}_{1}} \mathrm{LX}_{\mathrm{s}_{1}} \mathrm{RX}_{\mathrm{s}_{2}} \mathrm{LX}_{\mathrm{p}_{2}} \mathrm{LX}_{\mathrm{s}_{2}} \mathrm{~L}\right)$
V. Fock: The fat graph associated to a Riemann surface $\Sigma_{g, n}$ of genus g and with n holes is a connected three-valent graph drawn without self-intersections on $\Sigma_{g, n}$ with a prescribed cyclic ordering of labelled edges entering each vertex; it must be a maximal graph in the sense that its complement on the Riemann surface is a set of disjoint polygons (faces), each polygon containing exactly one hole (and becoming simply connected after gluing this hole).

$$
G_{\gamma_{12}}=\operatorname{Tr}\left(\gamma_{12}\right)=2 \cosh \left(l_{\gamma_{12}} / 2\right)
$$

where $I_{\gamma_{12}}$ is actual length of the closed geodesic on $\Sigma_{0,4}$

Figure: The fat graph of the 4 holed Riemann sphere. The geodetic corresponding to x_{1} is obtained by going along first the green loop then the red one.

The confluence from the cubic associated to PVI to the one associated to PV is realised by

$$
p_{3} \rightarrow p_{3}-2 \log [\epsilon]
$$

in the limit $\epsilon \rightarrow 0$. We obtain the following shear coordinate description for the $P V$ cubic:

$$
\begin{aligned}
& x_{1}=-e^{s_{2}+s_{3}+\frac{p_{2}}{2}+\frac{p_{3}}{2}}-G_{3} e^{s_{2}+\frac{p_{2}}{2}} \\
& x_{2}=-e^{s_{3}+s_{1}+\frac{p_{3}}{2}+\frac{p_{1}}{2}}-e^{s_{3}-s_{1}+\frac{p_{3}}{2}-\frac{p_{1}}{2}}-G_{3} e^{-s_{1}-\frac{p_{1}}{2}}-G_{1} e^{s_{3}+\frac{p_{3}}{2}} \\
& x_{3}=-e^{s_{1}+s_{2}+\frac{p_{1}}{2}+\frac{p_{2}}{2}}-e^{-s_{1}-s_{2}-\frac{p_{1}}{2}-\frac{p_{2}}{2}}-e^{s_{1}-s_{2}+\frac{p_{1}}{2}-\frac{p_{2}}{2}}-G_{1} e^{-s_{2}-\frac{p_{2}}{2}}-
\end{aligned}
$$

where

$$
G_{i}=e^{\frac{p_{i}}{2}}+e^{-\frac{p_{i}}{2}}, \quad i=1,2, \quad G_{3}=e^{\frac{p_{3}}{2}}, \quad G_{\infty}=e^{s_{1}+s_{2}+s_{3}+\frac{p_{1}}{2}+\frac{p_{2}}{2}+\frac{p_{3}}{2}} .
$$

These coordinates satisfy the following cubic relation:

$$
\begin{align*}
& x_{1} x_{2} x_{3}+x_{1}^{2}+x_{2}^{2}-\left(G_{1} G_{\infty}+G_{2} G_{3}\right) x_{1}-\left(G_{2} G_{\infty}+G_{1} G_{3}\right) x_{2}- \\
& -G_{3} G_{\infty} x_{3}+G_{\infty}^{2}+G_{3}^{2}+G_{1} G_{2} G_{3} G_{\infty}=0 \tag{17}
\end{align*}
$$

Note that the parameter p_{3} is now redundant, we can eliminate it by rescaling. To obtain the correct PV- cubic, we need to pick $p_{3}=-p_{1}-p_{2}-2 s_{1}-2 s_{2}-2 s_{3}$ so that $G_{\infty}=1$.

Figure: The fat graph corresponding to PV.

Geometrically speaking, sending the perimeter p_{3} to infinity means that we are performing a chewing-gum move:
two holes, one of perimeter p_{3} and the other of perimeter $s_{1}+s_{2}+s_{3}+\frac{p_{1}}{2}+\frac{p_{2}}{2}+\frac{p_{3}}{2}$, become infinite, but the area between them remains finite.
This is leading to a Riemann sphere with three holes and two cusps on one of them. In terms of the fat-graph, this is represented by Figure 2.
The geodesic x_{3} corresponds to the closed loop obtained going around p_{1} and p_{2} (green and red loops), while x_{1} and x_{2} are "asymptotic geodesics"starting at one cusp, going arond p_{1} and p_{2} respectively, and coming back to the other cusp.

Figure: The process of confluence of two holes on the Riemann sphere with four holes. Chewing-gum move: hook two holes together and stretch to infinity by keeping the area between them finite (see Fig.). As a result we obtain a Riemann sphere with one less hole, but with two new cusps on the boundary of this hole. The red geodesic line which was initially closed becomes infinite, therefore two horocycles (the green dashed circles) must be introduced in order to measure its length.

Theorem
(Chekhov-Mazzocco-R.) The decorated character variety of a Riemann sphere with 3 holes, one of which with two cusps, is given by the monodromy manifold of the Painlevé V equation:

$$
x_{1} x_{2} x_{3}+x_{1}^{2}+x_{2}^{2}+\omega_{1} x_{1}+\omega_{2} x_{2}+\omega_{3} x_{3}=\omega_{4} .
$$

The character variety of a Riemann sphere with three holes and two cusps on one boundary is 7-dimensional (rather than 2-dimensional like in PVI case). The fat-graph admits a complete cusped lamination as displayed in the figure below. A full set of coordinates on the character variety is given by the five elements in the lamination and the two parameters G_{1} and G_{2} which determine the perimeter of the two non-cusped holes.

Figure 6. The system of ares for PV.

Notice that there are two shear coordinates associated to the two cusps, they are denoted by k_{1} and k_{2}, their sum corresponds to what we call p_{3} above.
These shear coordinates do not commute with the other ones, they satisfy the following relations:

$$
\left\{s_{3}, k_{1}\right\}=\left\{k_{1}, k_{2}\right\}=\left\{k_{2}, s_{3}\right\}=1 .
$$

As a consequence in the character variety, the elements G_{3} and G_{∞} are not Casimirs.
In terms of shear coordinates, the elements in the lamination are expressed as follows:

$$
\begin{array}{ll}
a=e^{k_{1}+s_{1}+2 s_{2}+s_{3}+\frac{p_{1}}{2}+p_{2}}, & b=e^{k_{1}+s_{2}+s_{3}+\frac{p_{2}}{2}}, \quad e=e^{\frac{k_{1}}{2}+\frac{k_{2}}{2}}, \\
c=e^{k_{1}+s_{1}+s_{2}+s_{3}+\frac{p_{1}}{2}+\frac{p_{2}}{2}}, & d=e^{\frac{k_{1}}{2}+\frac{k_{2}}{2}+s_{1}+s_{2}+s_{3}+\frac{p_{1}}{2}+\frac{p_{2}}{2}} . \tag{18}
\end{array}
$$

They satisfy the following Poisson relations:

$$
\begin{align*}
& \{a, b\}=a b, \quad\{a, c\}=0, \quad\{a, d\}=-\frac{1}{2} a d, \quad\{a, e\}=\frac{1}{2}((\mathbb{e}) \\
& \{b, c\}=0, \quad\{b, d\}=-\frac{1}{2} b d, \quad\{b, e\}=\frac{1}{2} b e, \tag{20}\\
& \{c, d\}=-\frac{1}{2} c d, \quad\{c, e\}=\frac{1}{2} c e, \quad\{d, e\}=0, \tag{21}
\end{align*}
$$

so that the element $G_{3} G_{\infty}=d e$ is a Casimir.

The symplectic leaves are determined by the values of the three Casimirs G_{1}, G_{2} and $G_{3} G_{\infty}$.
On each symplectic leaf, the PV monodromy manifold (17) is the subspace defined by those functions of a, b, c (and of the Casimir values $G_{1}, G_{2}, G_{3} G_{\infty}$) which commute with $G_{3}=e$. To see this, we can use relations (18) to determine the exponentiated shear coordinates in terms of a, b, c, d, e and then deduce he expressions of x_{1}, x_{2}, x_{3} in terms of the lamination. We obtain the following expressions:

$$
\begin{align*}
& x_{1}=-e \frac{a}{c}-d \frac{b}{c}, \quad x_{2}=-e \frac{b}{c}-G_{1} d \frac{b}{a}-d \frac{b^{2}}{a c}-d \frac{c}{a},(22) \\
& x_{3}=-G_{2} \frac{c}{b}-G_{1} \frac{c}{a}-\frac{b}{a}-\frac{c^{2}}{a b}-\frac{a}{b} \tag{23}
\end{align*}
$$

which automatically satisfy (17).

Due to the Poisson relations (19) the functions that commute with e are exactly the functions of $\frac{a}{b}, \frac{b}{c}, \frac{c}{a}$. Such functions may depend on the Casimir values G_{1}, G_{2} and $G_{3} G_{\infty}$ and e itself, so that $d=G_{\infty}$ becomes a parameter now. With this in mind, it is easy to prove that x_{1}, x_{2}, x_{3} are algebraically independent functions of $\frac{a}{b}, \frac{b}{c}, \frac{c}{a}$ so that x_{1}, x_{2}, x_{3} form a basis in the space of functions which commute with e.

Remark

It is worth reminding that the exponentials of the shear coordinates satisfy the log-canonical Poisson bracket.

Cusps removal:

Figure 2. The process of breaking up a Riemann surface with boundary cusps: by grabbing together two cusps and pulling we tear apart an ideal triangle.

Pис.: Sakai confluence and decoration

Quantization

To produce the quantum Painlevé cubics, we introduce the Hermitian operators S_{1}, S_{2}, S_{3} subject to the commutation inherited from the Poisson bracket of \tilde{s}_{i} :

$$
\left[S_{i}, S_{i+1}\right]=i \pi \hbar\left\{\tilde{s}_{i}, \tilde{s}_{i+1}\right\}=i \pi \hbar, \quad i=1,2,3, i+3 \equiv i
$$

Observe that thanks to this fact, the commutators $\left[S_{i}, S_{j}\right]$ are always numbers and therefore we have

$$
\exp \left(a S_{i}\right) \exp \left(b S_{j}\right)=\exp \left(a S_{i}+b S_{i}+\frac{a b}{2}\left[S_{i}, S_{j}\right]\right)
$$

for any two constants a, b. Therefore we have the Weyl ordering:

$$
e^{S_{1}+S_{2}}=q^{\frac{1}{2}} e^{S_{1}} e^{S_{2}}=q^{-\frac{1}{2}} e^{S_{2}} e^{S_{1}}, \quad q \equiv e^{-i \pi \hbar}
$$

Theorem
(L. Chekhov-M. Mazzocco-V.R)

Denote by X_{1}, X_{2}, X_{3} the quantum Hermitian operators corresponding to x_{1}, x_{2}, x_{3} as above. The quantum commutation relations are:

$$
\begin{equation*}
q^{-\frac{1}{2}} X_{i} X_{i+1}-q^{\frac{1}{2}} X_{i+1} X_{i}=\left(\frac{1}{q}-q\right) \epsilon_{k}^{(d)} X_{k}-\left(q^{-\frac{1}{2}}-q^{\frac{1}{2}}\right) \omega_{k}^{(d)} \tag{24}
\end{equation*}
$$

where $\epsilon_{i}^{(d)}$ and $\omega_{i}^{(d)}$ are the same as in the classical case. The quantum operators satisfy the following quantum cubic relations:

$$
\begin{gathered}
q^{\frac{1}{2}} X_{3} X_{1} X_{2}-q \epsilon_{3}^{(d)} X_{3}^{2}-q^{-1} \epsilon_{1}^{(d)} X_{1}^{2}-q \epsilon_{2}^{(d)} X_{2}^{2}+ \\
q^{\frac{1}{2}} \epsilon_{3}^{(d)} \omega_{3} X_{3}+q^{-\frac{1}{2}} \omega_{1}^{(d)} X_{1}+q^{\frac{1}{2}} \omega_{2}^{(d)} X_{2}-\omega_{4}^{(d)}=0
\end{gathered}
$$

Remark

The Hermitian operators X_{1}, X_{2}, X_{3} corresponding to x_{1}, x_{2}, x_{3} are introduced as follows: consider the classical expressions for x_{1}, x_{2}, x_{3} in terms of s_{1}, s_{2}, s_{3} and p_{1}, p_{2}, p_{3}. Write each product of exponential terms as the exponential of the sum of the exponents and replace those exponents by their quantum version. For example (the case \tilde{D}_{5}): the classical x_{1} is

$$
x_{1}=-e^{s_{2}+s_{3}}-e^{-\left(\tilde{s}_{2}+\tilde{s}_{3}\right)}-G_{2} e^{\tilde{s}_{3}}-G_{3} e^{-\tilde{s}_{2}}
$$

and its quantum version is defined as

$$
\begin{gathered}
X_{1}=-e^{S_{2}}-\left(e^{p_{2} / 2}+e^{-p_{2} / 2}\right) e^{S_{3}}-e^{S_{3}-S_{2}}-e^{S_{3}+S_{2}}= \\
-e^{S_{2}}-\left(e^{p_{2} / 2}+e^{-p_{2} / 2}\right) e^{S_{3}}-q^{-1 / 2} e^{-S_{2}} e^{S_{3}}-q^{1 / 2} e^{S_{2}} e^{S_{3}}
\end{gathered}
$$

Remark

- Our theorem and close results of Marta Mazzocco show that we can interpret the Cherednik algebra and their close "relatives"as a quantisation of the (group algebra of the) monodromy group of the Painlevé equations. Here $q:=e^{-i \pi \hbar}$ and $q^{n} \neq 1$.

Remark

- Our theorem and close results of Marta Mazzocco show that we can interpret the Cherednik algebra and their close "relatives"as a quantisation of the (group algebra of the) monodromy group of the Painlevé equations. Here $q:=e^{-i \pi \hbar}$ and $q^{n} \neq 1$.
- The Askey-Wilson AW(3) (or Zhedanov algebra) can be obtained from (24) for a special constant choice after a proper "rescaling".

"Physical Motivations"

- Standard Model $S U(3) \times S U(2) \times U(1)$ Gauge Theory

"Physical Motivations"

- Standard ModelSU(3) $\times S U(2) \times U(1)$ Gauge Theory
- SUSY desired phenomena are inherited from String Theory

"Physical Motivations"

- Standard ModelSU(3) $\times S U(2) \times U(1)$ Gauge Theory
- SUSY desired phenomena are inherited from String Theory
- Superstring Theory: $\mathbb{R}^{1,9} 10 D=1+3+6$ Dirichlet p - branes: $p+1$-subvarieties in $\mathbb{R}^{1,9}$ on which open strings can end;

"Physical Motivations"

- Standard ModelSU(3) $\times S U(2) \times U(1)$ Gauge Theory
- SUSY desired phenomena are inherited from String Theory
- Superstring Theory: $\mathbb{R}^{1,9} 10 D=1+3+6$ Dirichlet p - branes: $p+1$-subvarieties in $\mathbb{R}^{1,9}$ on which open strings can end;
- D-brane world: live on $D 3$-brane $\perp 6 D$-affine variety \mathcal{M}. $1+3 D$-world-volume with SUSY YM and product gauge group.

D-brane algebras and superpotentials. Basic principles:

- One can associate an algebra to the category of D-branes at a singular point p. In every known example, the collection of possible D-branes at p can be described as a collection of QFT with the same Lagrangian for each of the theories.

D-brane algebras and superpotentials. Basic principles:

- One can associate an algebra to the category of D-branes at a singular point p. In every known example, the collection of possible D-branes at p can be described as a collection of QFT with the same Lagrangian for each of the theories.
- More precisely, one does specify the "matter representation"(as a collection of adjoint and bifundamental fields for the gauge groups G_{i}) and one specifies a superpotential W - the trace of a polynomial in the matter fields.

D-brane algebras and superpotentials. Basic principles:

- One can associate an algebra to the category of D-branes at a singular point p. In every known example, the collection of possible D-branes at p can be described as a collection of QFT with the same Lagrangian for each of the theories.
- More precisely, one does specify the "matter representation"(as a collection of adjoint and bifundamental fields for the gauge groups G_{i}) and one specifies a superpotential W - the trace of a polynomial in the matter fields.
- To such data one can assign a quiver whose vertices label the groups G_{i} and whose directed edges specify the bifundamental and adjoint fields in the matter representation.

Quiver Theory

- Action

$$
\int d^{4} x\left[\int d^{4} \theta \Psi_{i}^{\dagger} e^{V} \Psi_{i}+\left(\frac{1}{4 g^{2}} \int d^{2} \theta \operatorname{Tr} \mathcal{W}_{\alpha} \mathcal{W}^{\alpha}+\int \mathrm{d}^{2} \theta \mathrm{~W}(\psi)+\text { h.c. }\right)\right]
$$

$$
W=\text { superpotential; }
$$

$$
V\left(\phi_{i} ; \bar{\phi}_{i}\right)=\sum_{i}\left|\frac{\partial W}{\partial \phi_{i}}\right|^{2}+\frac{g^{2}}{4}\left(\sum_{i} q_{i}\left|\phi_{i}\right|^{2}\right)^{2}
$$

Quiver Theory

- Action

$$
\int d^{4} x\left[\int d^{4} \theta \Psi_{i}^{\dagger} e^{V} \Psi_{i}+\left(\frac{1}{4 g^{2}} \int d^{2} \theta \operatorname{Tr} \mathcal{W}_{\alpha} \mathcal{W}^{\alpha}+\int \mathrm{d}^{2} \theta \mathrm{~W}(\psi)+\text { h.c. }\right)\right]
$$

$W=$ superpotential;

$$
V\left(\phi_{i} ; \bar{\phi}_{i}\right)=\sum_{i}\left|\frac{\partial W}{\partial \phi_{i}}\right|^{2}+\frac{g^{2}}{4}\left(\sum_{i} q_{i}\left|\phi_{i}\right|^{2}\right)^{2}
$$

- Encode in a Quiver:
k nodes $\Longleftrightarrow \bigvee^{n_{1}}, \ldots \mathcal{V}^{n_{k}} \Longleftrightarrow \prod_{j=1}^{k} U\left(n_{j}\right)$ gauge group;
Each arrow $i \rightarrow j \Longleftrightarrow$ bifundamental fields $X_{i j}$ of $U\left(n_{i}\right) \times U\left(n_{j}\right)$;
Each loop $i \rightarrow i \Longleftrightarrow$ adjoint fields ϕ_{i} of $U\left(n_{i}\right)$;
Superpotential $W \Longleftrightarrow$ linear combination of cycles: $\sum_{i} c_{i}$
gauge invariant operators;
Relations \Longleftrightarrow jacobian of $W\left(\phi_{i}, X_{i j}\right)$.
Vacuum: $\rightsquigarrow V\left(\phi_{i} ; \bar{\phi}_{i}\right)=0 \Rightarrow \frac{\partial W}{\partial \phi_{i}}=0 ; \sum_{i} q_{i}\left|\phi_{i}\right|^{2}=0$.

Superpotential algebra

- From the quiver, we directly get the path algebra, which is the algebra of all paths on the quiver (i.e., all ordered monomials in matter fields).

Superpotential algebra

- From the quiver, we directly get the path algebra, which is the algebra of all paths on the quiver (i.e., all ordered monomials in matter fields).
- A universal feature of this family of theories is the relations in the path algebra determined by what are called " F-term constraints
in physics: $\frac{\partial W}{\partial \phi_{i}}=0$

Superpotential algebra

- From the quiver, we directly get the path algebra, which is the algebra of all paths on the quiver (i.e., all ordered monomials in matter fields).
- A universal feature of this family of theories is the relations in the path algebra determined by what are called " F-term constraints
in physics: $\frac{\partial W}{\partial \phi_{i}}=0$
- These are the algebra relations dictated by $\frac{\partial W}{\partial X_{j}}$. So, given a field theory description of the family of D-branes in the form above, the D-brane algebra is

$$
A=\text { path algebra of quiver } /\left(\frac{\partial W}{\partial X_{j}}\right)
$$

Superpotential algebra

- From the quiver, we directly get the path algebra, which is the algebra of all paths on the quiver (i.e., all ordered monomials in matter fields).
- A universal feature of this family of theories is the relations in the path algebra determined by what are called " F-term constraints
in physics: $\frac{\partial W}{\partial \phi_{i}}=0$
- These are the algebra relations dictated by $\frac{\partial W}{\partial X_{j}}$. So, given a field theory description of the family of D-branes in the form above, the D-brane algebra is

$$
A=\text { path algebra of quiver } /\left(\frac{\partial W}{\partial X_{j}}\right)
$$

- This is called a superpotential algebra, which is a Calabi - Yau algebra.

Elementary example

- First example, we consider the case in which P is a smooth point. In physics language, the conformal fields theory is the $N=4$ SUSY Yang-Mills theory, written in $N=1$ language. The $N=4$ gauge multiplet decomposes as an $N=1$ gauge multiplet plus three complex scalar fields X, Y, Z each transforming in the adjoint representation of the group.

Elementary example

- First example, we consider the case in which P is a smooth point. In physics language, the conformal fields theory is the $N=4$ SUSY Yang-Mills theory, written in $N=1$ language. The $N=4$ gauge multiplet decomposes as an $N=1$ gauge multiplet plus three complex scalar fields X, Y, Z each transforming in the adjoint representation of the group.
- The superpotential is

$$
W=\operatorname{tr}(X(Y Z-Z Y))
$$

Elementary example

- First example, we consider the case in which P is a smooth point. In physics language, the conformal fields theory is the $N=4$ SUSY Yang-Mills theory, written in $N=1$ language. The $N=4$ gauge multiplet decomposes as an $N=1$ gauge multiplet plus three complex scalar fields X, Y, Z each transforming in the adjoint representation of the group.
- The superpotential is

$$
W=\operatorname{tr}(X(Y Z-Z Y))
$$

- The F - term constraint in this case tells us

$$
Y Z=Y Z, \quad X Z=Z X \quad \text { and } \quad X Y=Y X
$$

Elementary example

- First example, we consider the case in which P is a smooth point. In physics language, the conformal fields theory is the $N=4$ SUSY Yang-Mills theory, written in $N=1$ language. The $N=4$ gauge multiplet decomposes as an $N=1$ gauge multiplet plus three complex scalar fields X, Y, Z each transforming in the adjoint representation of the group.
- The superpotential is

$$
W=\operatorname{tr}(X(Y Z-Z Y))
$$

- The F - term constraint in this case tells us

$$
Y Z=Y Z, \quad X Z=Z X \quad \text { and } \quad X Y=Y X
$$

- Thus, we find

$$
\mathcal{A}=\mathbb{C}[X, Y, Z]
$$

the (commutative) polynomial algebra in three variables.

Example 2. Sklyanin algebra-1

- The most famous example of 3-Calabi-Yau algebra is the following graded associative algebra associated with an elliptic curve \mathcal{E} (possibly degenerated).

Example 2. Sklyanin algebra-1

- The most famous example of 3-Calabi-Yau algebra is the following graded associative algebra associated with an elliptic curve \mathcal{E} (possibly degenerated).
- This algebra denotes by $Q_{3}(\mathcal{E}, a, b, c)$ where $(a, b, c) \in \mathbb{C}^{3}$ such that $Q_{3}(\mathcal{E}, a, b, c)=\mathbb{C}<X, Y, Z>/ J_{W}$ with $J_{W}=<$ $a Y Z+b Z Y+c X^{2}, a Z X+b X Z+c Y^{2}, a X Y+b Y X+c Z^{2}>$

Example 2. Sklyanin algebra-1

- The most famous example of 3-Calabi-Yau algebra is the following graded associative algebra associated with an elliptic curve \mathcal{E} (possibly degenerated).
- This algebra denotes by $Q_{3}(\mathcal{E}, a, b, c)$ where $(a, b, c) \in \mathbb{C}^{3}$ such that $Q_{3}(\mathcal{E}, a, b, c)=\mathbb{C}<X, Y, Z>/ J_{W}$ with $J_{W}=<$ $a Y Z+b Z Y+c X^{2}, a Z X+b X Z+c Y^{2}, a X Y+b Y X+c Z^{2}>$
- The ideal J_{W} can be written as a non-commutative jacobian ideal $J_{W}=<\partial_{X}, \partial_{Y}, \partial_{Z}>\in \mathbb{C}<X, Y, Z>$ for superpotential

$$
W=a X Y Z+b Y X Z+c\left(X^{3}+Y^{3}+Z^{3}\right)
$$

Example 2. Sklyanin algebra-2

- Here we consider W as a cyclic word of three variables X, Y, Z, i.e. like an element of the quotient $A_{\sharp}:=\mathbb{C}<X, Y, Z>/[\mathbb{C}<X, Y, Z>, \mathbb{C}<X, Y, Z>]$ with

Example 2. Sklyanin algebra-2

- Here we consider W as a cyclic word of three variables X, Y, Z, i.e. like an element of the quotient $A_{\natural}:=\mathbb{C}<X, Y, Z>/[\mathbb{C}<X, Y, Z>, \mathbb{C}<X, Y, Z>]$ with
- cyclic derivatives $\partial_{X}, \quad \partial_{Y}, \quad \partial_{Z}$ where

$$
\partial_{j}: A_{\natural} \rightarrow \mathbb{C}<X, Y, Z>, j=X, Y, Z
$$

defines for any cyclic word $\varphi \in A_{\natural}$ by

$$
\partial_{j} \varphi:=\sum_{k \mid i_{k}=j} X_{i_{k}+1} X_{i_{k}+2} \ldots X_{i_{N}} \ldots X_{i_{1}} X_{i_{2}} . . X_{i_{k}-1} \in \mathbb{C}<X, Y, Z>
$$

Example 2. Sklyanin algebra-3

Etingof-Ginzburg:

- One can identify the Sklyanin algebra $Q_{3}\left(\mathcal{E}, 1,-q, \frac{c}{3}\right)$ with the flat deformation of the Poisson algebra $\left(\mathbb{C}[x, y, z],\{-,-\}_{\phi}\right)$ as above with $\phi=\frac{1}{3}\left(x^{3}+y^{3}+z^{3}\right)+\tau x y z$ and $W=X Y Z-q Y X Z+\frac{c}{3}\left(X^{3}+Y^{3}+Z^{3}\right)$.

Example 2. Sklyanin algebra-3

Etingof-Ginzburg:

- One can identify the Sklyanin algebra $Q_{3}\left(\mathcal{E}, 1,-q, \frac{c}{3}\right)$ with the flat deformation of the Poisson algebra $\left(\mathbb{C}[x, y, z],\{-,-\}_{\phi}\right)$ as above with $\phi=\frac{1}{3}\left(x^{3}+y^{3}+z^{3}\right)+\tau x y z$ and $W=X Y Z-q Y X Z+\frac{c}{3}\left(X^{3}+Y^{3}+Z^{3}\right)$.
- The coordinate ring $B_{\phi}=\mathbb{C}[x, y, z] / \phi \mathbb{C}[x, y, z]$ of the affine surface $\phi=0$ inherits a Poisson algebra structure.

Example 2. Sklyanin algebra-3

Etingof-Ginzburg:

- One can identify the Sklyanin algebra $Q_{3}\left(\mathcal{E}, 1,-q, \frac{c}{3}\right)$ with the flat deformation of the Poisson algebra
$\left(\mathbb{C}[x, y, z],\{-,-\}_{\phi}\right)$ as above with $\phi=\frac{1}{3}\left(x^{3}+y^{3}+z^{3}\right)+\tau x y z$ and $W=X Y Z-q Y X Z+\frac{c}{3}\left(X^{3}+Y^{3}+Z^{3}\right)$.
- The coordinate ring $B_{\phi}=\mathbb{C}[x, y, z] / \phi \mathbb{C}[x, y, z]$ of the affine surface $\phi=0$ inherits a Poisson algebra structure.
- There is a degree 3 central element $\Phi \in Z\left(Q_{3}\left(\mathcal{E}, 1,-q, \frac{c}{3}\right)\right)$ and the quotient of the Sklyanin 3-Calabi-Yau algebra by two-sided ideal $<\Phi>$ is a flat deformation of the Poisson algebra B_{ϕ}.

Superpotentials of marginal and relevant deformations-1

- There is a "physical interpretation"of the Sklyanin superpotential (Berenstein-Leigh) as a marginal deformation of the superpotential from the Example 1:

$$
\begin{gathered}
W+W_{\text {marg }}= \\
=g \operatorname{tr}(\mathrm{X}[\mathrm{Y}, \mathrm{Z}])+\operatorname{tr}\left(\mathrm{aXYZ}+\mathrm{bYXZ}+\frac{\mathrm{c}}{3}\left(\mathrm{X}^{3}+\mathrm{Y}^{3}+\mathrm{Z}^{3}\right)\right) \in \mathrm{A}_{\mathrm{q}}
\end{gathered}
$$

Superpotentials of marginal and relevant deformations-1

- There is a "physical interpretation"of the Sklyanin superpotential (Berenstein-Leigh) as a marginal deformation of the superpotential from the Example 1:

$$
\begin{gathered}
W+W_{\text {marg }}= \\
=g \operatorname{tr}(\mathrm{X}[\mathrm{Y}, \mathrm{Z}])+\operatorname{tr}\left(\mathrm{aXYZ}+\mathrm{bYXZ}+\frac{\mathrm{c}}{3}\left(\mathrm{X}^{3}+\mathrm{Y}^{3}+\mathrm{Z}^{3}\right)\right) \in \mathrm{A}_{\natural}
\end{gathered}
$$

- The structure of the vacua of D-brane gauge theories relates to the Non-Commutative Geometry also via another superpotentials (relevant deformations) having the form

$$
W_{\text {rel }}=\operatorname{tr}\left(\frac{\mathrm{m}_{1}}{2} \mathrm{X}^{2}+\frac{\mathrm{m}_{2}}{2}\left(\mathrm{Y}^{2}+\mathrm{Z}^{2}\right)+\mathrm{e}_{1} \mathrm{X}+\mathrm{e}_{2} \mathrm{Y}+\mathrm{e}_{3} \mathrm{Z}\right)
$$

Superpotentials of marginal and relevant deformations-2

- The "vacua" of the theory with $W_{\text {tot }}=W+W_{\text {marg }}+W_{t e l}$ superpotential corresponds to solutions of

$$
\partial_{i} W_{t o t}=0, i=X, Y, Z
$$

Superpotentials of marginal and relevant deformations-2

- The "vacua" of the theory with $W_{\text {tot }}=W+W_{\text {marg }}+W_{\text {tel }}$ superpotential corresponds to solutions of

$$
\partial_{i} W_{t o t}=0, i=X, Y, Z
$$

- The defining equations (for $a=1, b=-q$):

$$
\left\{\begin{array}{l}
X_{1} X_{2}-q X_{2} X_{1}=-c X_{3}^{2}-m_{2} X_{3}-e_{3} \tag{25}\\
X_{2} X_{3}-q X_{3} X_{2}=-c X_{1}^{2}-m_{1} X_{1}-e_{1} \\
X_{3} X_{1}-q X_{1} X_{3}=-c X_{2}^{2}-m_{2} X_{2}-e_{2}
\end{array}\right.
$$

This relations contain our (24) (again, after a special constant choice and a "rescaling").

Etingof-Ginzburg ideology-1:

- Let $M=\mathbb{C}^{3}$ considering as the simplest Calabi-Yau manifold and $\phi \in \mathcal{A}=\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$ defines the Poisson bracket of jacobian type as above.

Etingof-Ginzburg ideology-1:

- Let $M=\mathbb{C}^{3}$ considering as the simplest Calabi-Yau manifold and $\phi \in \mathcal{A}=\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$ defines the Poisson bracket of jacobian type as above.
- $M_{\phi}: \phi\left(x_{1}, x_{2}, x_{3}\right)=0$ is an affine surface in M and the coordinate ring $\mathcal{B}_{\phi}:=\mathbb{C}\left[M_{\phi}\right]=\mathcal{A} /(\phi)$ is a commutative Poisson algebra with the structure induced by ϕ

Etingof-Ginzburg ideology-1:

- Let $M=\mathbb{C}^{3}$ considering as the simplest Calabi-Yau manifold and $\phi \in \mathcal{A}=\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$ defines the Poisson bracket of jacobian type as above.
- $M_{\phi}: \phi\left(x_{1}, x_{2}, x_{3}\right)=0$ is an affine surface in M and the coordinate ring $\mathcal{B}_{\phi}:=\mathbb{C}\left[M_{\phi}\right]=\mathcal{A} /(\phi)$ is a commutative Poisson algebra with the structure induced by ϕ
- Let $\phi^{\tau, \nu}=\tau x_{1} x_{2} x_{3}+\frac{\nu}{3}\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right)+P\left(x_{1}\right)+Q\left(x_{2}\right)+R\left(x_{3}\right)=0$ be the family of affine surfaces containing the E_{6} del Pezzo. Here $\operatorname{deg} P, \operatorname{deg} Q$ and $\operatorname{deg} Q<3$.

Etingof-Ginzburg ideology-2:

- Let $A=\mathbb{C}<X_{1}, X_{2}, X_{3}>$ and A_{\natural} be defined as above and

$$
\begin{equation*}
\Phi_{P, Q, R}^{q, \nu}=X_{1} X_{2} X_{3}-q X_{2} X_{1} X_{3}+\nu\left(X_{1}^{3}+X_{2}^{3}+X_{3}^{3}\right)+P\left(X_{1}\right)+Q\left(X_{2}\right)+R(\rangle \tag{26}
\end{equation*}
$$

Etingof-Ginzburg ideology-2:

- Let $A=\mathbb{C}<X_{1}, X_{2}, X_{3}>$ and A_{\natural} be defined as above and

$$
\begin{equation*}
\Phi_{P, Q, R}^{q, \nu}=X_{1} X_{2} X_{3}-q X_{2} X_{1} X_{3}+\nu\left(X_{1}^{3}+X_{2}^{3}+X_{3}^{3}\right)+P\left(X_{1}\right)+Q\left(X_{2}\right)+R(\rangle \tag{26}
\end{equation*}
$$

- $\mathfrak{U}\left(\Phi_{P, Q, R}^{q, \nu}\right)$ is a filtered algebra defined by three inhomogeneous "jacobian"relations:

$$
\begin{equation*}
X_{i} X_{j}-q X_{j} X_{i}=\nu X_{k}^{2}+\frac{\mathrm{d} P(Q, R)}{\mathrm{d} X_{k}},(i, j, k)=(1,2,3) \tag{27}
\end{equation*}
$$

Etingof-Ginzburg ideology-2:

- Let $A=\mathbb{C}<X_{1}, X_{2}, X_{3}>$ and A_{\natural} be defined as above and

$$
\begin{equation*}
\Phi_{P, Q, R}^{q, \nu}=X_{1} X_{2} X_{3}-q X_{2} X_{1} X_{3}+\nu\left(X_{1}^{3}+X_{2}^{3}+X_{3}^{3}\right)+P\left(X_{1}\right)+Q\left(X_{2}\right)+R(\rangle \tag{26}
\end{equation*}
$$

- $\mathfrak{U}\left(\Phi_{P, Q, R}^{q, \nu}\right)$ is a filtered algebra defined by three inhomogeneous "jacobian"relations:

$$
\begin{equation*}
X_{i} X_{j}-q X_{j} X_{i}=\nu X_{k}^{2}+\frac{\mathrm{d} P(Q, R)}{\mathrm{d} X_{k}},(i, j, k)=(1,2,3) \tag{27}
\end{equation*}
$$

- The superpotential $\Phi_{P, Q, R}^{q, \nu}=\Phi^{q, \nu}+\Phi_{P, Q, R}$ where $\Phi^{q, \nu}=X_{1} X_{2} X_{3}-q X_{2} X_{1} X_{3}+\nu\left(X_{1}^{3}+X_{2}^{3}+X_{3}^{3}\right) \in A_{\natural}^{(3)}$ and $\Phi_{P, Q, R} \in A_{\square}^{(\leq 2)}$ is a 3-CY-superpotential (for generic parameters)

Etingof-Ginzburg ideology-3:

In our case $\Phi_{P, Q, R}^{q, 0}:=X_{1} X_{2} X_{3}-q X_{2} X_{1} X_{3}$
$\Psi^{q, \epsilon, \omega}=X_{1} X_{2} X_{3}-q^{2} X_{2} X_{1} X_{3}+\epsilon_{1}^{(d)} \frac{q-1}{\sqrt{q}} X_{1}^{2}+\epsilon_{2}^{(d)} q^{3 / 2}(q-1) X_{2}^{2}+$
(28)

$$
\epsilon_{3}^{(d)} \frac{q^{3}-1}{\sqrt{q}} X_{3}^{2}--\omega_{1}^{(d)}(q-1) X_{1}-\omega_{2}^{(d)} q(q-1) X_{2}-\omega_{3}^{(d)}\left(q^{2}-1\right) X_{3}
$$

Links and open problems

- There are various links to Sklyanin algebras and their degenerations;
- Toric character varieties, their "uniformization"("toric theta-functions");
- Deformations of cubic divisors.
- Interesting and intriguing problems are related to a construction of NC cubic surfaces and their relations to NC cluster algebras.

Thank you

