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Painlevé equations

The Painlevé equations are non linear second order ODE of the form

d’w dw
dZZ:F<Z,W,Z>, ZG(C,

where F(z, w,y) is a rational function of z, w,y and the solutions
w(z; c1, ¢p) satisfy
1. Painlevé—Kowalevski property: w(z; c1, cz) have no critical
points that depend on ¢, ¢.
2. Otherwise, they are the only second order ODE without
movable singularities (branching points).
3. For generic c1, &, w(z; c1, ¢2) are new functions, Painlevé
Transcendents.
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Painlevé V and VI
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Painlevé parameters

Denote z = t and
o= (0o — 1/2)%; 3= —63;

v =02 6= (1/4 — 6,)2
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Painlevé transcendents - paradigmatic integrable systems

» Reductions of soliton equations (KdV, KP, NLS);
» They admit a Hamiltonian formulation;

» They can be expressed as the isomonodromic deformation of
some linear differential equation with rational coefficients;

» All Painlevés (except for P;) admit one-parameter family of
solutions (in terms of special functions) and for some special
values of parameteres they have particular rational solutions;

» Recently: P - has a genuine fully NC analogue
(V. Retakh-V.R.)



Painlevé sixth equation The Painlevé VI equation describes the
isomonodromic deformations of the following

o _ (), A0, A0

- )\—ul /\—U2 )\—U3

dA

where

0; .
eigen(A;) = iE, for i =1,2,3, Ao := —A1 — Ay — A3
(2)

= (P ) ©

In this talk: (u1, w2, uz, 00) := (0,1, t,00) and
(917027037900) = (90791a0t7000)-



The solution ®(\) of the system (1) is a multi-valued analytic
function in the punctured Riemann sphere P* \ {uy, up, u3, 00} and
its multivaluedness is described by the so-called monodromy
matrices, i.e. the images of the generators of the fundamental
group under the anti-isomorphism

P (Pl\{ul, up, U3, 00}, )\1) — SL,(C).

We fix the base point \; at infinity and the generators of the
fundamental group to be h, b, 5 such that /; encircles only the pole
i once and are oriented in such a way that

Ml M2M3Moo = ]1, MOO = eXp(27Tono). (4)



Let:
Gi := Tr(M;) = 2cos(mb;), i=1,2,3,00,

The Riemann-Hilbert correspondence
f(91> 627 03; gm)\g — M(Qla 027 937 900)\GL2((C)7

where G is the gauge group, is defied by associating to each
Fuchsian system its monodromy representation class. The
representation space M(Gi, Gy, G3, Goo) is realised as an affine
cubic surface with

X1 :TY(M2M3), X2 :TI“(IW;[IW3)7 X3 :Tr(MlMg).

We parameterise local solutions w(t; c¢1, cz) of PVI by points on the
cubic.



Analytic continuation — nonlinear action

m(C\ {0,1,00}) 3 7 : (c1, ) — (), ).

Loops around 0,1, 00 in C\{0,1, 00} = loops
(u1, p, u3) € C3\{A}. Pure braid goup

m(C3\ A) = P3
Here A means the "set of diagonals" in C3:

A= {z = z}.



Following Sakai, there are eight Painlevé equations corresponding
to the eight extended Dynkin diagrams:

547 557 56) 577 587 E6a E?u Esu
corresponding respectively to PVI, PV, three different cases of PlII,

PIV, PIl and PI.
Their monodromy manifolds were studied by several authors, but
were recently presented in a unified way:



Dy x1x0x3 + X12 + x22 + X:f + wix1 + woxo + w3xz +wa = 0,

Ds X1%0X3 + X2 + X2 + wix1 + waxp + w3xz +ws = 0,
Ds x1X0X3 + X2 4+ X3 + wix1 + waxo + w1 — 1 =0,
57 X1X2X3 + X12 + x22 4+ wix; =0,

58 X1X2X3 + X12 + X22 +1=0,

Eﬁ x1x0X3 + X2 + wix1 + wa(x2 + x3) + 1+ wq = 0,
E7* X1XoX3 + X1 + X0 + x3 +wq = 0,

E;* X1XoX3 + X1 + woxo +x3 —wr + 1 =0,



General Affine Cubic

The main object studied in this talk is the affine irreducible cubic
surface My, := C[x1, x2, x3]/(4—0y where

(d) (d)

X1+wy xz—l—w( )

(D2 D24 )2

d
¢ = xixoxz+ey xi+ey X (d _ g

()
According to Saito and Van der Put, the monodromy manifolds
M have all the form of M,

X3 +w; X3+Wwy



Here d is an index running on the list of the extended Dynkin
diagrams D47 D5, D, D7, Dg, E6, E7, E7**, Eg and the parameters
D (d)

Wi

, i =1,2,3 are given by:

E(d) _ 1 for d = D47 D57 D67 D77 D87 E67
V' ") 0 ford=E}E E,

for d = D47 Ds, D67 D7, Dg

)
2 for d = Eq, E;, E}*, Eg,

{
4 = {

o =

1 for d = Da,
0 ford= D57D67D77D87E67E7>'<7E7**7E8-



The coefficients w(?) are defined by:
o = GO NGl
A9 G~ PG,
A9~ 6 NG 0
d d) (d A\2 | (d) (d A\ | (d) (d d)\?
D = 4D (6) + 0D (6) 4 4O (697 4

2
(61)7 + 61967619 6 — ac e



Here Gl(d), Gz(d)7 G3(d), GL? are some constants related to the
parameters appearing in the Painlevé equations as follows:

2COS7T€0 d= 54,55,E6
im(0g+1) ~
e 2 d = E7*
G{d) — e—im0o d= E%k*
1 d = Dy, Dg, Eg
el7'r(90;—900) i e—l7'r(92+900) d _ 56,
(2 cos b, d= 54, 55,
2 cos Tl d=Eg
im(6g+1) ~
c@_ ) e d=E
2 eimo d = EY**
1 d = Ds, Eg
im(0g—0c0) im(—6p+000) ~
e 2 +e g d = Dg



2 cos d = Dy,

1 d = Ds, D7

2 cos Tl d = E
G =3 g =

e 2 d=E

e—l‘ﬂ'@o d — E7>k*

d = Dg, Dg, Eg
2cosmly d = 54, 55, ;’::6
el7r(020+1) d _ E7*

g _ ] € d-Ef
> )1 d = Ds, Eg
im(6g+000) -
e 2 d= D6

0 d=D;



This family of cubics is a variety
My = {(x,0) € C3 x Q) : ¢(X,@) = 0} where
X = (x1,x2,x3), @ = (w1,ws,w3,wyg) and the "x—forgetful"
projection m : My — Q : (X, &) = @. This projection defines a
family of affine cubics with generically non—singular fibres 771()
The cubic surface My_ has a volume form 93 given by the Poincaré
residue formulae:

dxi A dxo dx> N dxz dxz A dxq

U5 = Gon)f(0xs) — (90a)/(0x) — (@) )o)




The volume form is a holomorphic 2-form on the non-singular part
of My, and it has singularities along the singular locus. This form
defines the Poisson brackets on the surface in the usual way as

0¢a
O ©)

The other brackets are defined by circular transposition of x1, x2, x3.
For (i,j, k) = (1,2,3):

9o
{xi, xj}a = ;}i: = XjXj + 2€,ka + w,d (10)

and the volume form (8) reads as

9n — dx;i Ndx; dx; A dx; (1)
T (095)/(0xk)  (xixj + 2€x, + w)




Observe that for any ¢ € C[x1, x2, x3] the following formulae define

a Poisson bracket on C[xy, x2, x3]:

99

b
Oxi12

{xi, xiy1} = Xi+3 = Xi,
and ¢ itself is a central element for this bracket, so that the
quotient space

Md’ = C[X1>X25 X3]/<¢:0)

inherits the Poisson algebra structure [Nambu ~ 70].
Today | am going to quantize it.

(12)



Affine Cubic as it is:

» In singularity theory - the universal unfolding of the D,
singularity.



Affine Cubic as it is:

» In singularity theory - the universal unfolding of the D,
singularity.

» Oblomkov: the quantisation of the affine cubic surface My
coincides with spherical subalgebra of the generalised rank 1
double affine Hecke algebra H (or Cherednick algebra of type
Gq)



Affine Cubic as it is:

» In singularity theory - the universal unfolding of the D,
singularity.

» Oblomkov: the quantisation of the affine cubic surface My
coincides with spherical subalgebra of the generalised rank 1
double affine Hecke algebra H (or Cherednick algebra of type
Gq)

» |t appears in the Teichmiiller theory of a Riemann sphere with
4 holes/m points of arbitrary order. [Chekhov-Mazzocco]



Affine Cubic as it is:

» In singularity theory - the universal unfolding of the D,
singularity.

» Oblomkov: the quantisation of the affine cubic surface My
coincides with spherical subalgebra of the generalised rank 1
double affine Hecke algebra H (or Cherednick algebra of type
Gq)

» |t appears in the Teichmiiller theory of a Riemann sphere with
4 holes/m points of arbitrary order. [Chekhov-Mazzocco]

> In the theory of the PVI equation - the manifold of
monodromy data. [Jimbo] The confluences are monodromy
manifolds of all other P-eqgs [Saito van der Put]



Affine Cubic as it is:

>

In singularity theory - the universal unfolding of the D,
singularity.

Oblomkov: the quantisation of the affine cubic surface M,
coincides with spherical subalgebra of the generalised rank 1
double affine Hecke algebra H (or Cherednick algebra of type
Gq)

It appears in the Teichmiiller theory of a Riemann sphere with
4 holes/m points of arbitrary order. [Chekhov-Mazzocco]

In the theory of the PVI equation - the manifold of
monodromy data. [Jimbo] The confluences are monodromy
manifolds of all other P-eqgs [Saito van der Put]

In algebraic geometry - projective completion:

W(Z = {(u,v,w, t) € PP 5Pt + x5t + x5t — x1x0x3+
Fwaxi t? 4 waxat? 4+ waxat® + wat® = 0}
is a del Pezzo surface of degree three and differs from it by

three smooth lines at infinity forming a triangle [Oblomkov]
+t—0 Y1Xo X2 — ()



Singularities

Dynkin | Painlevé equations || Surface singularity type
Dq Pvi Dy
Ds Pv As
Dg deg Py=Py;(Ds) Ar
Ds Pui(De) A
D Pui(D7) non-singular
Dg Pii(Ds) non-singular
Ee Py Ao
E: Py (FN) Al
B Py (MJ) A
Eg P, non-singular
Table:

The meaning of the table: for each Painlevé equation from the first
column there is at least one singular fibre with singularity of the
tvpe oiven in the second column of the table.



Singularity Theory

A singularity of a function f(x), x = (x1,...,Xp), is an isolated
critical point xg, i.e. df = 0. Arnol'd classified all these up to
analytic coordinate tarnsformations, what he called right
equivalence.

Simple singularities are called Kleinian singularities.

Ay k+1—|—x22+...,x,%,

Dic:xi(f 2 +8) + x5 + . %0,

and so on. On C3 the can all be recasted in the form:

1 1 1
X+ x5 + x4 + axyxoxs, a#0, E+a+;>1.

D, correspondsto p=q =r = 2.



Dy
Show that the cubic of PVI is diffeomorphic to the versal unfolding
of D4 and map this cubic to the Arnol'd form:
» shift all variables by x; — x; +2, i = 1,2, 3 to obtain

X433 3G +2x1 X0+ 2X0 X3+ 21 X3+ X1 Xa X3+ 01 X1 +WaXo +W3x3 -+ =
(13)

where
w; =w;i+8, fori=1,223, Wy = w4+2(w1+w2+w3)+20.

» use the following diffeomorphism around the origin:

S x— s x4 o D GV S
X—X— = X+=x, z—=z+"——2x— — — —
¥ Y 2% 8 2

» The new cubic (up to a Morse singularity and after a shift
x — x — “2) becomes the versal unfolding of a D, singularity
in Arnol’d form:
2
X1 X ~ ~ ~ ~
—2x3 + 72 + O1x1 + @oxp + D3x¢ + D



Here
wi . wa—wr
Wi=wi+wy—8—4dws——=, W= ——,
8 2
. w3(w] +ws —w
w3 =84 w3, wWs=ws+2w3— 3( 1+42 3)+4.

The above formulae show that the versal unfolding parameters
@1,...,w04 are independent as long as wq,...,ws are.



Braid group action

Dubrovin-Mazzocco: the procedure of analytic continuation of a
local solution to the Painlevé VI corresponds to the following action
of the braid group on the monodromy manifold:

X1

B1: x2
X3

X1

B2 x2
X3

X1

Bz x2
X3

Note that two of these are enough to generate the whole braid

group.

%
%
%

Ll Ll

—X1 — X2X3 — Wi,
X3,
X2,

X3,
—X2 — X1 X2 — W2,
X1,

X2,
X1,
—X3 — X1 X0 — W3.

(14)



Theorem

(M. Mazzocco -V.R.) When Gy, = 2 (geometrically this means
that we have a puncture at infinity), the action of the braid group
coincides with a tagged cluster algebra structure of Chekhov-
M.Shapiro.

In order to see this let us compose each braid with a Okamoto
symmetry in order to obtain the following

a.. Xi — —Xj — XjX) — Wi, ./7k7él7
Bi: xj — xj, for j#i (17)

For the cubic (5) this transformation acquires a cluster flavour:

Bi : x,-x,f:><j2+xf—l—wjxj'+wkxk +ws jk#I (18)



Indeed let us introduce the shifted variables:
Yi =x; — G i1=1,2,3,

they satisfy the tagged cluster algebra relation:

it yivi =y +yi+ Gy J k#1. (19)



Note that tagged cluster algebras satisfy the Laurent phenomenon.
In particular this result implies that procedure of analytic
continuation of the solutions to the Painlevé VI satisfies the Laurent
phenomenon: if we start from a local solution corresponding to the
point (y2,)2,y2) on the shifted Painlevé cubic

yivays + y2 + y2 4+ y2 4 Giyays + Goyiys + Gayryo = 0

any other branch of that solution will corresponds to points
(v1,Y2,y3) on the same cubic such that each y; is a Laurent
polynomial of the initial (y?,y2, ).



Quantisation

Theorem
(M. Mazzocco-V.R)
Denote by X1, Xo, X3 the quantum Hermitian operators

corresponding to xi, xz, x3 as above. The quantum commutation
relations are:

1
G2 XiXii1—q 2 Xip1 Xi = <q - Q> ﬁid)XkJr(q*% %) ) (20)

(d)

where €;

and wfd) are the same as in the classical case. The

quantum operators satisfy the following quantum cubic relations:
q2 Xs X1 Xo + aX3+q 16§d)X1 + qe(d)Xzer

)

q*%egd) + w3 X3 + q%w:(ld)Xl + q%wgd)Xg +w, =



Pll cubic and Sklyanin algebra

F(x,y,z)=xyz+x+y+z=0 (21)

- PII cubic relation which geometrically describes a 2-dimensional
affine variety S C C3. We suppose that (x, y,z) is a "generic"
point in S and consider an algebra Q4 defined by

Qa(x,y,z) = C < x0,x1,%2,x3 > /J

- J is the bilateral ideal generated by six quadratic relations
involving x,y, z :



[x0, x1] — x{x2, x3},  {x0,x} — [x2, x3];
[x0, %] — y{x2,x3}, {x0,x} — [x3,x1];

[x0,x3] — z{x2,x3}, {x0,x3} — [x1, Xx2].



» Qu(x,y,z) is an associative graded algebra which was
introduced by Sklyanin as an "elliptic deformation" of the
polynomial algebra in four variables;

» This a Koszul Calabi-Yau algebra;

» The isomorphism classes of Qa(x, y, z) are in one-to-one
correspondence with the orbifold S/%3 (Shedler et al).

(The symmetric group of order 3 isomorphically acts by cyclic
permutations of (x,y,z) and by cyclic permutations of
(x1,x2, x3) with fixed xp : the latter operation permutes
(x,y,2) = (z,x,5).)



The "elliptic nature" of the parameters (x, y, z) is clarified by
Sklyanin with help of an uniformization of the surface S using four
Jacobi theta-functions 60,5 | (a3) = (00), (01), (10), (11).

They are quasi-periodic holomorphic functions on C which are
related to the elliptic curve £ := C/I'; with ['; = Z @& 7Z where
7€ C, S7>0. The only zero of 6,3 in the fundamental
parallelogram is at the point QTHT + %



This uniformization reads as follows: fix 7 € C which is not of order
4in & :4n # 0 then

_ (011(77)900(?7))2 _ _(911(77)901(77))2 5 911(?7)910(17))2
B01(1)010(n) 6oo(1)010(1)” 601(1)000(n)
(22)
Proposition

The defining relation of the affine cubic surface (21) is one of the
classical duplication identities for Jacobi theta-functions
([Whittaker-Watson], p. 488):

611(n)* + Boo(n)* = Box(n)* + b10(n)*.



Links and open problems

» There are various links to Sklyanin algebras and their
degenerations;

» (Non-)commutative potentials and NC SUSY Yang-Mills;

» Toric charcter varieties, their "uniformization" ("toric
theta-functions");

» Deformations of cubics.

» Interesting and intriguing problems are related to a

construction of NC cubic surfaces and their relations to NC
cluster algebras.



THANKS FOR YOUR ATTENTION!
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